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We analyze the impact of gas rarefaction on the two-dimensional aerodynamic ground
effect over a flat plate. Focusing on highly rarefied flow conditions, we formulate the
free-molecular problem based on the collisionless Boltzmann equation and the Maxwell
boundary conditions. A semianalytical solution is derived, where specular and diffuse
surface reflections are studied separately. The calculated ballistic field is compared with
direct simulation Monte Carlo computations at finite Knudsen numbers to test its validity
and breakdown with decreasing rarefaction. The specific effect of ground reflections is
illustrated through comparison with the nonconfined (in the absence of ground) flow field.
The results indicate that the ground invariably increases the aerodynamic loading on the
plate and shifts the maximum lift value to lower angles of attack compared with the
nonconfined configuration. While the ground may yield a negative contribution to the lift
in the continuum (ideal-flow) limit, its relative difference compared with the nonconfined
setup is found significantly larger and consistently positive at high Knudsen numbers.

DOI: 10.1103/kj7s-rhth

I. INTRODUCTION

The aerodynamic ground effect, concerning the effect of the ground on the aerodynamic loadings
over a flying vehicle, has been studied in detail over the years in continuum aerodynamics. Either
for the purpose of estimating the impact of ground upon takeoff or landing, or for exploring the
possibility of using aerodynamic forces to promote high-speed ground transportation, the problem
has been explored since the beginning of the previous century. Starting with wind tunnel [1,2] and
flight test [3] experiments, and continuing to theoretical (potential-flow-based) investigations of the
two- and three-dimensional inviscid incompressible problem [4-6], the ground effect was explored
in various aerodynamic configurations, including the canonical flat plate and other cambered
structures. Later works considered the more involved viscous problem, implementing heavy-load
numerical schemes for the calculation of the flow field and loading over aerodynamic objects [7—10].

Rarefied gas aerodynamics has been studied since the 1950s, analyzing single-airfoil aerody-
namic performance at free-stream conditions. To this end, Stadler and Zurick [11] were among
the first to consider the problem, investigating the free-molecular loading on several aerodynamic
configurations. Focusing on a flat-plate geometry, later works have followed, examining effects
such as surface conditions [12], gas rarefaction rates [13—16], and thermal wall properties [17] on
the structure aerodynamic properties. Additional studies have analyzed other airfoil geometrical
configurations, investigating their surrounding free-stream flow properties [18-20]. These works
rely mainly on numerical calculations, including the direct simulation Monte Carlo (DSMC)
method, model presentations of the Boltzmann equation, or continuum-limit-based solvers. In a
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recent contribution, the rarefied-gas wind tunnel problem was considered, studying the highly
rarefied pressure-driven gas flow over a flat plate placed in a two-dimensional channel [21].

To date, ground effect investigations have been limited to the continuum regime only. However,
in cases where noncontinuum conditions prevail, such analyses cannot be followed to predict the
correct aerodynamic behavior. Specifically, body motions in the vicinity of confining surfaces at
noncontinuum conditions are encountered in a variety of applications. These include landing and
takeoff scenarios over rarefied-atmosphere planets, where the typical flight velocities are of the order
of a few meters per second and the molecular mean free paths are of the order of decimeters and
above [22]. Prominently, the mean free path in the lunar atmosphere is of the order of 1 m [23],
and similar values are found over Io (Jupiter I) [24] and Europa (Jupiter II) [25] planet surfaces.
In a different context, the noncontinuum ground effect becomes significant in the design of novel
transportation means, such as the Hyperloop [26]. Composed as a sealed tube through which a
pod vehicle at near-vacuum conditions is set into motion, the effect of the confining facility on
the Hyperloop aerodynamic efficiency is evident. In this context, several investigations on rarefied
gas flows over airfoil-shaped surfaces have been carried out, specifically for the Hyperloop config-
uration [27,28], as well as for examining the coupling between the dynamic and thermodynamic
gas states (e.g., Ref. [20]). In a third set of applications, the levitation and control of objects
motions at near-vacuum conditions in the vicinity of confining surfaces is of critical significance
[29-31]. Here, again, the interaction between the levitating body and its bounding elements
is substantial.

Since the conduction of ground-effect experiments at rarefied-flow conditions is overwhelmingly
costly, it is of evident interest to carry a theoretical study on the impact of ground surface on the
aerodynamic properties of a moving vehicle. Apart from its practical significance, such analysis
may shed light on possible fundamental differences between the impacts of ground proximity on
the aerodynamic efficiency in continuum- and noncontinuum flow environments. In light of the
above, and to extend the present state of knowledge, the current work investigates the aerodynamic
properties and flow field over a flat plate set in the proximity of a planar boundary at large Knudsen
numbers. Focusing on highly rarefied flow conditions, analytical and semianalytical predictions are
obtained for the effect of the bounding surface in the free-molecular flow regime. A detailed study
on the impact of the plate angle of attack, plate height, and surface conditions, is carried out. The
effect of airfoil and ground reflections, varying between specular and diffuse emissions, is examined.
The free-molecular results are validated through comparison with DSMC computations, to test the
breakdown of the collisionless description with decreasing Knudsen numbers. The convergence of
the results to the free-stream description is discussed, together with the qualitative differences from
the counterpart ground effect problem at continuum conditions.

In Sec. II, the problem is stated. The free-molecular limit is analyzed in Sec. III, including
both diffuse- and specular-wall solutions. The numerical DSMC scheme is described in Sec. IV,
followed by our results and concluding comments in Secs. V and VI, respectively. Technical details
are relegated to the Appendices.

II. STATEMENT OF THE PROBLEM

A Schematic of the problem is given in Fig. 1. Consider a stationary thin flat plate of length
¢* placed in a two-dimensional stream of a monatomic hard-sphere gas of far-field density pj,
temperature 7;", and velocity Uy = UjX (hereafter, asterisks denote dimensional quantities). The
domain is confined by an x*-directed (in the X unit-vector direction) infinite planar surface. The
plate midpoint, aligned with the axes origin, is placed at a distance H* from the bounding plane and
the plate surface is fixed at an angle of attack « to the x* axis.

