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ABSTRACT

We study the steady aerodynamic field and loadings about a thin flat plate placed in a wind tunnel under non-continuum conditions.
Considering a two-dimensional straight tunnel configuration, the flow is driven by either density or temperature differences between the inlet
and outlet tunnel reservoirs, producing a pressure gradient across the channel. Focusing on highly rarefied conditions, we derive a semi-
analytic description for the gas flow field in the free-molecular limit for diffuse- and specular-wall configurations. The solution is valid at arbi-
trary differences between the inlet and outlet reservoirs as well as plate angles of attack a. The results are compared with direct simulation
Monte Carlo calculations, indicating that the free-molecular description is valid through O(1) plate-size-based Knudsen numbers. The aero-
dynamic lift and drag forces are evaluated and their variations with a, reservoir conditions, and tunnel size are analyzed. At a fixed pressure
ratio between the outlet and inlet reservoirs, the density-driven flow generates higher aerodynamic loads compared with its counterpart
temperature-driven configuration, in line with the associated larger mass flow rate in the former. The results are discussed in light of the
existing rarefied-gas description of the free-stream (non-confined) problem.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0203773

I. INTRODUCTION

Wind tunnels are ubiquitously used for investigating the interac-
tion between aerodynamic structures and flowing air, yielding a mea-
sure for the aerodynamic performance of flying vehicles. Different
from free-stream (FS) flight, the tunnel walls, as well as its open
entrance and exit conditions, affect the flow field and consequent load-
ings. To mimic realistic flight conditions, these effects must, therefore,
be evaluated and reduced. Glauert1 was among the first to provide a
systematic survey on tunnel interference on wings and airscrews, com-
paring experimental results and theoretical predictions and tabulating
respective correction formulas. Further investigations have been car-
ried out to extend Glauert’s work, which is still accepted as a standard
means for the estimation of wind tunnel corrections at low speeds.

To date, theoretical wind tunnel analyses have been limited to the
continuum flow regime. However, at states where continuum condi-
tions do not prevail, these analyses cannot be followed to predict the
correct aerodynamic behavior. Such conditions take place at high
stratospheric2,3 and outer space4–6 flights, which are of practical rele-
vance, as well as in gas flows in microscale propulsion systems.7–9

These span a large variety of flow velocities, ranging from subsonic to
supersonic speeds. In particular, low-speed aerodynamics are

encountered in various space-flight applications, including landing on
rarefied-atmosphere planets, where typical landing velocities are of the
order of few meters per second and below.10 Additionally, missions
involving orbits surrounding asteroids and comets, whose mass is
small, require flight velocities on the order of few meters per second
about the encircled objects.11 Since the realization of real-time flight
experiments is overwhelmingly costly, the significance of conducting
non-continuum wind tunnel measurements is evident. Several efforts
have already been documented in the literature,12–16 which, neverthe-
less, may clearly benefit from ever-more cost-effective theoretical
investigations.

Rarefied gas aerodynamics has been studied since the 1950s, ana-
lyzing airfoils aerodynamic performance at free-stream conditions. To
this end, Stadler and Zurick17 investigated the free-molecular (FM)
loading on several aerodynamic configurations. Focusing on a flat-
plate geometry, more works followed, examining the effect of surface
conditions,18 gas rarefaction rates,19–22 and thermal wall properties23

on the structure aerodynamic properties. Additional studies have con-
sidered other NACA airfoil configurations, investigating their sur-
rounding free-stream flow properties.24–26 Most of these works rely on
heavy-load numerical calculations, including the direct simulation
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Monte Carlo (DSMC) method, model presentations of the Boltzmann
equation, or continuum-limit-based CFD solvers. To the best of our
knowledge, a counterpart theoretical study on the effect of tunnel con-
finement on rarefied gas aerodynamics is lacking.

In view of the above, the present work investigates the aerody-
namic properties of a flat plate set in a two-dimensional wind tunnel at
large Knudsen numbers. Focusing on highly rarefied flow conditions,
semi-analytical predictions are obtained for the effects of channel walls
on free-molecular aerodynamic loadings. A detailed study on the
impact of channel inlet and outlet states, plate angle of attack, and sur-
face boundary conditions is carried out. Different from traditional
continuum-limit calculations, the present scheme remains valid at
arbitrarily large angles of plate incidence and inlet-to-outlet ratios of
channel conditions. The effect of surface reflections, varying between
specular and diffuse wall emissions, is examined. The free-molecular
results are validated through comparison with DSMC computations,
to test the breakdown of the collisionless description with decreasing
Knudsen numbers. The convergence of the obtained results to the
free-stream description is discussed.

In Sec. II, the problem is stated. The free-molecular limit is ana-
lyzed in Sec. III, including both diffuse- and specular-wall solutions.
The numerical DSMC scheme is described in Sec. IV, followed by our
results and concluding comments in Secs. V and VI, respectively.
Technical details are relegated to the appendices.

II. STATEMENT OF THE PROBLEM

A schematic of the problem is shown in Fig. 1. Consider a thin
flat plate of chord c� placed in a two-dimensional straight channel of
total length L� and width H� (hereafter, asterisks denote dimensional
quantities). The plate is fixed at an angle a to the negative x�-axis in
the clockwise direction, with its midchord origin point placed in the x�

and y� middle points of the channel. It is assumed that the inlet and
outlet channel sections are connected to equilibrium-set reservoirs,
where a perfect monatomic gas is maintained at thermodynamic
ðq�in;T�

inÞ and ðq�out;T�
outÞ equilibrium densities and temperatures,

respectively. These correspond to equilibrium pressures
p�in ¼ q�inR

�T�
in and p�out ¼ q�outR

�T�
out at the reservoirs, respectively,

where R � marks the specific gas constant. Gas particles entering the
channel through the inlet and outlet sections are distributed according
to the equilibriumMaxwellian distributions

f �inðn� � x̂ > 0Þ ¼ q�in
p3=2U�3

mpin

exp � n�2

U�2
mpin

" #
and

f �outðn* � x̂ < 0Þ ¼ q�out
p3=2U�3

mpout

exp � n�2

U�2
mpout

" #
; (1)

where U�
mpin

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R �T�

in

p
and U�

mpout
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2R �T�
out

p
denote the gas

molecular most probable speeds at the inlet and outlet reservoirs,
respectively. Additionally, n� ¼ ðn�x; n�y ; n�zÞ symbols the vector of
molecular velocities, and x̂ is a unit vector in the positive x�-direction.
Strictly, Eq. (1) should be valid only at free molecular conditions,
whereas end-effect corrections need to be taken into account at finite
Knudsen numbers. This has been carried out in previous studies on
rarefied gas channel flows (see, e.g., Ref. 27), where the correction has
been interpreted in an effective amendment to the channel length.
Nevertheless, since we examine highly rarefied flow conditions and
focus primarily on the free-molecular regime, the expected impact of
reservoir collisions is minor and Eq. (1) is applied throughout as a
valid approximation. Gas-surface interactions of the gas particles with
the plate and channel boundaries are modeled via the Maxwell bound-
ary condition,28

f ðr�b; n� � n̂ > 0Þ ¼ b
q�bðr�bÞ

p3=2U�3
mpb

exp � n�2

U�2
mpb

" #
þ ð1� bÞf r�b; n

� � 2ðn� � n̂Þn̂Þ;�
(2)

where the relative b and ð1� bÞ parts of the gas molecules are emitted
diffusely and specularly, respectively, at each r�b ¼ ðx�b ; y�bÞ location
along the boundaries. Here, n̂ denotes a unit normal-to-surface vector
directed into the gas, q�bðr�bÞ is a yet unknown function associated with
the mass flux of particles emitted from the boundary, and U�

mpb¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2R �T�

b

p
is the molecular most probable speed based on the

boundary temperature T�
b . The channel solid boundaries are assumed

isothermal and are kept with the common inlet reservoir temperature
T�
b ¼ T�

in. Consideration of different wall temperatures, as studied in
Ref. 23, may be readily applied, but is not followed here.

To render the problem dimensionless, we scale the position by
the plate chord size c�, the velocity by U�

mpin
, and the density and

temperature by q�in and T�
in, respectively. The system description is

then governed by the channel and airfoil reduced geometrical
measures,

L ¼ L�=c� ; H ¼ H�=c� and a; (3)

denoting the channel scaled length and width, together with the plate
angle of attack, respectively. Additionally,

qout and Tout (4)

mark the scaled gas density and temperature at the outlet reservoir,
respectively.

In what follows, we study the steady flow field in the tunnel at
non-continuum conditions, focusing on the limit of high rarefaction

FIG. 1. Schematic of the problem: a thin flat plate of chord c� is set in a two-
dimensional straight channel of total length L� and width H�. The channel inlet and
outlet sections are connected to equilibrium reservoirs set at densities q�in and q

�
out,

and temperatures T�
in and T�

out , respectively. The plate is fixed at an angle a mea-
sured in the clockwise direction to the negative x�-axis, with its midchord placed in
the x� and y� middle points of the channel.
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rates. We start by analyzing the free-molecular limit of the problem.
The analytical results are then compared with DSMC predictions, to
validate the ballistic description, test the breakdown of the free-
molecular regime, and assess the effect of molecular collisions on the
aerodynamic loads. No restrictions are made for the values of a; qout,
and Tout, which allow the analysis of the aerodynamic problem at arbi-
trarily large angles of attack as well as arbitrary pressure differences
between the channel inlet and outlet reservoirs.

