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Two-dimensional scattering of sound at noncontinuum conditions
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We study the propagation and wall scattering of two-dimensional thermodynamic dis-
turbances in a gas at noncontinuum conditions. Initial system perturbations are modeled
as arbitrary (local) small-amplitude density or temperature inhomogeneities, prescribed
in the vicinity of an impermeable specular or diffuse (isothermal) wall. The problem is
analyzed in the free-molecular and ideal-flow limits, complemented by direct simulation
Monte Carlo (DSMC) calculations at arbitrary rarefaction rates. Closed-form results are
obtained for the collisionless and ideal-flow gas responses to impulse excitation, followed
by comparisons between DSMC and limit-case predictions for the case of Gaussian per-
turbations. While the acoustic signal is subject only to a geometric two-dimensional decay
and carries to large distances in the inviscid limit, it decays rapidly at high rarefaction rates
due to the mechanism of molecular dispersion. Different from the identical gas responses to
local compression and heating in the inviscid regime, qualitative differences are highlighted
and analyzed in the free-molecular limit. The results additionally indicate lower pressure
levels in an isothermal- compared with a specular-wall system, due to the exchange of
gas-surface energy taking place in the former. Finally, the acoustic force acting on the
solid surface is examined. Apart from an early-time repelling impact, peculiar late-time
attraction is found in the case of gas heating excitation at high Knudsen numbers.

DOI: 10.1103/PhysRevFluids.8.063401

I. INTRODUCTION

Acoustic scattering of a point source at a solid surface has been studied extensively over the
years as a model problem in continuum aeroacoustics [1]. The benchmark setup consists of a delta-
function source placed in the vicinity of an impermeable wall, where specific treatments differ in
details such as surface geometry and source properties. Subsequently, the point-source analysis has
been applied in a Green’s function approach for the computation of the acoustic field generated by
the interaction of arbitrary sources with a given structure.

While the scattering problem has been treated in detail in the continuum regime, the effect of
continuum breakdown has only been scarcely addressed. In gas flows, noncontinuum conditions
prevail in acoustic setups where the length- or timescales become of the order of the molecular
mean-free path or time, respectively. Starting in the 1950s and motivated by low-pressure and
small-scale evolving technologies, investigations on sound propagation in rarefied gas flows have
primarily focused on a one-dimensional setup of an infinite planar wall undergoing uniform small-
amplitude mechanical [2–10] or thermal [9,11–14] excitations, and were recently complemented
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by a two-dimensional study [15]. Other works have examined the propagation of acoustic waves in
micro- and nano-channels [16–22], where the sources modeled mimic vibroacoustic sound genera-
tion, similar to an oscillating wall system. Following a different path of interest, several researchers
have analyzed the propagation of flow-induced disturbances in rarefied gases. Specifically, setups
with gas-fluidic thermal sources, having a fundamental relevance in the fields of microscale heat
transfer [23,24] and ultrafast heating processes [25], have been considered. To this end, Logan
[26], and then Berkovsky and Bashtovoi [27], focused on the propagation of thermal disturbances
in a nonconfined gas, applying Grad’s moment equations and other model approximations of the
Boltzmann equation. Later investigations have included the impact of boundaries reflections, yet
were limited to the continuum limit of small Knudsen numbers [28,29]. The near-continuum gas
response to local compression has been studied by Danforth and Long [30], who allowed large
initial perturbations, but carried out numerical simulations in a nonconfined setup.

Recently, the one-dimensional propagation of small-amplitude thermodynamic disturbances at
noncontinuum conditions has been considered in a wall-confined setup [31]. The work studied the
system response to a temperature nonuniformity set at a given distance from an impermeable planar
wall. In a sense, this may be considered as a one-dimensional simplification of the above-mentioned
point-source diffraction problem. Observing the above, the objective of the present study is to
extend existing studies by investigating the counterpart two-dimensional setup, where the source is
localized in both parallel- and normal-to-wall directions. This problem, where the solid surface acts
as a neutral scatterer and its interaction with an external near source is analyzed, is fundamentally
different from most of the existing works on rarefied gas acoustics, where the surface acts as
the system source of sound [2–22]. In what follows, we first consider the system response to
planar impulse perturbations of the density and temperature fields, prescribed in the vicinity of
an impermeable wall. Such inhomogeneities may occur due to gas local compression or heating,
respectively. The problem is analyzed in both free-molecular and ideal-flow conditions to contrast
the gas behavior in the two limits. Closed-form results are derived, highlighting the differences
between system responses to local compression and heating in the free-molecular regime. The effect
of wall conditions, varying between specular and fully diffuse (isothermal), is analyzed, and the
acoustic force on the wall is computed. Remarkably, apart from the expected repelling force at
short times, late-time attraction between the gas and the wall is observed at large rarefaction rates.
Our scheme is then applied for the case of localized Gaussian excitations to enable comparison with
direct simulation Monte Carlo (DSMC) calculations and capture the system response at intermediate
rarefaction rates.