In the framework of gas kinetic theory and the steady two-dimensional setup considered, the gas
state is governed by the velocity distribution function f* = f*(r*, £*) of finding a gas molecule
with position and velocity about r* = (x*, y*) and &* = (£, y*, &), respectively. While the hydro-
dynamic (macroscopic) gas motion is confined to the (x, y) plane, molecular gas movements are
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FIG. 1. Schematic of the problem: a thin flat plate of size ¢* is set in a semi-infinite two-dimensional stream
of far-field density p;, temperature T, and velocity U; = U; X parallel to the ground. The plate midpoint (axes
origin) is placed at a distance H* from the ground and the plate surface is fixed at an angle of attack « in the
clockwise direction to the negative x* axis.

distributed in all spatial directions. We model gas-surface interactions of the gas particles with the
plate and planar surface via the Maxwell boundary condition [32],

AU {_w*—umz

fo 80> 0)=p 3505 U=

mp, mp,

} + (1 =B)f(r,, & =2 -h), (1)

where the relative 8 and (1 — B) parts of the gas molecules are emitted diffusely and specularly,
respectively, at each r; = (x;, y;) location along the boundaries. Here, fi denotes a unit vector
normal to the surface and into the gas, o (r};) is a yet unknown function associated with the mass
flux of particles emitted from the boundary, and Un’;pb = /2R*T;F is the molecular most probable
speed based on the boundary temperature 7,*, with R* denoting the specific gas constant. The plate
and planar boundaries are assumed isothermal and kept with the common far-stream temperature
1, = Tj. In line with the problem formulation for a stationary airfoil, it is assumed that the planar
ground surface, as the far-field stream, acquires the velocity Uy = UgX. Thus, Uy = Uy for the
ground boundary, whereas Uy, = 0 for the plate. Clearly, the surface temperature and velocity are
effective only for the diffusive (8-multiplied) part of the wall condition in Eq. (1), and do not impact
the system response in cases where the boundaries are fully specular (8 = 0).

In considering the Maxwell wall condition in Eq. (1), the fully diffuse S part represents a
“rough scatterer,” where the colliding particles attain thermal equilibrium with the interacting
wall. The specular 1 — 8 reflector then mimics a perfectly smooth wall. While none of these
models exists in reality, it is commonly accepted that wall reflections from actual surfaces may be
described, in a variety of applications, as their combination [32]. The Maxwell condition, commonly
used in rarefied-gas-dynamics literature, has been chosen due to its simplicity and the ability to
derive analytical solutions from it. It is clear that, by using a different scattering rule, the gas
velocity and temperature at the wall would differ from those imposed by the present model, and
the results should be quantitatively modified. This should be the case when imposing, for example,
the Cercignani-Lampis interaction kernel [33], as suggested in several contexts. In the following,
we prefer model simplicity over a more involved treatment of the boundary interaction, that may
only quantitatively affect the results but obviate analysis.

To render the problem dimensionless, we scale the position by the plate length ¢*, the velocity
by Uy, = /2R*Ti, and the density and temperature by o5 and 7, respectively. The system scaled
description is then governed by its reduced geometrical measures,

H=H"/c" and a«, 2)

denoting the airfoil height and angle of attack, respectively, together with the normalized free-stream
speed and chord-based mean Knudsen number

Up =Uy /Uy, and Kn=21%/c", 3)

respectively, and the surfaces accommodation coefficient 8. In what follows, we study the steady
flow field in a ground-affected stream at noncontinuum conditions, focusing on the limit of high
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rarefaction rates. We start by analyzing the free-molecular (Kn — o0o) limit of the problem. No
restrictions are made for the values of H, «, and U, which allow the analysis of the aerodynamic
problem at arbitrary heights, angles of attack, and far-stream velocities. The analysis is then
complemented by numerical simulations of the problem at finite Knudsen numbers and comparison
with existing results in the continuum limit.

III. FREE-MOLECULAR LIMIT

At free-molecular (Kn — 00) conditions, the velocity distribution function f(r, &) satisfies the
collisionless two-dimensional (r-dependent) Boltzmann equation,

of . af
éxa“‘éya_y—

The equation is supplemented by the scaled form of the Maxwell boundary condition [cf. Eq. (1)],

0. “4)

op(Tp)
32

f(rp,§-8>0)=8 exp[—|& — Upl*1 + (1 — B)f (rp, & — 2(§ - A)R), (5)

assigned to the reflected particles at each solid surface. Here, Uy, = Uy over the planar ground
and Uy, = 0 over the airfoil. At a given (x, y) location, particles that have not formerly interacted
with any of the solid surfaces acquire the Maxwellian velocity distribution with the far-field flow
properties,

1
f=Ffu=—mep[-(E -t +& +&)]. ©)

For particles that have interacted with a solid surface prior to reaching at a given location, the
in-plane velocity vector (&,, &,) uniquely determines the identity of their recent emitting wall. The
calculation of the probability density function then takes into account the respective wall conditions
of the reflecting boundary. This is carried out in Secs. III A and III B, where the cases of fully diffuse
(B = 1) and fully specular (8 = 0) surfaces are analyzed separately, respectively. The combined
diffuse-specular case is composed of the two limit cases examined and is therefore not discussed in
detail hereafter.