III. FREE-MOLECULAR LIMIT

Free-molecular conditions should prevail wherever the mean free
path k� of a gas molecule is large compared to the problem characteris-
tic length scale c�. In a non-dimensional formulation, this requires that
the Knudsen number,

Kn ¼ k�=c�; (5)

be exceedingly large. For the steady two-dimensional setup considered,
the gas state is governed by the probability density function
f ¼ f ðr; nÞ of finding a gas molecule with position and velocity about
r ¼ ðx; yÞ and n ¼ ðnx; ny; nzÞ, respectively. While the hydrodynamic
(macroscopic) gas motion is confined to the (x, y) plane, molecular gas
movements are distributed in all spatial directions. At free-molecular
(Kn ! 1) conditions, f ðr; nÞ satisfies the collisionless two-
dimensional (r-dependent) Boltzmann equation,29

nx
@f
@x

þ ny
@f
@y

¼ 0: (6)

The equation is supplemented by the scaled form of the Maxwell
boundary condition [see Eq. (2)],

f ðrb; n � n̂ > 0Þ ¼ b
qbðrbÞ
p3=2

exp �n2
� �

þ ð1� bÞf rb; n� 2ðn � n̂Þn̂Þ;ð
(7)

assigned to the reflected particles at each solid surface, combined with
the non-dimensional counterpart of Eq. (1),

fin ¼ f ðx¼�L=2;�H=2� y�H=2;nx > 0Þ ¼ 1

p3=2
exp �n2
� �

and

fout ¼ f ðx¼ L=2;�H=2� y�H=2;nx < 0Þ ¼ qout
p3=2T3=2

out

exp � n2

Tout

" #
;

(8)

prescribing the state of incoming particles at the inlet and outlet sec-
tions, respectively. The problem formulated in Eqs. (6)–(8) is analyzed
separately for the cases of fully diffuse (b¼ 1; Sec. III A) and fully spec-
ular (b¼ 0; Sec. III B) walls. These two setups may be considered as
limit realizations of completely accommodating and reflecting bound-
aries, respectively. Diffuse scattering takes place over “rough” surfaces,
where the colliding particles attain thermal equilibrium with the
reflecting wall and evaporate accordingly. Specular interactions occur
when the incident molecules collide with a solid surface and rebound
elastically as if hitting a perfectly smooth wall. While none of these ide-
alized scenarios appears to exist in reality, it is commonly accepted
that wall reflections from “engineering” surfaces may be described, in a
variety of applications, as a combination of diffuse and specular inter-
actions, as formulated in Eq. (7). The combined diffuse–specular

(0 < b < 1) case then composes the two limits and is therefore not
considered hereafter in detail.

A. Diffuse reflecting walls

Setting b¼ 1 in Eq. (7), the state of each gas particle in the tunnel
is determined by its last reflection from the free or solid-wall bound-
aries. The general solution for the problem is consequently given by

f ðr; nÞ ¼ eqðr; nÞ
p3=2eT 3=2

exp � n2eT
" #

; (9)

where eT is the prescribed temperature of the emitting boundary andeqðx; y; cÞ is an unknown function to be determined hereby. Given a
particle position (x, y) and its in-plane velocity vector ðnx; nyÞ, the
identity of its recent emitting surface is known uniquely.

Calculation of eqðx; y; cÞ is carried out by imposing the imperme-
ability condition,ð

n�n̂>0
ðn � n̂Þf ðrb; nÞdnþ

ð
n�n̂<0

ðn � n̂Þf ðrb; nÞdn ¼ 0; (10)

along each side of the plate and the channel solid walls. Here, the first
and second integrals express the separate contributions of the outgoing
and incoming particles to the macroscopic gas velocity normal to the
surface, respectively. At a given location, incoming particles may arrive
from different channel boundaries, and their respective contributions
should be accordingly accounted for.

We demonstrate the derivation of the walls’ impermeability con-
dition by detailing its calculation at the upper y ¼ H=2 wall. To this
end, consider Fig. 2(a) and the imposition of the condition at the indi-
cated ðxb;H=2Þ point. Applying Eq. (7) with b¼ 1, the contribution of
reflected particles’ integral in Eq. (10) becomesð

n�n̂>0
ðn � n̂Þfuwdn ¼ quwðxbÞ

2
ffiffiffi
p

p ; (11)

where the subscript “uw” denotes that the function is evaluated at a
point along the upper wall. A less straightforward calculation is
required to obtain the contribution of the incoming particles appearing
in the n � n̂ < 0 integral in Eq. (10). Here, particles may arrive from
the inlet section, outlet section, lower y ¼ �H=2 tunnel wall (lw), or
upper plate surface (up), whereas no particles are transmitted directly
from the “obscured” lower plate surface (lp). This is illustrated in
Fig. 2(a), where the dashed blue lines confine channel domains of
particles arriving from the different boundaries to ðxb;H=2Þ.
Kinematically, these lines enclose the nx=ny ratios of in-plane molecu-
lar velocity components pertaining to particles’ emittance from each
surface.

Considering the contribution of particles reflected from the lower
wall (y ¼ �H=2) along �L=2 � x < xl or xr < x � L=2 [see
Fig. 2(a)], we obtainð
n�n̂<0

ðn � n̂Þflwdn

¼� H2

4
ffiffiffi
p

p
ðxl
�L=2

qlwðxÞdx
H2 þðx� xbÞ2
� �3=2þ ðL=2

xr

qlwðxÞdx
H2 þðx� xbÞ2
� �3=2

 !
;

(12)
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whereas particles emitted from the upper plate surface contributeð
n�n̂<0

ðn � n̂Þfupdn

¼ � 1
4
ffiffiffi
p

p
ð1=2
�1=2

qupðzÞ
ðz sin aþ H=2Þðxb sin aþ ðH cos aÞ=2Þ
ðz sin aþ H=2Þ2 þ ðxb � z cos aÞ2
� �3=2 dz:

(13)

In Eq. (12), xl;r ¼ xb � Hð2xb 6 cos aÞ=ðH7 sin aÞ are the respective
left and right x-coordinates confining the lower-wall segments that
affect the upper wall at x¼ xb. In cases where xl < �L=2 or xr > L=2
[not shown in Fig. 2(a)], only the right or left segments of the lower
boundary transmit particles to the point of interest at the upper wall,
respectively. In Eq. (13), z is a variable of integration along the plate
upper surface and the integrand expectedly vanishes for xb¼ 0 and
a ¼ p=2. At sufficiently large angles of attack and at points relatively
close to the left edge of the upper wall, there may be a wall interval for
which the upper part of the plate becomes obscured and particles
arrive from the plate lower surface. In such cases, fup and qup in Eq.
(13) are replaced by flp and qlp, respectively.

The contributions of particles arriving at (xb, Ht) directly from
the inlet or outlet sections are given byð

n�n̂<0
ðn � n̂Þfindn ¼ 1

4
ffiffiffi
p

p L=2þ xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðL=2þ xbÞ2

q � 1

0@ 1A (14)

andð
n�n̂<0

ðn � n̂Þfoutdn ¼ qout
ffiffiffiffiffiffiffiffi
Tout

p
4
ffiffiffi
p

p L=2� xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðL=2� xbÞ2

q � 1

0@ 1A; (15)

respectively. While these expressions correspond to the case illustrated
in Fig. 2(a), where particles may arrive at ðxb;H=2Þ from any point
along the inlet and outlet sections, these sections may be partly
obscured by the airfoil at other locations along the upper wall, which
complicates the limits of integration and resulting expressions. Since
these geometrical details may be easily retrieved, their tabulation is
skipped here. Summing Eqs. (11)–(15) in Eq. (10), we obtain the
impermeability condition at the point ðxb;H=2Þ depicted in Fig. 2(a),

2quwðxbÞ�H2
ðxl
�L=2

qlwðxÞdx
H2þðx�xbÞ2
� �3=2þðL=2

xr

qlwðxÞdx
H2þðx�xbÞ2
� �3=2

 !