A. Diffuse reflecting walls

Setting 8 = 1 in Eq. (5), the velocity distribution function of particles that have interacted with
a solid surface is

[, 8= % expl—I§ — Up|*], (7

where pp(rp) is an unknown function to be determined via imposition of the impermeability
condition along each reflecting boundary. In Eq. (7), 1y, is the point of particle recent wall re-
flection, specified by its present position r and in-plane velocity vector (§,, &,). To formulate the
no-penetration condition, we put

| @ v ot [ @ inrm 6= pmty - ®)
£0>0 £0i<0

along the planar ground and each side of the plate, where p(rp) denotes the gas density at
r = 1. Here, the first and second integrals express the contributions of outgoing and incoming
particles to the macroscopic gas velocity normal to each surface, respectively. At a given location,
approaching particles may arrive at the surface from other boundaries, yielding a coupled set of
integral equations as detailed below. The right-hand side in Eq. (8) vanishes over the stationary
plate wall, since Up = 0. Additionally, since Uy points in the x direction, Uy, - fi vanishes at the
ground y = —H surface as well.
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FIG. 2. Division of the free-molecular diffuse-wall flow domain for (a) the imposition of the impermeabil-
ity condition at the point (x,, —H ) along the y = —H wall and (b) the calculation of the hydrodynamic fields at
the point (x,, y,) in the gas. The points (x;, —H) and (x,, y,) in (a) and (b) are marked by circles, respectively,
and the dashed blue lines divide the flow field into separate regions of particles arriving from the different
boundaries.

We detail the derivation of the walls impermeability condition at the ground y = —H surface. To
this end, consider Fig. 2(a) and the imposition of the condition at the indicated (x;, —H ) location.
Applying Eq. (5) with 8 = 1, the contribution of the reflected particles integral in Eq. (8) is

~ i Pg(Xp)
fs @ fag= 00 ©)

where the subscript “g” denotes the ground-wall-associated function. To evaluate the in-flux integral
contribution [second term on the right-hand side of Eq. (8)], we note that, at the indicated (x;, —H)
location, particles may arrive from either the far field (distributed with fj,) or the lower plate
surface (marked by “/p”), and no contribution arises from the “obscured” upper plate surface. This
is illustrated in Fig. 2(a), where the dashed blue lines mark the separating &, /&, directions that divide
between the different particles populations. Note that, at sufficiently large angles of attack « and x;
values (not illustrated here for brevity), the lower part of the plate becomes obscured and particles
may reach the ground from the plate upper surface.
Considering the contribution of particles reflected from the lower plate surface, we obtain

172

. 1 p1p(2)(z sina — H)(xpsina — H cos a)dz
. de = —
/E-ﬁ<0(g Dfipde 4ym /_1/2 [(z sina — H)? + (x, — 2 cos)*]/?

where z is a variable of integration along the plate lower surface. Expectedly, the integrand vanishes
for « = /2 at x;, = 0. The contribution of far-field arriving particles, reaching the ground with
no prior interaction with the solid boundaries, is divided into left-to-the-plate and right-to-the-plate
portions. The former yields

; (10)

a2

2
(left) 1 £(U 1 ex Uy _ U2 U
/ & 8 i = erf(@o) +1  exp G5} 0][1_erf<a—0>] Can
£h<0 2w 2 2Va? + 1 Jaz +1

whereas the latter is given by

2772
(right) 1 erf(Up) — 1 exp[:zyo — U02] bUy
1) fyy, dE = +b s |:l—erf<—)i| .12
e et e Bl | B

In Egs. (11) and (12), “(left)” and “(right)” symbolically represent the left- and right-to-the airfoil
limits of integration imposed by setup kinematics. Additionally, erf(s) = 2 ~'/? [ e""dr marks
the Gauss error function and a and b follow from the limits of integration. In cases where
H > xptana, a = —% and b = —é’;{”:ﬁ If H < xptana, then a and b are interchanged.
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Substituting Egs. (9)—(12) into Eq. (8), we obtain the impermeability condition at the point (x,, —H )
depicted in Fig. 2(a), namely,

Y2 p1,(2)(z sine — H)(xpsina — H cos a)dz
2pg(xb) -

12 [(zsina — H)? + (x, — z cosa?]?
U} 2 RU2 )
=2+am|:l—erf< alo )}—bexP[ﬁ_U‘)][l_erf( bUj )]
@l @+ VT T N

13)

Following similar arguments, the impermeability conditions over all other solid surfaces are
derived and tabulated in Appendix A. These, together with the above Eq. (13), compose a system
of coupled integral equations for the unknown flux functions, where the far-field stream particles
contribute the nonhomogeneous forcing terms. In the case where U, vanishes, the expected uniform
Pg = P1p = Pup = 1 solution is captured. For any nonzero choice of Uy, the impermeability condi-
tions were solved numerically by discretizing the fluxes along the boundaries. To this end, the fluxes
were represented by their discrete values at points along the walls, with the integral terms evaluated
using the trapezoidal rule. This resulted in a system of linear coupled nonhomogeneous algebraic
equations that was inverted using a MATLAB subroutine. Converged results were obtained with a
scaled discretization step of ~10~2 along the solid surfaces, constituting a minor computational
effort compared with the numerical DSMC calculations described below.

Having determined the walls fluxes, the velocity distribution function in Eq. (7) is known, and
the hydrodynamic fields may be computed via appropriated quadratures over the velocity space.
Specifically, the density p, and x- and y-velocity components, u, and u,, are given by

pen) = [ ras wien = [ aras ad wen = [ s
—00 P, y) J oo px,y) J oo
(14)
respectively, whereas the normal (P,,, Py, and P,;) and shear (P,,) stresses are computed via
Po(x,y) = / (& —ux)’f g, Py(x,y) = / (& — uy)*f d&,
P (x,y) = / Sffd& and ny(x’y) = f & — ux)(gy - uy)fds’ (15)

respectively. The pressure field is obtained by superposing
plx,y) = %(Pxx + Py,\' + P),

and the temperature 7 = p/p, in accordance with the scaled ideal-gas equation of state. At each
(x, ¥) location, the above integrations average the contributions of particles arriving from the various
boundaries, in accordance with the setup geometry. Similarly to the calculation of the boundary
fluxes, particles may arrive at a given position from only part of the boundaries, while others are
obscured. This is illustrated in Fig. 2(b), where the flow field is divided into four sections of particles
arriving at the indicated (x,, y,) point from the far-field, ground wall, and lower surface of the airfoil.
The integrations specified in Eqs. (14) and (15) are carried out in accordance with the geometrical
restrictions at each location, to yield the desired (x, y) distributions of the hydrodynamic fields in
the entire flow field.

B. Specular reflecting walls

Taking B = 0 in Eq. (5), the macroscopic impermeability condition is identically satisfied at a
specular surface, where the particles undergo mirrorlike reflections with the value of the velocity
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FIG. 3. Free-molecular particle kinematics in a specular-wall system with H = 1 and « = /6. (a) Trajec-
tories of particles arriving at (x, y) = (—0.7, —0.5) (marked by a circle) after a single collision with the ground
wall (dashed red line); one collision with the ground and then with the plate (dashed blue curve); and two
collisions with each of the walls, starting with the ground (dashed magenta line). (b) Division of the flow field
into sections of particles arriving at (x, y) = (—0.7, —0.5) following distinct sequences of collisions with the
confining walls: the red sectors mark directions of particles colliding once with the ground or arrive directly
at the point; the blue sectors depict particles that collide first with the ground and then with the plate; the
cyan sector indicates particles that collide once with the plate in between two collisions with the ground; the
magenta sector confines particles reaching (—0.7, —0.5) after colliding twice with each surface, starting with
the ground; and the thin yellow sector denotes particles that similarly interact twice with each wall, yet start
with the airfoil.

distribution function preserved. Generally, a particle passing through the domain confined between
the ground and lower plate surface may undergo several collisions with the bounding walls.
The sequence of collisions, determining the particle trajectory, depends on problem geometrical
parameters H and o and the particle in-plane velocity direction at entering the domain. This is
illustrated in Fig. 3, where the free-molecular trajectories in a specular-wall system with H = 1
and o = /6 are presented. Figure 3(a) shows three examples for particle trajectories arriving
at (x,y) = (—0.7, —0.5) after distinct sets of wall collisions. Figure 3(b) then divides the flow
field into sections of particles arriving at (x, y) = (—0.7, —0.5) after different sequences of surface
collisions. Particles approaching the plate at distances higher than H + 0.5 sin« from the ground
(i.e., with y > 0.5 sin o) may experience only one collision with the upper plate surface, and their
trajectories are simple to follow.

Focusing on the confined plate-ground domain [x € (—0.5 cosw, 0.5 cosa) with y e
(—H, 0.5 sina)], where the ground effect is most dominant, we first note that particles colliding
with the horizontal ground surface restore their value of f with their &, sign flipped. In difference, a
particle interacting with the lower plate surface inclined at an angle o changes its in-plane velocity
with a 2« rotation relative to the plate normal direction. More specifically, after its first collision
with the plate lower side, the particle velocity distribution function changes from Eq. (6) to

1 .
fao = —7 &P [—(& — Upcos2a)® — (&, + Up sin2a)* — £7], (16)

to maintain its precollision value. Here, the subscript (/, ¢) marks the number of times that the
particle has collided with the plate (/) and ground (g) walls. If the above particle then collides with
the ground wall, its postcollision distribution becomes

1 2 . 2 2
fan = —77 P [—(& — Upcos2a)” — (& — Upsin2a)” — &7], (17)

in line with the change in sign in &,. Following similar arguments, a particle undergoing a sequence
of [ collisions with the lower plate, intervened by ¢ interactions with the ground wall, obtains the
velocity distribution function

1

fuoy = =573 exp [—(& — Upcos2la)® — [& + (=) 'Uy sin 21a]* — £7]. (18)
T

To obtain the specular-wall system response, the above calculation should be repeated for

all in-plane particle directions at each (x,y) location of interest, yielding f(x,y, &) in the
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five-dimensional phase space. The sorting procedure at a given position is illustrated in Fig. 3(b)
at (x,y) = (—0.7, —0.5) for a system with H = 1 and @« = 7 /6, as in Fig. 3(a). Once the velocity
distribution function is known, the hydrodynamic fields are computed via the quadratures specified
in Egs. (14) and (15).

IV. NUMERICAL SCHEME: DSMC METHOD

The DSMC method is the prevalent scheme for simulating noncontinuum gas flows [34]. The
method was initially applied as a direct numerical approach for calculating dilute gas dynamics, and
was later on shown to yield results that converge to the solution of the Boltzmann equation [35].
Within the computational framework, the velocity distribution function of the gas molecules is
represented by a number of computational particles. The domain is divided into a mesh of cells
whose size As* is smaller than the particles mean free path A*. The particles motions and interac-
tions are decoupled over a time step At*, being shorter than the local mean free time t* between
collisions. At each time step, the particles are first translated following “free-flight” kinematics, as
if they do not interact with each other. Then, the particles are sorted into computational cells and
collisions are evaluated stochastically, conserving the collision momentum and energy invariants.
The computational cells are used for evaluating the macroscopic fields, which are obtained through
weighted averages of the particles’ properties.

We applied the DSMC algorithm to analyze the ground effect problem for arbitrary, and in
particular large, Knudsen numbers. The calculation serves as a means for supporting our analytical
free-molecular solution and describing its breakdown with decreasing Kn. To this end, the interac-
tion between the gas molecules was calculated based on the commonly used hard-sphere model of
molecular interaction. This choice was motivated by its simple implementation in calculations. The
impact of molecular collisions different from hard spheres, not considered hereafter, is expected to
affect the results only quantitatively, and should not change the qualitative nature of our findings.
The two-dimensional computational domain was divided into cells of equal size not exceeding
Ax* = 0.051*, and the time step was set no larger than Ar* = 0.01t*. To simulate a finite gas
volume, artificial side and top bounding surfaces were added at x = £7 and y = 7, respectively,
over which open boundary conditions were imposed. Gas particles leaving the simulation domain
through the open surfaces were deleted from the calculation, while entering particles were acquired
by the free-stream Maxwellian distribution. We have validated that the added edges were located far
enough so as to not affect our numerical results for the near-field ground effect. At the initial state,
the simulation domain contained no particles. Then, at each time step, computational particles were
allowed to enter through the added boundaries, by sampling the flux of the Maxwellian distribution
in Eq. (6). Particles crossing these boundaries from inside the domain were removed from the
simulation, and diffuse or specular reflections were applied to model the scattering from the ground
and plate solid walls. The simulation was followed until a steady state was formed, by letting the
transient behavior evolve into a time-independent solution. The calculation of macroscopic quanti-
ties commenced after a steady state was achieved, with the sampling time duration determined by
requiring that the relative statistical error does not exceed ~5% of the signal. A typical calculation
was carried out using a computational grid of ~280 cells in the x direction and ~160 cells in the
y direction, for a domain of scaled x-size = 14 and y-size = 7 + H in plate-length units. Taking
~200 particles per cell, a sample of 9 x 10° particles was considered. Each computation lasted
several hours using an Intel® Core™ i7-11800 machine (24M Cache, up to 4.60 GHz). To verify
the accuracy of results, a convergence analysis (not detailed here for brevity) was carried out. This
has indicated that our simulation predictions are nearly unaffected by a further decrease in the
above-mentioned cells size and time step, or by an increase in the number of particles taken per cell,
ensuring the grid independence of our DSMC predictions.
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FIG. 4. Colormaps of the free-molecular velocity magnitude about an airfoil setat H = 0.5, « = 7 /4, and
Uy = 0.1 in diffuse- (a), (c), (e) and specular- (b), (d), (f) wall systems. (a) and (b) present results for the full
plate-ground problem; (c) and (d) show the counterpart free-stream fields (in the absence of ground); and (e)
and (f) depict the difference between the full and free-stream fields. The thin curves show the respective flow
streamlines. The dashed vertical lines in (a) and (b) mark the sections along which the results in Fig. 6 are
presented.