�
ð1=2
�1=2

qupðzÞ
ðz sinaþH=2Þðxb sinaþðH cosaÞ=2Þ
ðz sinaþH=2Þ2þðxb�zcosaÞ2
� �3=2 dz

¼� L=2þxbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2þðL=2þxbÞ2

q � 1

0@ 1A
�qout

ffiffiffiffiffiffiffiffi
Tout

p L=2�xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2þðL=2�xbÞ2

q � 1

0@ 1A: (16)

Following similar arguments, the impermeability conditions over
all other solid surfaces are derived, as detailed in Appendix A. These,
together with Eq. (16), yield a set of coupled integral equations for the
boundaries’ density fluxes, where the inlet and outlet section contribu-
tions serve as non-homogeneous forcing terms. In the case where the
inlet and outlet reservoirs are kept at the same state, i.e., qin ¼ Tin

¼ qout ¼ Tout ¼ 1, the expected uniform quw ¼ qlw ¼ qup ¼ qlp ¼ 1
solution is obtained. For any non-trivial combination of 0 � qout � 1
and 0 < Tout � 1, the impermeability conditions were solved numeri-
cally by discretizing the fluxes along the boundaries. To this end, the
fluxes were represented by their discrete values at equally spaced points
along the walls, with the integral terms evaluated using the trapezoidal
rule. This resulted in a system of linear coupled non-homogeneous
algebraic equations that was inverted using a MATLAB subroutine.
Converged results were derived with a scaled discretization step of
�10�3 along the solid surfaces, constituting a minor computational
effort compared with the numerical DSMC calculations described in
Sec. IV.

Having calculated the fluxes, the probability density function in
Eq. (9) is known, and the hydrodynamic fields may be calculated via
appropriate quadratures over the velocity space. Specifically, the den-
sity q and x- and y-velocity components ux and uy are given by

28

qðx; yÞ ¼
ð1
�1

f dn ; uxðx; yÞ ¼ 1
qðx; yÞ

ð1
�1

nxf dn; and uyðx; yÞ

¼ 1
qðx; yÞ

ð1
�1

nyf dn; (17)

FIG. 2. Division of a diffuse-wall channel for the (a) imposition of the impermeability condition at a point ðxb;H=2Þ along the upper y ¼ H=2 tunnel wall, and (b) calculation of
the hydrodynamic fields at a point (xp, yp) in the channel. The points ðxb;H=2Þ and (xp, yp) in (a) and (b), respectively, are marked by circles and the dashed blue lines divide
the channel into separate domains of particles arriving from the different boundaries.
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respectively, and the normal (Pxx, Pyy, and Pzz) and shear (Pxy) stresses
are computed via

Pxxðx;yÞ ¼
ð1
�1

ðnx �uxÞ2f dn ; Pyyðx;yÞ ¼
ð1
�1

ðny �uyÞ2f dn ;

Pzzðx;yÞ ¼
ð1
�1

n2z f dn; and Pxyðx;yÞ ¼
ð1
�1

nx�uxð Þðny �uyÞf dn;
(18)

respectively. The pressure field is obtained by superposing the normal
stresses,

pðx; yÞ ¼ 2
3
ðPxx þ Pyy þ PzzÞ;

whereas the temperature T ¼ p=q, in accordance with the scaled
ideal-gas equation of state. At each (x, y) location, the above integra-
tions average the contributions of particles arriving from the various
boundaries, in accordance with the setup geometry. Similar to the cal-
culation of boundary fluxes, particles may arrive at a given location
from only part of the channel boundaries, while others are obscured.
This is illustrated in Fig. 2(b), where the tunnel is divided into five sec-
tions of particles arriving at the indicated (xp, yp) point from the inlet,
outlet, lower wall, upper wall, or lower plate sections. While particles
arrive at (xp, yp) from all points along the inlet and lower wall bound-
aries, the upper wall and outlet sections are partly obscured and no
particles may be emitted directly from the upper plate surface. The
integrations specified in Eqs. (17) and (18) are carried out in accor-
dance with the geometrical restrictions at each location, to yield the
required (x, y) distributions of the hydrodynamic fields across the
tunnel.

Omitting intermolecular gas interactions, the information on a
surface presence is transferred to the gas directly by particles that have
collided with the solid boundary at an earlier time. Thus, the popula-
tion of particles arriving from a given solid wall at each channel loca-
tion is kinematically delineated as shown in Fig. 2(b). This determines
the respective molecular-velocity-space interval that is averaged in the
calculation of hydrodynamic fields and affects the macroscopic gas
behavior. With increasing distance from a surface, this interval nar-
rows, reflecting the diminishing geometrical impact of the boundary.

B. Specular reflecting walls

Different from the diffuse-scattering [b¼ 1 in Eq. (7)] case, the
macroscopic impermeability conditions are trivially satisfied at a

specular reflecting surface (b¼ 0), where the particles undergo mirror-
like reflections with the value of the velocity distribution function pre-
served. The particles in the tunnel consequently acquire either the inlet
or outlet Maxwellian distributions [see Eq. (8)], and the problem solu-
tion reduces to sorting, at each (x, y) location, between these distribu-
tions, based on the direction of the in-plane ðnx; nyÞ velocity vector of
the particle. To track the origin of a particle located at a given point, its
trajectory should be traced backward to either the inlet or outlet sec-
tions where it has entered the tunnel. This is illustrated in Fig. 3(a),
where several particle trajectories originating at the inlet (red lines)
and outlet (blue curves) sections, and arriving at ðx; yÞ ¼ ð0:7; 0:2Þ,
are plotted in a tunnel of length L¼ 4 and H¼ 2 (to be studied later
on). When followed in all directions at the chosen location, the sorting
procedure yields the colormap presented in Fig. 3(b), showing the divi-
sion of this channel into sections of particles originating at the inlet (in
red) or outlet (in blue) sections and arriving at ðx; yÞ ¼ ð0:7; 0:2Þ. The
calculation should be repeated at all (x, y) locations of interest, to
determine the solution for f ðx; y; nÞ in the five-dimensional phase
space. The hydrodynamic fields are then calculated by the quadratures
specified in Eqs. (17) and (18).

IV. NUMERICAL SCHEME: DSMC METHOD

The DSMC method is the most widely used scheme for simulat-
ing non-equilibrium gas flows. The method was initially introduced
for gas simulations as a direct numerical approach for calculating the
dynamics of a dilute gas,30 which was later on shown to yield results
that converge to the solution of the Boltzmann equation.31 Within the
DSMC framework, the velocity distribution function of the gas mole-
cules is represented by a number of computational particles. The com-
putational domain is divided into a mesh of cells whose size Ds� is
smaller than the particles’ mean free path k�. The particles’ motions
and interactions are decoupled over a time step Dt�, being shorter
than the local mean free time s� between collisions. At each time step,
the particles are first translated following “free-flight” kinematics, as if
they do not interact with each other. Then, the particles are sorted into
computational cells and collisions are evaluated stochastically, conserv-
ing the collision momentum and energy invariants. The computational
cells are used for evaluating the macroscopic fields, which are obtained
through weighted averages of the particles properties.

In the present work, we apply the DSMC algorithm to analyze
the airfoil tunnel problem for arbitrary, and particularly large,
Knudsen numbers (Kn ¼ k�=c� � 1). The interaction between
the gas molecules was calculated based on the commonly used

FIG. 3. (a) Specular-wall particle trajectories originating at the inlet (dashed and dashed-dotted red lines) and outlet (dashed and dashed-dotted blue lines) sections and arriving
at ðx; yÞ ¼ ð0:7; 0:2Þ. (b) Division of a specularly reflecting channel into sections of particles originating at the tunnel inlet (red) and outlet (blue) sections and arriving at
ðx; yÞ ¼ ð0:7; 0:2Þ (denoted by the black circle). In both (a) and (b), a channel of length L¼ 4 and height H¼ 2 is considered with a plate set at a ¼ p=4.
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hard-sphere model of molecular interaction. The effect of other models
of interaction, expected to affect the results quantitatively,32 was not
considered herein. The two-dimensional computational domain was
divided into cells of equal size not exceeding Dx� ¼ 0:05k�, and the
time step was set no larger than Dt� ¼ 0:01s�. At the initial state, the
simulation domain contained no particles. Then, at each time step,
computational particles were inserted from the outlet and inlet sec-
tions, by sampling the flux of the Maxwellian distributions specified in
Eq. (1). Computational particles crossing the inlet and outlet bound-
aries from inside the tunnel were removed from the simulation
domain, and diffuse or specular reflections were applied to describe
the scattering from the channel and plate solid walls. The simulation
was followed until a steady state was formed, by letting the transient
behavior evolve into a time-independent solution. The calculation of
macroscopic quantities commenced after a steady state was reached,
with the sampling time duration determined by requiring that the rela-
tive statistical error does not exceed 0.05 of the signal. A typical calcu-
lation was carried out with a computational grid of � 200 cells in the
x-direction and � 100 cells in the y-direction for a channel of size
L¼ 4 and H¼ 2 in plate-length units. Taking � 200 particles per cell,
a sample of � 4� 106 particles was considered. Each computation
lasted a few hours using a single processor IntelV

R

CoreTM i7-11800
machine (24M Cache, up to 4.60GHz). To verify the accuracy of
results, a convergence analysis (not detailed here for brevity) was car-
ried out. This has indicated that our simulation predictions are nearly
unaffected by further decrease in the above-mentioned cells’ size and
time step or by an increase in the number of particles taken per cell,
thus ensuring the grid independence of our DSMC predictions.

V. RESULTS AND DISCUSSION

To present our findings, we consider primarily a tunnel of length
and width

L ¼ 4 and H ¼ 2; (19)

respectively, in plate chord units. Channel dimensions of order unity
are taken to comply with our focus on high-Kn number flows, where
the Knudsen number is based on the unity-scaled airfoil size [see Eq.
(5)]. Having fixed L andH, the problem is governed by the airfoil angle
of attack a and outlet reservoir conditions qout and Tout, as well as by
the value of the Knudsen number and the type of wall conditions (dif-
fuse or specular). These effects are studied below, where the validity
and breakdown of the free-molecular description are tested via com-
parison of the collisionless solution with DSMC predictions at finite
Knudsen numbers. In Sec. VA, the density-driven problem (0 � qout
< 1;Tout ¼ 1) is investigated, followed by the temperature-driven
setup (qout ¼ 1; 0 < Tout < 1) in Sec. VB. The impact of channel wall
separation (increasing H) is considered in Sec. VC, to examine the
convergence of the solution to the free-stream limit and quantify the
impact of sidewall tunnel reflections on the predicted gas loading on
the plate.

A. Density-driven flow

Figure 4 presents two-dimensional colormaps of the free-
molecular density [Fig. 4(a)], velocity amplitude [Fig. 4(b)], tempera-
ture, [Fig. 4(c)] and pressure [Fig. 4(d)] fields for an airfoil set at an
angle of attack a ¼ p=4 in a diffuse-wall tunnel with qout ¼ 0:2 and
Tout ¼ 1. The thick solid lines indicate the plate and tunnel wall loca-
tions and the blue curves in Fig. 4(b) show the flow streamlines.
Although a high angle of attack is considered, the free-molecular flow
field is found fully attached to the plate, satisfying the impermeability
condition over the solid surface. At the imposed density gradient, a
maximum gas speed of � 0:27 in most-probable-speed units is viewed
close to the airfoil tips and across the channel outlet section. This is
equivalent to a slightly higher subsonic Mach number of

FIG. 4. Colormaps of the free-molecular (a) density, (b) velocity magnitude, (c) temperature, and (d) pressure fields for an airfoil set at a ¼ p=4 in a diffuse-wall tunnel with
qout ¼ 0:2 and Tout ¼ 1. The thick lines mark the plate location and tunnel walls, and the blue curves in (b) show the flow streamlines. The dashed vertical lines in (d) mark
the x ¼ �0:3 and x¼ 0.2 sections along which the results in Fig. 6 are presented.
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�0:27 ffiffiffiffiffiffiffi
2=c

p � 0:3 (with a heat capacity ratio of c ¼ 5=3 for an ideal
monatomic gas). Examining Fig. 4(c), the density-driven flow field is
seen nearly isothermal, yielding density and pressure fields that are
largely identical. A pressure jump of typically Dp ¼ plower � pupper
� 0:35 (in q�inU

�2
mpin

units) is observed across the plate in Fig. 4(d) [cf.
Fig. 6(c)], reflecting the high and low densities characterizing the
upstream and downstream parts of the channel, respectively. Notably,
and as allowed by the free-molecular conditions, while the flow is
roughly stagnant along the lower plate surface, significant slip (of
speed � 0:1) is observed along the upper airfoil boundary.

Figure 5 studies the effect of tunnel and plate surface condi-
tions on the system behavior. Maintaining the same geometrical
and outer reservoir state as in Fig. 4, and replacing the diffuse- with
specular-wall conditions over all solid boundaries, the figure
presents colormaps of the corresponding free-molecular velocity
magnitude [Fig. 5(a)] and pressure [Fig. 5(b)] fields. Comparing
with Fig. 4(b), considerably higher speeds (reaching �0:42, equiva-
lent to a Mach number of � 0:46) are observed, accompanied by
larger velocity slip along the airfoil and tunnel wall surfaces. These
reflect the specular-wall interactions, where no kinetic energy is
absorbed by the solid stationary walls, in contrast to the diffuse-wall
setup. Higher pressure jumps are observed in the specular-wall case,
reaching Dp � 0:5 [cf. Figs. 6(c) and 6(d)]. These, in turn, are repli-
cated in the differences between the integral aerodynamic forces act-
ing on the plate in the diffuse- and specular-wall configurations, as
studied below. Generally, more pronounced flow gradients charac-
terize the flow close to the airfoil tips in the specular-wall setup.
These are associated with the more confined zone that is kinemati-
cally affected by emittance of gas particles from the airfoil surface,
which is different from the smoother particle dispersion in the
diffuse-wall configuration.

The validity of our free-molecular description is examined in
Fig. 6, where the collisionless results are compared with DSMC predic-
tions at finite Knudsen numbers. Considering x ¼ �0:3 and x¼ 0.2 as
representative sections [marked by the dashed lines in Figs. 4(d) and
5(b)], the figure shows y-distributions of the x-velocity [Figs. 6(a) and
6(b)] and pressure [Figs. 6(c) and 6(d)] fields for both diffuse- [Figs.
6(a) and 6(b)] and specular-wall [Figs. 6(c) and 6(d)] setups. In each
case, the ballistic results are compared with DSMC calculations at
Kn ¼ 10; 2, and 1. The dashed lines in each figure connect adjacent
data points from opposite sides of the airfoil, where discontinuous
“jumps” in the hydrodynamic fields occur.

Considering the diffuse-wall results in Figs. 6(a) and 6(c), it is
noted that the agreement between ballistic and DSMC predictions is
excellent at Kn ¼ 10 (marked by the triangles) and slightly diminishes
with decreasing Kn. Still, the free-molecular results match very well
even with Kn ¼ 1 DSMC data, indicating that the effect of molecular
collisions remains minor up to Kn� 1 in the diffuse-wall and rela-
tively narrow (H¼ 2) channel setup considered. Traversing to the
specular-wall comparison, we observe that the breakdown of the free-
molecular description is markedly more visible at Kn 	 Oð1Þ, yet the
DSMC results unequivocally converge to the collisionless limit with
increasing Kn. Recalling that the present Knudsen definition is based
on the airfoil size [see Eq. (5)], it is effectively smaller if based on the
channel width (H¼ 2) or length (L¼ 4). In this respect, we consider
the good agreement of both diffuse- and specular-wall ballistic results
with DSMC predictions at Kn ¼ 10 gratifying.

The results in Fig. 6 along x¼ 0.2 and x ¼ �0:3 and the agree-
ment obtained with DSMC predictions are inevitably affected by the
tunnel and plate walls, since the y-coordinate initiates and terminates at
the channel walls, y¼�1 and y¼ 1. To put these findings in context,
we have examined the validity and breakdown of the free-molecular
solution in a reference empty channel configuration with decreasing
Knudsen numbers. Representative results are shown in Fig. 7, where the
free-molecular x-velocity component in a diffuse-wall tunnel is com-
pared with DSMC data at the same Kn ¼ 10; 2, and 1 along x¼ 0.2 and
x ¼ �0:3, as in Fig. 6. Similar to Fig. 6, the results indicate that the free-
molecular description remains valid at large yet finite Knudsen numbers
and provides a fair approximation through Kn� 1, where discrepancies
reach up to � 4:5%. The Knudsen number referred to in the figure, in
the absence of the plate, is based on half the channel width.

A key output of any wind tunnel measurement are the aerody-
namic forces acting on the tested body, obtained via integration of the
normal and shear stresses along the body surface. In the present setup,
the q�inU

�2
mpin

c�-scaled y-directed lift force on the plate per unit span is
given by

L ¼
ð0:5
�0:5

Ps?s?ðsk; s? ¼ 0�Þ cos a� Psks?ðsk; s? ¼ 0�Þ sin a� ��
� Ps?s?ðsk; s? ¼ 0þÞ cos a� Psks?ðsk; s? ¼ 0þÞ sin a
� �i

dsk;

(20)

where sk and s? denote the body coordinates (with origin at the plate
midchord) parallel and normal to the surface, respectively. The stress

FIG. 5. Colormaps of the free-molecular (a) velocity magnitude and (b) pressure fields for an airfoil set at a ¼ p=4 in a specular-wall tunnel with qout ¼ 0:2 and Tout ¼ 1. The
thick lines mark the plate location and tunnel walls, and the blue curves in (a) indicate the flow streamlines. The dashed vertical lines in (b) mark the x ¼ �0:3 and x¼ 0.2 sec-
tions along which the results in Fig. 6 are presented.
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components appearing in Eq. (20) are the normal (Ps?s? ) and shear
(Psks? ) stress fields at the plate, calculated via Eq. (18) after replacing
all x and y indices by sk and s?, respectively. The counterpart
x-directed scaled drag force on the airfoil is calculated via

D ¼
ð0:5
�0:5

Ps?s?ðsk; s? ¼ 0�Þ sin aþ Psks?ðsk; s? ¼ 0�Þ cos a� ��
� Ps?s?ðsk; s? ¼ 0þÞ sin aþ Psks?ðsk; s? ¼ 0þÞ cos a
� �i

dsk:

(21)

The effect of problem parameters on the calculated forces is examined
below.

Figure 8 presents the variations in free-molecular lift [Fig. 8(a)],
drag [Fig. 8(b)], and lift-over-drag ratio [Fig. 8(c)] with the (scaled-by-
p) plate angle of attack. Only the 0 � a � p=2 interval is presented
since the p=2 � a � p part follows by symmetry. The results are
shown for both diffuse- (solid lines) and specular-wall (dashed curves)
tunnel configurations at the indicated values of qout (with Tout ¼ 1).