V. RESULTS AND DISCUSSION

While the scheme of solution is valid for arbitrary values of the incoming flow velocity, ground-
effect applications commonly require the velocity magnitude to be small. In the following we
therefore fix Uy = 0.1 to present most of our results. Additionally, we primarily consider a case
where o« = /4 and take H = 0.5, to focus on a configuration where the plate-ground interaction is
expected to be strong.

Figure 4 presents the free-molecular velocity flow field at the above parameters combination. To
this end, Figs. 4(a) and 4(b) show the velocity magnitude colormaps and streamlines for diffuse and
specular-wall systems, respectively. For comparison, Figs. 4(c) and 4(d) present the counterpart
“free-stream” results (i.e., in the absence of the ground). Figures 4(e) and 4(f) then depict the
magnitudes and streamlines of the vector fields obtained by the difference between the above full
and free-stream calculations.
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FIG. 5. Colormaps of the free-molecular pressure about an airfoil setat H = 0.5, « = 7 /4,and Uy = 0.1 1in
diffuse- (a), (c) and specular- (b), (d) wall systems. (a) and (b) present results for the full plate-ground problem,
and (c) and (d) show the counterpart free-stream fields (in the absence of ground). The dashed vertical lines in
(a) and (b) mark the sections along which the results in Figs. 6(b) and 6(d) are presented.

-2 -1 0 1 2

Starting with the previously analyzed free-stream field [11,12], we observe that the solution
in Figs. 4(c) and 4(d) is expectedly antisymmetric about the plate midchord axis. Higher slip
magnitudes and velocity gradients over the plate are detected in Fig. 4(d) compared with Fig. 4(c),
in line with the difference between specular and diffuse wall conditions. The symmetry inevitably
breaks down in the presence of the ground, as shown in Figs. 4(a) and 4(b). Specifically, while
the flow above the plate remains nearly unchanged, the strong interaction between the plate lower
surface and the ground boundary yields a zone of significantly low speeds. Additionally, the velocity
streamlines are deflected in the ground vicinity to satisfy impermeability. The net ground effect is
depicted in Figs. 4(e) and 4(f), showing the difference between the vector flow fields with and
without the ground surface, obtained by the vector difference between the results in Figs. 4(a)
and 4(b) and Figs. 4(c) and 4(d), respectively. Here, a stagnant zone is observed above the plate,
where ground reflections only weakly reach at free-molecular conditions. As in Figs. 4(c) and
4(d), significantly higher flow gradients are visible in the specular-system setup. The vector field
“streamlines” in Figs. 4(e) and 4(f) mark the separate contribution of ground reflections (and
repeated ground-plate interactions) to the total flow field, indicating the emission of gas particles
away from the ground and parallel to the plate lower side.

To complement Fig. 4, Fig. 5 shows, at the same parameter combination of H = 0.5, « = 7 /4,
and Uy = 0.1, colormaps of the free-molecular pressure field in diffuse- and specular-wall systems.
In each setup, the full plate-ground and free-stream solutions are compared, illustrating, as in Fig. 4,
the strong ground impact in the vicinity of the lower airfoil surface. The effect is qualitatively similar
in both diffuse- and specular-wall systems, marking a zone of high pressure between the airfoil and
the ground. This reflects the molecular interaction between the solid surfaces analyzed in Sec. III,
and accompanied by the vanishing macroscopic flow speeds, presented in Figs. 4(a) and 4(b).
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FIG. 6. Comparison between free-molecular (marked FM, in solid lines) and DSMC (symbols) predictions
for the x velocity (a),(c) and pressure (b),(d) fields along x = —0.3 (in blue) and x = 0.2 (in red). (a) and
(b) show results for the diffuse-wall system and (c) and (d) present data for the specular-wall problem. The
triangles, crosses, and circles show DSMC data at Kn = 10, 2, and 1, respectively. All results are for an airfoil
set at « = 7 /4 with Uy = 0.1. The dashed lines connect free-molecular data points between opposite sides of
the airfoil.

To validate the free-molecular solution and examine its breakdown with decreasing rarefaction,
Fig. 6 presents a comparison of the collisionless flow field with DSMC calculations at finite Knudsen
numbers. The figure shows the y variations of the x velocity and pressure fields along the x = —0.3
and x = 0.2 sections, marked in Figs. 4(a), 4(b), 5(a), and 5(b) by the vertical dashed lines, in
both diffuse- and specular-wall systems. Following the results in Figs. 4 and 5, steep gradients
are observed in all cases in the vicinity of the plate surface, accompanied by field discontinuities
between the plate upper and lower sides. The convergence of the Kn = 10 DSMC results to the
free-molecular predictions is clearly observed. The collisionless description becomes less effective
with decreasing Kn, yet remains within <5% difference from DSMC data through Kn > 1.