In Figs. 8(a) and 8(b), a comparison is made with DSMC predictions,
indicating a close agreement between the free-molecular and numeri-
cal results at Kn ¼ 10. In line with the comparison in Fig. 6, the devia-
tion between collisionless and DSMC data with decreasing Kn is more
visible in the specular-wall configuration, showing discernible differ-
ences at Kn ¼ 2.

Examining Fig. 8(a), we observe that the lift varies non-
monotonically with a in all cases, reaching a maximum at an interme-
diate value of plate inclination. Indeed, at a¼ 0 and a ¼ p=2 the
y-directed force vanishes due to problem symmetry. In between, plate
inclination results in a finite positive lift force (becoming anti-
symmetrically negative for p=2 � a � p). In the diffuse-wall setup, all
lift curves are nearly symmetric about a ¼ p=4, where their maxima
are reached. In the specular-wall configuration, the maxima shift to
somewhat lower a. With increasing density differences between the
reservoirs, the lift force is magnified toward a limit value reached at
expansion-to-vacuum (qout ¼ 0) conditions. This is marked by the
thin magenta curve that is nearly identical with the qout ¼ 0:01 result.
As expected, the lift force in the specular-channel setup is invariably

FIG. 6. Comparison between free-molecular (solid lines) and DSMC predictions (symbols) for the x-velocity (a) and (b) and pressure (c) and (d) fields along x ¼ �0:3 (in blue)
and x¼ 0.2 (in red). (a) and (c) show results for a diffuse-wall channel and (b) and (d) present data for a specular tunnel. The triangles, crosses, and circles show DSMC data
at Kn ¼ 10; 2, and 1, respectively. All results are for an airfoil set at a ¼ p=4 in a tunnel with qout ¼ 0:2 and Tout ¼ 1. The dashed lines connect free-molecular data points at
opposite sides of the airfoil.
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larger than in the counterpart diffuse-wall case. In terms of flow veloci-
ties, our results indicate that maximum speeds are observed in the limit
qout ¼ 0 case, where juj � 0:6 and juj � 0:79 are found in the vicinity
of plate edges in the diffuse- and specular-wall configurations, respec-
tively. These correspond to respective mean speeds of juj � 0:25 and
juj � 0:39 at the tunnel inlet section. Limited by the vacuum condi-
tions at the outlet, the above subsonic velocity magnitudes should be
considered as the maximum speeds that may be reached in the present
tunnel configuration. Higher flow velocities may be examined by con-
sidering different types of inlet and outlet conditions (see Sec. VC), or
by modifying the tunnel geometry (see Sec. VI), which is beyond the
scope of the present study.

Different from the lift, the drag force in Fig. 8(b) increases mono-
tonically with a for 0 � a � p=2, reaching a maximum at a ¼ p=2
that symmetrically drops for p=2 � a � p. In the specular-wall setup,
the drag is vanishing at a¼ 0, since Pxyðs? ¼ 06 ; a ¼ 0Þ 
 0 over
the smooth surface. A finite drag force is observed at a¼ 0 in the
diffuse-wall case, reflecting the integral transfer of energy between the
gas and the plate at b¼ 1. Inspecting Eq. (21), it is clear that the drag
force becomes dominated by the normal Ps?s? contribution with
increasing a, whereas the Psks? terms (multiplied by cos a) vanish at
a ¼ p=2. This is different from the lift variation in Eq. (20), where
both Ps?s? and Psks? contributions vanish as a ! p=2, either due to
their a dependence or because of flow symmetry. In line with the
observations for lift loading, the drag force in the diffuse-wall case is
smaller than in the specular wall system, apart from small a values
where the vanishing of Pxyðs? ¼ 06 ; a � 1Þ in the specular configu-
ration reduces its value below its diffuse-wall counterpart [cf. the
dashed and solid lines in Fig. 8(b) for a=p� 0:1].

The lift-to-drag ratio in Fig. 8(c) shows qualitative different
trends between the specular- (dashed line) and diffuse-wall (solid

curve) systems. Thus, the L/D ratio decreases monotonically with a in
the specular case at a given qout, starting from an unbounded value at
a ! 0 and vanishing as a ! p=2. In the diffuse-wall setup, L/D van-
ishes at both a¼ 0 and a ¼ p=2 end points and reaches a maximum
of L=D � 1 value at a � 0:11p. In each configuration, all L/D curves
collapse over a single line, regardless of the value of qout. This reflects
the linear dependence of all Maxwellians on the density, which cancels
out by division of the lift by the drag. The main qualitative difference
between the specular and diffuse setups, being the divergence and van-
ishing of L/D for a � 1 between the two cases, respectively, follows
from the vanishing of Pxyðs? ¼ 06 ; a ¼ 0Þ in the specular case,
resulting in a singular value for the specular lift-to-drag ratio as a ! 0.

B. Temperature-driven flow

To study the plate aerodynamics in a temperature-driven flow
setup, Fig. 9 presents the free-molecular velocity [Fig. 9(a)] and pres-
sure [Fig. 9(b)] fields in a diffuse-wall tunnel with Tout ¼ 0:2 and
qout ¼ 1 for the same a ¼ p=4 and tunnel dimensions studied in
Fig. 4. While the pressure ratio between the reservoirs is identical
between Figs. 4 and 9 (p�out=p

�
in ¼ 0:2), we observe that considerably

lower flow speeds and pressure variations are obtained within the tun-
nel in the temperature-driven case. To rationalize that, we first con-
sider the effect of outlet reservoir conditions on tunnel permeability
and then study their impact on the aerodynamic loadings on the plate.

At a given pressure ratio, temperature-driven channel flows at
high Knudsen numbers are known to generate lower mass flow rates
compared with their density-driven counterparts. In terms of the pre-
sent scaling, the mass flow rate per unit length through the tunnel is
given by

_m ¼
ðH=2

�H=2
qðx; yÞuxðx; yÞdy; (22)

where the result should be independent of x, in line with flow mass
conservation. For the simple case of a straight channel with specular
walls (in the absence of an airfoil), it is known that33

_mðno�airfoil;specÞ ¼ H
2
ffiffiffi
p

p 1� qout
ffiffiffiffiffiffiffiffi
Tout

p� �
; (23)

predicting higher flow rates in density- compared with temperature-
driven flows at a fixed pout ¼ qoutTout.

Considering the current configuration, Fig. 9(c) presents the vari-
ation of _m, calculated using Eq. (22), with the airfoil angle of attack in
diffuse- (solid lines) and specular-wall (dashed lines) tunnels. Results
for the above-studied density-driven (qout ¼ 0:2, blue lines) and
temperature-driven (Tout ¼ 0:2, red curves) configurations are com-
pared. At a¼ 0, the mass flow rate in a specular channel coincides
with the value predicted by Eq. (23) and marked by triangles. Thus,
_m � 0:451 for qout ¼ 0:2 and _m � 0:312 for Tout ¼ 0:2. The mass
flow rate then decreases monotonically for 0 � a � p=2, reflecting the
partial blockage caused by the airfoil. In agreement with the above dis-
cussion and in both specular- and diffuse-wall configurations, _m is
uniformly larger in the density-driven compared with the
temperature-driven setup. Additionally, the mass flow rate in a diffuse-
wall setup is lower than in the counterpart specular tunnel, indicating
a reduction in flow momentum due to exchange of gas kinetic energy
with the diffuse surfaces. The free-molecular results are well supported

FIG. 7. Comparison between free-molecular (pluses) and DSMC predictions (other
symbols) for the x-velocity field along x ¼ �0:3 (in blue) and x¼ 0.2 (in red) in a
diffuse-wall channel in the absence of a plate. The triangles, crosses, and circles
show DSMC data at Kn ¼ 10; 2, and 1, respectively. All results are for a channel
with qout ¼ 0:2 and Tout ¼ 1 and the Knudsen number is based on half the channel
width. The channel dimensions, H¼ 2 and L¼ 4, are kept as in previous figures
discussions.
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by the presented DSMC data at Kn ¼ 10. Overall, and for the present
H¼ 2 choice of tunnel width, the high-Knudsen mass flow rate
reduces by � 50% between a¼ 0 and a ¼ p=2 in the specular-wall
configurations and by slightly more than � 35% for the diffuse-wall
setups.

Reverting to the aerodynamic problem, Fig. 10 presents the effect
of outlet reservoir conditions on the variations of the free-molecular
lift [Fig. 10(a)] and lift-over-drag ratio [Fig. 10(b)] with the plate inci-
dence in a diffuse-wall tunnel. Results for both density-driven (solid
lines) and temperature-driven (dashed curves) configurations are
shown. A comparison is made with counterpart DSMC predictions at
Kn ¼ 10, showing close agreement. Considering Fig. 10(a) and in line
with the discussion of Fig. 9, we observe that the lift force at a given
outlet pressure (being pout ¼ 0:8 or pout ¼ 0:2) is smaller in the
temperature-driven compared with the density-driven case. Inspecting
Fig. 10(b), and different from the single-curve collapse of all curves in
the density-driven case [cf. the solid red line herein and the results in
Fig. 8(c)], we find that the lift-over-drag ratio varies between different
values of Tout, approaching the density-driven curve with decreasing
outlet temperature.34 This reflects the nonlinear dependence of all
Maxwellians on the temperature, which, unlike in the density-driven
case, does not cancel out when dividing the lift by the drag.

Nevertheless, the non-monotonic variation of L/D is qualitatively simi-
lar in all cases, where maximum aerodynamic efficiency is achieved at
an angle of attack slightly above a � 0:1p.

C. The free-stream limit

In practice, the main advantage of using a wind tunnel facility is
in its ability to predict the aerodynamic loadings over a given configu-
ration at free-stream conditions without the necessity of carrying costly
challenging real-flight tests. It is therefore of interest to study the corre-
lation between our present calculations and the free-stream results in
the ballistic flow regime.

We start by recapitulating the expressions for the collisionless
free-stream aerodynamic loadings on a two-dimensional flat plate
inclined at an angle a to a uniform flow of dimensionless speed U0.
For a diffuse-reflecting plate, the collisionless free-stream forces nor-
mal (FN) and parallel (FS) to the plate are expressed by

17,18

FðFS;diffÞ
N ¼ 1

2
2U2

N þ 1
� �

erfðUNÞ þ 2ffiffiffi
p

p UN exp �U2
N

� �þ ffiffiffi
p

p
UN

	 

(24)

and

FIG. 8. Variations of the free-molecular (a) lift, (b) drag, and (c) lift-to-frag force ratio with the plate scaled angle of attack a=p for diffuse- (solid lines) and specular-wall (dashed
curves) tunnels at the indicated values of qout (with Tout ¼ 1). The crosses and circles mark DSMC results in a diffuse-wall tunnel with Kn ¼ 10 and 2, respectively, whereas
the triangles and squares denote the counterpart data in a specular-wall configuration.
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FðFS;diffÞ
S ¼ US UN erfðUNÞ þ 1ffiffiffi

p
p exp �U2

N

� �	 

; (25)

respectively. Here, UN ¼ U0 sin a;US ¼ U0 cos a, and erfðsÞ
¼ 2p�1=2

Ð s
0 exp ½�q2�dq denotes the Gauss error function. In terms

of FN and FS, the corresponding lift and drag forces are given by

L ¼ FN cos a� FS sin a and D ¼ FN sin aþ FS cos a; (26)

respectively.
Markedly, the problem considered in the present work corre-

sponds to a setup that is inherently different from the free-stream
description. Apart from containing the effect of sidewall reflections, we

FIG. 10. Variations of the free-molecular (a) lift and (b) lift-over-drag ratio with the plate angle of attack in a diffuse-wall tunnel for density-driven (solid lines) and temperature-
driven (dashed curves) flows. The numbers indicate the values of qout (¼ 0:8; 0:2 with Tout ¼ 1) or Tout (¼ 0:8; 0:2 with qout ¼ 1). The symbols denote DSMC predictions at
Kn ¼ 10 in the respective density-driven (crosses) and temperature-driven (circles) setups.

FIG. 9. Colormaps of the free-molecular (a) velocity magnitude and (b) pressure field over an airfoil set at a ¼ p=4 in a temperature-driven diffuse tunnel with Tout ¼ 0:2 and
qout ¼ 1. The thick lines mark the plate location and tunnel walls, and the blue curves in (a) show the flow streamlines. (c) Variations of the free-molecular tunnel mass flow
rate with the airfoil angle of attack in diffuse- (solid lines) and specular-wall (dashed lines) channels. The blue and red curves show results for density-driven
(qout ¼ 0:2; Tout ¼ 1) and temperature-driven (qout ¼ 1; Tout ¼ 0:2) setups, respectively, and the triangles at a¼ 0 mark the free-molecular mass flow rates in a specular
channel with no airfoil [see Eq. (23)]. The crosses and circles present respective DSMC results at Kn ¼ 10.
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consider a “blow-down” tunnel configuration, where the flow field
combines Maxwellians of vanishing macroscopic velocities carried by
the particles entering the tunnel inlet and outlet sections. Lacking the
mitigating mechanism of molecular collisions at Kn � 1, those zero-
velocity Maxwellians characterize all particles in the domain, in both
diffuse- and specular-wall configurations. While producing a non-
vanishing velocity due to problem asymmetry, it may not be expected
that the present hydrodynamic description converges uniformly to the
free-stream limit in the case where the tunnel walls are far apart.
Notably, this is different from blow-down tunnels operating at contin-
uum flow conditions, where molecular collisions dominate the flow
field and equivalence may be tabulated between the imposed inlet-to-
outlet pressure ratio and free-stream flow conditions.

To inspect the similarities between the present and free-stream
results, Fig. 11 shows the variations with plate inclination of the free-
molecular lift force [Fig. 11(a)] and lift-to-drag ratio [Fig. 11(b)] in the
free-stream description and in diffuse-tunnel setups. The dashed black
lines mark the free-stream results for a diffuse plate set at x-directed
uniform flow of speedU0 ¼ 0:2 [according to Eqs. (24)–(26)], whereas
the solid curves present counterpart predictions in a diffuse tunnel of
width H¼ 10. Specifically, the blue and red lines show results for a
density-driven case with qout ¼ 0:2 and a temperature-driven configu-
ration with Tout ¼ 0:1, respectively. The choices for qout and Tout are
made such that the mean velocity magnitude at the tunnel inlet section
approximately matches with the above U0 � 0:2 in each case. In gen-
eral, the gas velocity at the inlet section is not uniform, and only an
average approximation can be made. In line with the discussion in Sec.
VB, larger pressure gradients between the reservoirs should be
imposed in the temperature-driven case (compared with the density-
driven setup) to achieve a similar U0 � 0:2 inlet speed.

While the differences between the free-stream and blow-down
tunnel configurations are evident, the results in Fig. 11 indicate that
the variances between the calculated aerodynamic loadings are rela-
tively small. Both density- and temperature-driven setups yield similar
non-monotonic variations of the lift and lift-to-drag ratio, with their
peak locations in the latter slightly shifted to higher a compared with
the free-stream result. In particular, the temperature-driven lift varia-
tion closely agrees with the free-stream curve with a deviation of less
than � 3% at its peak value. The better correlation between the

temperature-driven (compared with the density-driven) and free-
stream results may be rationalized by the more similar exponential
dependence of the Maxwellian distribution on the outlet gas tempera-
ture Tout and the velocity U0 [cf. Eqs. (8) and (27)], compared with its
linear dependence on the outlet density qout.

To further assess the convergence of our scheme to the free-
stream limit, it is of interest to apply our computation to a case where
the imposed pressure difference between the inlet and outlet reservoirs
is replaced by identical Maxwellians of nonzero x-directed U0 velocity.
Specifically, the distributions in Eq. (8) are replaced by

fin ¼ fout ¼ 1
p3=2

exp �jn� U0x̂j2
� �

; (27)

and the free-molecular scheme of solution follows similar to Sec. III.
Here, the flow field combines particles characterized by U0-drifted
Maxwellians and is expected to converge to the non-confined descrip-
tion with increasing channel width, H � 1. The following examina-
tion should therefore provide information regarding the net impact of
tunnel walls on the deviation of the boundary-confined calculation
from free-stream conditions in the Kn � 1 regime.

Figure 12 examines the convergence of the free-molecular solu-
tion in a tunnel for the lift [Fig. 12(a)] and lift-to-drag ratio
[Fig. 12(b)] to the free-stream result. To compare with Fig. 11, diffuse
plate and diffuse-wall tunnel setups are considered with U0 ¼ 0:2. The
results for channels of widthsH¼ 2, 5, and 10 are shown together with
the counterpart free-stream result (identical with the dashed lines in
Fig. 11). At finite channel widths, the lift force is lower than at free-
stream conditions due to the loss of flow momentum by tunnel wall
collisions. With increasing channel width, the results indicate the uni-
form convergence (at all a) of the tunnel-confined solution to the free-
stream results. At H¼ 10 (where the top and bottom tunnel walls are
located five chord lengths away from the chord midpoint), the sidewall
effects become negligible and the tunnel-setup results become nearly
identical with the free-stream limit.

Having acknowledged the differences between the U0-velocity
and blow-down problem configurations, we conclude by analyzing the
large-H limit behavior of the system set in Fig. 1. In this case, the effect
of tunnel top and bottom surfaces is negligible and the problem
involves particles approaching the plate surface from either the left

FIG. 11. Variations with plate inclination of the (a) lift force and (b) lift-to-drag ratio for collisionless free-stream flow (dashed curves) and tunnel flow (blue and red lines). The
free-stream results are for a diffuse plate set at uniform x-directed flow of speed U0 ¼ 0:2. The blue and red curves mark the predictions for density-driven (with qout ¼ 0:2)
and temperature-driven (with Tout ¼ 0:1) flows in a diffuse tunnel of width H¼ 10, respectively.
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(having nx > 0 and acquiring the inlet Maxwellian distribution) or
right (with nx < 0 and outlet reservoir distribution) sides. Due to
problem asymmetry, net flow is generated in the x-direction and the
free-molecular loading on the plate may be computed in a closed inte-
gral form. The calculation for both specular- and diffuse-plate configu-
rations is summarized in Appendix B.