We next examine the ground effect on the aerodynamic force imposed on the plate. The force
components are calculated via integration of the normal and shear stresses over the airfoil surface.
Using o; Urféo c¢* for scaling, the y-directed plate lift force per unit span is given by

0.5
L= / [(Py5(%, 5 =07)cosa — P(%, § =07 )sina)
~0.5

—(Py(x%, 5 = 0")cosa — Pg5(%, = 0F) sin)]dx, (19)
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where (%, ) denote a system of coordinates originating at the plate midchord and directed in parallel
(¥-wise) and normal (¥-wise) to the airfoil. The stress components appearing in Eq. (19) are the
normal (P;y) and shear (Pyy) stresses, calculated using Eq. (15) and projecting the x and y directions
onto X and J, respectively. Similarly, the x-directed scaled drag force per unit span is calculated via

0.5
D= / [(Py5(%, 5 =07)sina + P(X, 5§ =07 ) cosa)
-05

— (Py(%,5 = 0T)sina + P(%, § = 07) cos o) ]dx, (20)

and the impact of problem parameters on L and D is examined below. To this end, we recapitulate
the counterpart expressions for the free-molecular aerodynamic forces on an inclined plate in a
nonconfined setup [11,12]. Considering a diffuse-reflecting plate, the collisionless free-stream (FS)
forces normal (Fy) and parallel (Fs) to the plate are

. 1 2
RS = 2 |:(2U,$ + ertWy) + —=Uvexp[ = Ui] + V7 UN] @h

and
; 1
(FS,diff) 2
FS g U5|:UN erf(Uy) + ﬁexp[—UN]}, (22)
respectively, whereas for a specular plate

2

RIS = (202 + 1)erf(Uy) + —=Uy exp [~ UZ] (23)
JT

and FS(FS’SPCC) = 0. In Egs. (21)—~(23), Uy = Up sina and Us = Uy cos a. In terms of Fy and Fg, the

lift and drag forces are

L =Fycosa — Fgsinae and D = Fysina + Fgcosa, 24)

respectively.

Figure 7 presents the variations of the lift and drag forces with the plate w-scaled angle of
attack. Following Figs. 4-6, an airfoil of midchord height H = 0.5 above the ground is considered.
Two values of the incoming flow speed are inspected, namely, Uy = 0.1 and Uy = 0.2. The solid
lines show the full free-molecular results, and the dashed curves depict the counterpart free-stream
variations based on Eqs. (21)—(23). In the specular-wall case in Figs. 7(c) and 7(d), the dash-dotted
lines show the approximate results derived in Appendix B. The triangles, crosses, and circles in all
figure parts mark DSMC data at Kn = 10, 2, and 1, respectively.

At first we note that the free-molecular loading at ground effect is invariably larger than its
nonconfined counterpart, for both lift and drag. This manifests the general impact of the ground
surface as a “reflecting source” for particles originating at the free stream and reversing their
y-velocity direction upon interacting with the airfoil. As in the nonconfined problem, the lift
varies nonmonotonically with 0 < o« < 7 /2 and the drag is monotonically increasing. Yet, while
the maximum lift is obtained at « = 7 /4 in the nonconfined problem, ground reflections shift its
location to lower values, particularly in the specular-wall setup [cf. the solid lines in Figs. 7(a) and
7(c)]. This is attributed to the increased number of particles reaching the plate lower surface after
multiple ground emissions for o < 7 /4, resulting from the combined (and asymmetric) influences
of airfoil inclination and positive-x-directed far-field stream. Different from the specular-wall case,
we note that the diffuse-wall lift force does not vanish at the plate horizontal (¢ = 0) and vertical
(e = /2) system configurations, but assumes a finite positive value. This, again, is an outcome
of the ground effect, combined with the irreversibility of the diffuse-wall condition. Specifically,
contributed by the distributions of Py, (at @ = 0) and Py, (at @ = 7 /2) along the airfoil surface [see
Eq. (19)], it is the asymmetry caused by ground reflections, combined with the preferred direction
of free-stream velocity, that yield a nonvanishing lift value. This asymmetry is not observed in the
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FIG. 7. Variations of the (a),(c) lift and (b),(d) drag forces with the plate scaled angle of attack /7 for
diffuse- (a),(b) and specular- (c),(d) wall systems at the indicated values of Uy = 0.1 (in blue) and Uy = 0.2 (in
red). The solid lines show ground-effect free-molecular results with H = 0.5, and the dashed curves present
counterpart free-stream data. The triangles, crosses, and circles mark DSMC data at Kn = 10, 2, and 1,
respectively. The dash-dotted lines in (c) and (d) depict the @ < 1 approximation derived in Appendix B.

specular case (where the lift vanishes at both « = 0 and 7 /2), due to the symmetric form of the
boundary condition.

Expectedly, an increase in the far-field flow speed magnifies the free-molecular forcing on the
plate (cf. the blue and red curves in all parts of Fig. 7). Here, in common to both confined and
nonconfined configurations, the loading scales linearly with Uy, yielding the doubling of the lift and
the drag components as the incoming speed is increased from Uy = 0.1 to Uy = 0.2. Comparing
between DSMC and free-molecular results, we observe that all simulation predictions converge
to their collisionless limit with increasing Kn, exhibiting deviations that are < 3% (and, in most
cases, considerably lower) at Kn = 10. Additionally, satisfactory agreement is observed between the
specular-wall free-molecular (solid curves) and approximate (dash-dotted lines) results in Figs. 7(c)
and 7(d) at o < 1. Here, the visible discrepancies are attributed to the nonlarge H = 0.5 value
considered, whereas the approximate analysis strictly holds at H > 1.