To illustrate the results, Fig. 13(a) shows the convergence with H
of the full free-molecular solution for the drag force over a specular
plate for qout ¼ 0:2;Tout ¼ 1 and the specified values of the plate angle
of attack a. The limit-case values calculated in Appendix B are marked
by dashed lines. It is observed that convergence is achieved forH� 20,
where the force becomes independent of H. In this respect, the results
presented in Secs. VA and VB, for which H¼ 2, depend on H, to
show the particular effect of tunnel boundaries and reflections on the
flow field. Taking H to be large minimizes this impact due to the
increase in geometrical decay of the signal emitted from the walls.

The results in Fig. 13(a) are complemented by reconsidering the
large-H limit of the velocity reservoir system behavior. In Fig. 13(b),
our data for the lift force in a diffuse-wall tunnel are shown for
U0 ¼ 0:2 and the same values of a as in Fig. 13(a). As in the thermo-
dynamic reservoir setup, it is observed that convergence is achieved for

H� 20, where the free-stream force tabulated in Eqs. (24)–(26) is
reached. In view of the findings in Fig. 13, we observe that the results
presented in Secs. VA and VB for a relatively narrow H¼ 2 tunnel
are affected by the sidewall tunnel reflections. This is in line with one
of the objectives of the present work, being the of the walls’ coupling
effect in a rarefied gas wind tunnel.

VI. CONCLUSION

We investigated the steady aerodynamic field about a thin flat
plate placed in a blow-down wind tunnel at non-continuum condi-
tions. Considering a two-dimensional straight tunnel configuration,
the flow is driven by pressure differences between the inlet and outlet
tunnel sections, imposed by either density or temperature variations
between the inlet and outlet gas reservoirs. Focusing on highly rare-
fied conditions, we derived a semi-analytic description for the gas
flow field in the free-molecular limit for both diffuse- and specular-
wall configurations. The solution is valid at arbitrary plate inclina-
tions a and imposed differences between inlet and outlet reservoirs.
The results were compared with direct simulation Monte Carlo cal-
culations, indicating that the free-molecular description is valid up to
O(1) plate-size-based Knudsen numbers. The aerodynamic lift and

FIG. 12. Convergence of the free-molecular (a) lift force and (b) lift-to-drag ratio to the free-stream limit in a diffuse-wall tunnel with U0 ¼ 0:2. The red, blue, and black curves
show variations with the plate angle of attack at the indicated H¼ 2, 5, and 10 tunnel width values, respectively. The dashed lines show the counterpart free-stream results for
a diffuse reflecting plate.

FIG. 13. Variation with H of the free-molecular (a) drag force in a specular-wall tunnel with qout ¼ 0:2; Tout ¼ 1; (b) lift force in a diffuse-wall tunnel with U0 ¼ 0:2. The num-
bers indicate the values of a, the plate angle of attack, and the dashed lines mark the large-H asymptotes calculated in Appendix B for (a) and in Eqs. (24)–(26) for (b).
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drag forces were evaluated and their variations with a and the outlet
reservoir conditions were analyzed. While the lift-to-drag ratio
decreases monotonically with a in the specular-wall setup, it reaches
a maximum value in the diffuse-wall case at an intermediate value of
a relatively small a. At a fixed pressure ratio between the outlet and
inlet reservoirs, the density-driven setup yields higher aerodynamic
loads compared with its counterpart temperature-driven configura-
tion, in line with the associated larger mass flow rate taking place in
the former. The results were discussed in light of existing rarefied-
gas investigations of the non-confined (free-stream) problem. The
tunnel-confined predictions for the aerodynamic loadings uniformly
converge to their free-stream limit in the case where the pressure
gradient is replaced by imposition of the gas velocity at the tunnel
reservoirs. The results indicate that the impact of tunnel confinement
at high Knudsen numbers becomes vanishingly small in the case
where the tunnel walls are placed more than � 10 chord-lengths
away from the plate.

The present work focuses on a highly rarefied flow regime. In this
case, the application of the “half-space” inlet and outlet section condi-
tions in Eq. (1) is justified, as the interaction between outgoing and
incoming particles at the tunnel open edges is negligible. In marked
difference, counterpart continuum-regime formulations of wind tun-
nel flows impose the overall pressures at the tunnel entrance and exit,
enabling the tabulation of the imposed pressure ratio vs the inlet veloc-
ity. A detailed comparison between the present high-Kn and contin-
uum analyses is therefore obviated. However, inasmuch as ballistic
free-stream plate aerodynamics deviates considerably from its counter-
part continuum description, large differences are also viewed in the
present tunnel flow analysis. Thus, apart from not observing flow sepa-
ration at non-small angles of attack, even the seemingly linear variation
of the lift force at a � 1 [see Figs. 11(a) and 12(a) at small a] shows a
significantly different lift curve slope. Specifically, while @L=@a
¼ p=U2

0 according to incompressible thin-airfoil theory (equivalent to
the 2p-slope in the common q�inU

�2
0 c�=2 scaling), a much lower value

of @L=@a � p�1 is viewed according to Figs. 11(a) and 12(a) for
U0 ¼ 0:2 in the free-molecular limit.

Blow-down tunnels are commonly designed to operate at high-
Mach flow conditions. These are achieved by adding a nozzle
upstream of the tunnel inlet, through which the incoming flow is
accelerated and supersonic speeds may be obtained. Since the present
work focuses on a pressure-driven straight tunnel geometry, relatively
low flow velocities have been considered, limited by the minimum
vacuum pressure that may be imposed at the outlet reservoir (see the
discussion following Fig. 8). High-speed setups may yet be studied
through substitution of arbitrarily large values of U0 in the velocity
reservoir formulation introduced in Sec. VC. In this context, we con-
sider the present work as a first step toward studying rarefied gas
tunnel aerodynamics, where future investigations may examine the
problem at higher flow velocities. This, together with the extension
of our calculations to more complex airfoil configurations, constitute
topics for future studies.
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APPENDIX A: IMPERMEABILITY CONDITIONS
IN A DIFFUSE-WALL TUNNEL

Following similar considerations to those described in Sec.
III A for the imposition of the no-penetration condition over the
tunnel upper wall, the counterpart conditions along all other solid
surfaces may be derived. Skipping the technical details of calcula-
tion, the conditions are listed below.

For the lower tunnel wall, we find

2qlwðxbÞ �
ð1=2
�1=2

qlpðzÞ
ðz sin a� H=2Þðxb sin a� ðH cos aÞ=2Þ
ðz sin a� H=2Þ2 þ ðxb � z cos aÞ2
� �3=2 dz

� H2
ðuw quwðxÞdx

H2 þ ðx � xbÞ2
� �3=2 ¼ � L=2þ xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ ðL=2þ xbÞ2
q � 1

24 35
� qout

ffiffiffiffiffiffiffiffi
Tout

p L=2� xbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðL=2� xbÞ2

q � 1

24 35; (A1)

balancing the contributions of reflected lower-wall and incoming
bottom plate and upper wall particles on the left-hand side, with the
forcing inlet and outlet section terms on the right-hand side. Similar
to Eq. (16) [see Eq. (13) et seq.], in cases where the lower surface of
the plate is obscured and particles arrive from the plate upper wall,
qlpðzÞ in Eq. (A1) is replaced by qupðzÞ. In addition, the quwðxÞ inte-
gral is carried out over the xuw portion of the upper wall that trans-
mits particles to xb [cf. the discussion of xl and xr in the context of
Eq. (12)]. The above equation is formulated for a case where par-
ticles may arrive at xb from any point along the inlet and outlet sec-
tions. Configurations where these sections are partly obscured by
the airfoil are not detailed here, but may be retrieved based on ele-
mentary geometrical considerations.

Over the plate lower side, we obtain

2qlpðxbÞ �
ðuw

quwðxÞ
ðx sin aþ H=2Þðxb sin aþ ðH cos aÞ=2Þ
ðx sin aþ H=2Þ2 þ ðxb � x cos aÞ2
� �3=2 dx

�
ðlw

qlwðxÞ
ðH=2� x sin aÞ ðH cos aÞ=2� xb sin a½ �
ðH=2� x sin aÞ2 þ ðx cos a� xbÞ2
� �3=2 dx
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¼ 2
ð1
0
ny erfð�ainnyÞ � erfð�binnyÞ
� �

exp �n2y
h i

dny

þ 2qoutffiffiffiffiffiffiffiffi
Tout

p
ð1
0
ny erf � aoutnyffiffiffiffiffiffiffiffi

Tout
p

 !
� erf � boutnyffiffiffiffiffiffiffiffi

Tout
p

 !" #

� exp � 1
Tout

n2y

	 

dny; (A2)

where the quwðxÞ and qlwðxÞ integrals are carried out over the xuw
and xlw portions of the upper and lower walls, respectively, that
transmit particles to xb. On the right-hand side, erfðsÞ
¼ 2p�1=2

Ð s
0 exp ½�q2�dq marks the Gauss error function.

Additionally, ain=out and bin=out reflect the partial integration over nx
in the inlet/outlet section contributions that may be partly obscured.
Similarly, over the plate upper surface we get

2qupðxbÞ �
ðuw

quwðxÞ
ðx sin aþ H=2Þðxb sin aþ ðH cos aÞ=2Þ
ðx sin aþ H=2Þ2 þ ðxb � x cos aÞ2
� �3=2 dx

�
ðlw

qlwðxÞ
ðH=2� x sin aÞ ðH cos aÞ=2� xb sin a½ �
ðH=2� x sin aÞ2 þ ðx cos a� xbÞ2
� �3=2 dx

¼ 2
ð0
�1

ny erfð�ainnyÞ � erfð�binnyÞ
� �

exp �n2y
h i

dny

þ 2qoutffiffiffiffiffiffiffiffi
Tout

p
ð0
�1

ny erf � aoutnyffiffiffiffiffiffiffiffi
Tout

p
 !

� erf � boutnyffiffiffiffiffiffiffiffi
Tout

p
 !" #

� exp � 1
Tout

n2y

	 

dny: (A3)

APPENDIX B: PLATE LOADING
IN THE FREE-MOLECULAR LARGE-H LIMIT

Considering the non-dimensional counterpart of the system in
Fig. 1 and omitting the effect of tunnel upper and lower surfaces,
particles approaching the plate surface acquire either the inlet ðfin
¼ p�3=2 exp½�n2�Þ or outlet ðfout ¼ ðpToutÞ�3=2qout exp½�n2=Tout�Þ
reservoir distributions. In this case, the expressions for the force on
the plate may be formulated in an integral form, as detailed below
for diffuse- (Sec. 1 of Appendix B) and specular- (Sec. 2 of
Appendix B) plate setups. The calculation constitutes a particular
case of the tunnel-flow analysis presented in Sec. III with the effect
of upper and lower wall reflections removed.

1. Diffuse plate

Following the procedure described in Sec. III A, the free-
stream equations for the impermeability condition over the plate
upper and lower surfaces may be solved in a closed form, yielding

qup ¼
1þ qout

ffiffiffiffiffiffiffiffi
Tout

p
2

þ
ð1
0
s erfðs tan aÞ exp �s2½ �ds

� qout=
ffiffiffiffiffiffiffiffi
Tout

p� �ð1
0
s erf s tan a=

ffiffiffiffiffiffiffiffi
Tout

p� �
exp �s2=Tout

� �
ds

(B1)

and

qlp ¼
1þ qout

ffiffiffiffiffiffiffiffi
Tout

p
2

�
ð0
�1

s erfðs tan aÞ exp �s2½ �ds

þ qout=
ffiffiffiffiffiffiffiffi
Tout

p� �ð0
�1

s erf s tan a=
ffiffiffiffiffiffiffiffi
Tout

p� �
exp �s2=Tout

� �
ds:

(B2)

The expressions for the lift and drag forces over the plate follow
using Eqs. (20) and (21), respectively. To this end, we make use of
Eq. (18) after replacing all x and y indices by sk and s?, respectively,
and apply the impermeability condition (us? ¼ 0 over the plate
wall). This yields, for the normal stress over the upper plate surface

Ps?s?ð�0:5 � sk � 0:5; s? ¼ 0þÞ

¼ qup
4

þ 1þ qoutTout

8
þ 1
2
ffiffiffi
p

p
ð0
�1

s2erf s tan að Þexp �s2½ �ds

� qout
2
ffiffiffiffiffiffiffiffiffiffiffi
pTout

p
ð0
�1

s2erf s tan a=
ffiffiffiffiffiffiffiffi
Tout

p� �
exp �s2=Tout

� �
ds

(B3)

and over the lower plate surface

Ps?s?ð�0:5 � sk � 0:5; s? ¼ 0�Þ
¼ qlp

4
þ 1þ qoutTout

8
þ 1
2
ffiffiffi
p

p
ð1
0
s2erf s tan að Þexp �s2½ �ds

� qout
2
ffiffiffiffiffiffiffiffiffiffiffi
pTout

p
ð1
0
s2erf s tan a=

ffiffiffiffiffiffiffiffi
Tout

p� �
exp �s2=Tout

� �
ds: (B4)

For the shear stress over the upper surface, we find

Psks?ð�0:5 � sk � 0:5; s? ¼ 0þÞ ¼ qoutTout � 1
4pð1þ tan2aÞ (B5)

and over the lower surface Psks?ðs? ¼ 0�Þ ¼ �Psks?ðs? ¼ 0þÞ. The
quadratures required for calculating the lift and drag forces in Eqs.
(20) and (21) are straightforward since the expressions for all stress
components are independent of sk.

2. Specular plate

For convenience, the calculation in the specular-plate setup is
carried out in the (x, y) system of coordinates [rather than ðsk; s?Þ],
to express Pxx, Pyy, and Pxy over the plate surface. To simplify pre-
sentation, we provide below expressions for the required fields over
the upper plate surface only (s? ¼ 0þ). Counterpart expressions
over the lower plate boundary follow by symmetry.

In line with Eq. (18), we put

Pxx ¼
ð1
�1

ðnx � uxÞ2f dn ¼ Ixx � qu2x ;

Pyy ¼
ð1
�1

ðny � uyÞ2f dn ¼ Iyy � qu2y

and Pxy ¼
ð1
�1

ðnx � uxÞðny � uyÞf dn ¼ Ixy � quxuy:

(B6)

Below, we provide expressions for the density q, velocity compo-
nents ux and uy, and integral fields Ixx, Iyy, and Ixy, appearing in Eq.
(B6), based on Eqs. (17) and (18). Starting with the density over the
upper plate surface, we find
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qð�0:5 � sk � 0:5; s? ¼ 0þÞ

¼ 1þ 3qout
4

þ 1
2
ffiffiffi
p

p
ð1
0
erf

nx
tan 2a

� �
exp �n2x
� �

dnx

� qout
2
ffiffiffiffiffiffiffiffiffiffiffi
pTout

p
ð1
0
erf

nxffiffiffiffiffiffiffiffi
Tout

p
tan 2a

� �
exp �n2x=ToutÞdnx:
�

(B7)

Proceeding to the x- and y-velocity components, we obtain

uxð�0:5 � sk � 0:5; s? ¼ 0þÞ

¼ 1
q

1� qout
ffiffiffiffiffiffiffiffi
Tout

p
4
ffiffiffi
p

p þ 1
2
ffiffiffi
p

p
ð1
0
nxerf

nx
tan 2a

� �
exp �n2x
� �

dnx

"

� qout
2
ffiffiffiffiffiffiffiffiffiffiffi
pTout

p
ð1
0
nxerf

nxffiffiffiffiffiffiffiffi
Tout

p
tan 2a

� �
exp �n2x=Tout

� �
dnx



(B8)

and

uyð�0:5 � sk � 0:5; s? ¼ 0þÞ ¼ sin 2a qout
ffiffiffiffiffiffiffiffi
Tout

p � 1
� �
4q

ffiffiffi
p

p : (B9)

For Ixx, Iyy, and Ixy, we compute

Ixxð�0:5 � sk � 0:5; s? ¼ 0þÞ

¼ 1� qoutTout

8
þ 1
2
ffiffiffi
p

p
ð1
0
n2xerf

nx
tan 2a

� �
exp �n2x
� �

dnx

� qout
2
ffiffiffiffiffiffiffiffiffiffiffi
pTout

p
ð1
0
n2xerf

nxffiffiffiffiffiffiffiffi
Tout

p
tan 2a

� �
exp �n2x=Tout

� �
dnx;

(B10)

Iyyð�0:5 � sk � 0:5; s? ¼ 0þÞ
¼ p 1þ 3qoutð Þ þ sin 2a qoutTout � 1ð Þ

8p

þ 1
4
ffiffiffi
p

p
ð1
0
erf

nx
tan 2a

� �
exp �n2x
� �

dnx

� qout
ffiffiffiffiffiffiffiffi
Tout

p
4
ffiffiffi
p

p
ð1
0
erf

nxffiffiffiffiffiffiffiffi
Tout

p
tan 2a

� �
exp �n2x=Tout

� �
dnx;

(B11)

and

Ixyð�0:5 � sk � 0:5; s? ¼ 0þÞ ¼ qoutTout � 1ð Þ sin22a
4p

: (B12)

Substituting Eqs. (B7)–(B12) into Eq. (B6), we obtain Pxx, Pyy,
and Pxy over the plate upper surface. Subsequently, Ps?s?ðs? ¼ 0þÞ
and Psks?ðs? ¼ 0þÞ [as well as their counterparts over the lower
s? ¼ 0� surface, following symmetry considerations] are calculated
through standard projections of the x- and y-directions over sk and
s?. The expressions for the lift and drag forces over the specular
plate are then derived following Eqs. (20) and (21).
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