The effect of plate height above the ground on the free-molecular lift force is examined in Fig. 8,
showing, for diffuse- and specular-wall systems at Uy = 0.2, the convergence of the « lift variation
with increasing H to the free-stream solution. At each angle of attack, an increase in the plate-ground
distance reduces the lift magnitude, which uniformly approaches its free-stream value, marked by
the dashed blue curves. For H < 0.5 plate-ground distances, the lift curve is plotted for only part
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FIG. 8. Convergence of the free-molecular lift force to its free-stream value with increasing plate-ground
distance: variations of L with /7 at Uy = 0.2 and the indicated values of H in diffuse- [Fig. 9(a)] and specular-
[Fig. 9(b)] wall setups. The dashed blue line in each figure part presents the respective free-stream variations.

of the a € [0, /2] interval, namely, « € [0, sin~!(2H)], due to the kinematic restriction on plate-
ground separation.

We conclude the discussion of results by comparing our high-Kn flow calculations with existing
continuum-limit (Kn < 1) results. To this end, we consider the ideal-flow (Kn — 0) incompressible
flow regime, for which the two-dimensional drag force vanishes, and the lift loading was previously
computed and tabulated [4]. To make the comparison transparent, we inspect the deviation of
the force from its free-stream counterpart, and scale the difference by the free-stream value.
Consequently, the common difference in scaling between the two limits is avoided. To recall, the
dimensional ideal-flow lift over an o < 1 inclined flat plate set at a low-speed (incompressible)
flow field is [36]

L*®)(Kn — 0) = np[)“Uch*a.

In the following we compare between the values of (L — L)) /LS obtained in the highly rarefied
and ideal flow limits.

Figure 9 presents the variations of the scaled lift force, (L — L)) /LFS), with the plate midchord
height H, in the free-molecular and ideal-flow incompressible limits. Small values for the plate angle
of attack, o = /36 [in Fig. 9(a)] and o = /18 [in Fig. 9(b)], are taken, so that the ideal-flow
analysis holds. For these values, the black curves depict the Kn — 0 incompressible-flow results
tabulated in Ref. [4]. These results should be valid for all Uy < 1, as long as incompressible-flow
conditions prevail. Additionally, the solid blue and red curves show the counterpart free-molecular
distributions for specular- and diffuse-wall systems at Uy = 0.1, respectively, and the dashed lines
present the corresponding specular-wall approximation derived in Appendix B.

Inspecting Fig. 9, we note that the relative lift deviations are considerably larger in the free-
molecular limit compared with the ideal-flow limit. Indeed, in the absence of molecular collisions
it is expected that the effect of ground reflections is communicated more efficiently to the airfoil,
undisturbed by intermolecular interactions. In line with the results in Figs. 7 and 8, the ground
increases the airfoil lift compared with its free-stream value for all H. This is markedly different
from the continuum-limit predictions, indicating a slight decrease in lift (i.e., negative L — L))
for H> 1.3 ata =m/36 and H 2 0.7 at « = 7 /18. At the small angles of attack considered, we
observe only small differences between the diffuse- and specular-wall systems. Additionally, the
free-molecular results are relatively well captured by the specular-wall approximation (marked by
the dashed blue line) at large enough H > 1. The ground-induced lift deviation vanishes at H > 1
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FIG. 9. Comparison between the H variations of the free-molecular and ideal-flow scaled lift forces, (L —
LE) /LTS over an airfoil set at @ = /36 (a) and o« = 7 /18 (b). In each part, the solid blue and red curves
show the free-molecular results in specular- and diffuse-wall systems at Uy = 0.1, respectively, and the dashed
line presents the counterpart specular-wall approximation derived in Appendix B. The black curves depict
the ideal (Kn — 0) incompressible-flow variation calculated in Ref. [4]. The symbols indicate the scaled lift
forces, obtained via DSMC calculations, at the indicated Knudsen numbers in a specular-wall system.

in all cases. Specifically, our calculations indicate that the free-molecular plate forcing coincides
with its free-stream value [stated in Egs. (21)—-(23)] for H = 9.

The effect of gas rarefaction on the scaled lift force is depicted in both parts of Fig. 9 by
DSMC predictions, calculated at H = 1 and marked by symbols for a specular-wall system. The
results illustrate the impact of decreasing rarefaction in reducing the scaled lift, indicating that the
main transition occurs at intermediate 0.1 < Kn < 1 Knudsen numbers. Rigorous rationalization of
the passage between the free-molecular and continuum limits, that should be based on analysis
of the kinetic model and incorporate the effect of molecular collisions, is deferred to future
inspection.

VI. CONCLUSION

We investigated the impact of gas rarefaction on the two-dimensional aerodynamic ground
effect over a flat plate. Focusing on highly rarefied flow conditions, we formulated the free-
molecular problem based on the collisionless Boltzmann equation and the Maxwell boundary
conditions. A semianalytical solution was derived, where specular and diffuse surface reflections
were studied separately. The calculated ballistic field was compared with direct simulation Monte
Carlo computations at finite Knudsen numbers to test its validity and breakdown with decreasing
rarefaction. The specific effect of ground reflections was illustrated through comparison with the
nonconfined (plate in a “free stream”) flow field. The results indicate that the ground invariably
increases the aerodynamic loading on the plate and shifts the maximum lift value to lower angles
of attack compared with the nonconfined configuration. While the ground may yield a negative
contribution to the lift in the continuum (ideal-flow) limit, its relative difference compared with
the nonconfined setup is found significantly larger and consistently positive at highly rarefied
conditions.

Recalling continuum aerodynamics literature, the ground effect is commonly considered in the
context of a three-dimensional setup, to examine its impact on induced drag loading over a finite
wing [36]. A desirable extension of the present work would therefore be a counterpart investigation
on the effect of ground confinement at noncontinuum conditions. Such analysis, that should be
preceded by a study on rarefied-gas aerodynamics over a finite wing in free stream, constitutes a
topic for future work.
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APPENDIX A: IMPERMEABILITY CONDITIONS IN A DIFFUSE-WALL SETUP

Following similar considerations to those described in Sec. III A, the impermeability conditions
over the airfoil lower and upper surfaces are derived. Skipping the technical details of calculation,
the condition over the lower airfoil side is given by

21 (xp) — /H/tana Pe()(H — xpsina)(H cosa — z sina)dz
’ —o0 [(H — xpsina)? 4+ (xpcoso — Z)2]3/2

o
= 2/ zlerf(Up cosa — z cotar) + 1] exp[—(z — Up sin «)*1dz, (A1)
0

whereas along its upper side

® pg(z)(H — xpsina)(H cosa — zsina)dz
2pup(xb) -

Hjtane [(H — xpsina)? + (x, cosa — 221

0
= 2/ z[erf(Up cosa — z cota) + 1] exp[—(z — Up sin a)z]dz. (A2)

—0Q

APPENDIX B: THE FREE-MOLECULAR FORCE OVER A SPECULAR AIRFOIL

Considering the specular-wall system, the plate-ground setup may be conveniently replaced by
a double-plate configuration, where the image plate is placed symmetrically about the ground, as
depicted in Fig. 10. In line with the plate middle-point distance H from the ground, the two objects
midchords are placed 2H apart, where the image plate is 2a-rotated relative to the airfoil. For
convenience, we denote the axes coinciding with and normal to the physical plate by ¥ and ¥,
respectively, as introduced after Eq. (19) and marked in Fig. 10.
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For the purpose of approximating the free-molecular specular-wall force over the airfoil, we take
account only of particles that interacted a small number of times with the airfoil or its image prior to
hitting the plate ¥ = 0~ lower side. This is expected to be a reasonable estimate in setups where the
plate-ground distance H is nonsmall, as validated in Sec. V (see Fig. 9). Using the (X, ¥, z) system
of coordinates, we denote

fuy = w2 exp [~ (& — Upcos )’ — (& — Upsina)’ — &7],
fu, = 32 exp [ (& — Upcosa)® — &+ Uy sinar)? — 512],
fu, = exp [ — Upcos3a) — (&3 — Up sin 3a)? — Ezz]
and fy, =7~ /2 exp [ (& — Uy cos 3a)* — (&3 + Up sin 3a)? — Ezz] (B1)

to mark the Maxwellian velocity distributions of particles that have not interacted with either the
plate or its image [fu,; cf. Eq. (6)]; gotten reflected solely at the bottom part of the plate (fu,);
emitted only at the upper part of the image body (fy,); or collided once with each surface, starting
with the image plate and then with the airfoil (fy,,), respectively. The net effect of ground reflections
on the airfoil aerodynamic force is quantitated by replacing the contributions of the nonconfined
stream loading to the force with the mirror-plate reflections in pertinent velocity-space sections.
Specifically, the approximate expressions for the ground contributions to the normal and tangential
flow stresses at the plate lower surface are

oy poo 0 —c6; oo
Py, = / [ ] gt fusasas + [ [ [ &, - fusdsds ana

165 16y
00 peéy poo 0 —0&; oo
APy, = /0 / f &:&5(fu, — fu,)dE,dExdE; + / f f &:&5(fu,, — S, )d§.dExdEs,

165 gy J—o0
(B2)
respectively, where
cos2a +4H sina — 2% cos2a — 4H sino — 2%
c1 = - and ¢, = -
sin2a — 4H cosa sin2o + 4H cosa

Calculating the & integrals in Eq. (B2) explicitly, it remains to evaluate the &; and &; quadratures
before computing the overall ground force. To this end, we introduce

Iglt:n = 000 &"lerf(Uy cos nav + ¢1&5) — erf (Up cos nor £ czé‘y)]e’(&iuo Si“”"‘)zdé;. and
I, / £7" [erf (Uy cos nar £ ¢1&5) — erf (Up cos nar = ¢y&5)]e” &+ sinna)” g (B3)
together with
— (Uy sin nat + ¢1Up cos nat) exp [ {42 COSZ‘%‘LUO sin ne)? — U@ (exf [ Yosinnetalocosna Sm”j‘/*?_ﬁ‘ cosne] 4 1)
" R
(Up sin nat + c2Up cos nar) exp [ <22 °°S’Z§‘LU osinne)? Ug] (erf [ Yosinnetcalycosna Si“""t;”f cosne] 1)

i AT+ 1)

exp(—Uoz) - exp(—Uoz)
dr(ci+1) " dn(c3+ 1)

(B4)
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In line with the above approximation, the integrals in Eqs. (B3) may be approximated by expanding
the integrands about H >> 1. Additionally, we consider small ¢ < 1 angles of attack, yielding, to a
leading order

ind 208 -1 2(Upna)? + 1 U —(Uona ?
Ilin ~E Q2 — )| J/7l2(one)” + ][1 Ferf(Upna)] F onee ,
B VTH | 4 2
% 2028 — [ | /TUonal2(Upna)* + 3 Unna’ + 1 2
B~ 28 D Tlne ey + ][—1:i:erf(Uona)]+Me(Uona)j|,
0 VrH | 4 3
9 22x -1 _ 2(U, 2 1 U, —(Upna)?
o~ 22D VERUm" + 1oy £ 29
o J7TH 4 2
¢ 228 -1 Upna[2(Upna)* + 3 Unna) - 1
o~k 2% — D VaUona[2(Upna)” + ][—I:Ferf(Uona)]—( ona)® + e—(Uonﬂt)2:|.
S VrH | 4 5
(B6)

A similar H > 1 and o < | expansion may be carried out (yet is not necessary) for expressing
Jf in Eq. (B4) to the same level of approximation. Substituting Egs. (B6) and (B4) into Eq. (B5S),
the approximate expressions for the specular-wall force over the airfoil may be obtained through
simple % integrations of APy;, and APs;,, over the airfoil lower side and superposition with the
known formulas for the free-stream loading [see Eqgs. (19) and (20) ef seq.]. The effectiveness of the
above approximation is tested in Sec. V, where it is compared with the full free-molecular solution
and DSMC finite-Knudsen predictions. Notably, the analytic expressions similarly support that free-
molecular ground reflections invariably yield a positive contribution to the aerodynamic loading
over the airfoil, thus increasing both lift and drag compared with their free-stream counterparts.
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