In the next section, the problem is stated. The free-molecular limit is considered in Sec. III and
the ideal-flow regime is analyzed in Sec. IV. The DSMC scheme is described in Sec. V. Our results
for the cases of impulse and Gaussian excitations are presented in Secs. VI and VII, respectively,
followed by concluding comments in Sec. VIII. Technical details are relegated to the Appendices.

II. STATEMENT OF THE PROBLEM

A schematic of the problem is shown in Fig. 1. Consider a planar semi-infinite expanse of
a monatomic gas set at y∗ > 0 and confined by an infinite stationary solid boundary at y∗ = 0
(hereafter, asterisks denote dimensional quantities). At time t∗ = 0, the gas is placed at rest, with
prescribed initial nonuniform distributions of its total density and temperature,

ρ∗
tot (0, x∗, y∗) = ρ∗

0 + ερ∗
in(x∗, y∗) and T ∗

tot (0, x∗, y∗) = T ∗
0 + εT ∗

in (x∗, y∗), (1)

respectively. In Eq. (1), x∗ is a coordinate measured parallel to the wall and ε � 1, so the system
linearized response may be considered. Such scenarios may occur due to any small thermodynamic
nonuniformities imposed by external disturbances of local compression or heating. To focus on
two-dimensional effects, we consider initial disturbances that are confined to a narrow zone within
the semiplane, located at a characteristic distance L∗ from the boundary, as illustrated by the dashed
circle in Fig. 1.
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diffuse/specular wall

FIG. 1. Schematic of the problem. A semi-infinite gas expanse is confined by an infinite planar stationary
wall. The gas uniform equilibrium density ρ∗

0 and temperature T ∗
0 are locally perturbed at time t∗ = 0. The

characteristic distance between the local initial disturbances and the wall is L∗.

The work analyzes the combined effects of gas rarefaction, setup two-dimensionality, and
surface properties on the propagation of gas initial disturbances and system relaxation. To this end,
we compare between perfectly reflecting (specular) and fully diffuse (isothermal) wall surfaces,
representing limit realizations of completely reflecting and accommodating boundaries, respec-
tively. Diffuse scattering occurs over rough surfaces, where the colliding particles attain thermal
equilibrium with the reflecting wall and evaporate accordingly. Specular interactions take place
where the incident molecules collide with a solid surface and rebound elastically as if hitting a
perfectly smooth wall. While none of these idealized scenarios exists in reality, it is commonly
accepted that wall reflections from realistic surfaces may be described, in a variety of applications,
as a combination of diffuse and specular interactions, as formulated in the prevalent Maxwell-type
condition [32]. Since the combined diffuse-specular case merely superposes the above two limits, it
is not discussed in detail hereafter.

Considering the problem formulation in the isothermal surface configuration, the wall tempera-
ture T ∗

wall is assumed equal to the gas reference temperature, T ∗
wall = T ∗

0 . In the other extreme of a
specular surface, the gas response may be conveniently formulated by superposing the gas evolution
in a counterpart unbounded domain (to be derived hereafter) with its symmetrical image about the
surface location. In both isothermal and specular setups, a dimensionless description of the problem
is obtained by scaling the position by the initial source-wall distance L∗, the velocity by the mean
thermal speed of a gas molecule U ∗

th = √
2R∗T ∗

0 (with R∗ denoting the specific gas constant), and
the time by the consequent timescale L∗/U ∗

th. The density and temperature are normalized by ρ∗
0 and

T ∗
0 , respectively, and the pressure and stress-tensor components by ρ∗

0R∗T ∗
0 . The nondimensional

problem is then governed by the scaled initial disturbances ρin(x, y) and Tin(x, y), together with the
reference Knudsen number

Kn = l∗/L∗, (2)

marking the ratio between the mean-free path of a gas molecule l∗ and the system characteristic
length scale. Assuming a monatomic hard-sphere gas, the molecular mean free path is given
by l∗ = m∗/(

√
2πρ∗

0 d∗2), where m∗ and d∗ denote the molecular atomic mass and diameter,
respectively [32].

The above diffuse- and specular-wall systems are considered in Secs. III and IV, where the limit
cases of ballistic and ideal (inviscid) flow regimes are analyzed. Closed-form results are presented
and discussed in Sec. VI for the case of impulse excitation. Comparison with DSMC predictions at
arbitrary Knudsen numbers is carried out in Sec. VII for the case of Gaussian excitation.

III. FREE-MOLECULAR LIMIT

In the framework of gas kinetic theory and the unsteady two-dimensional configuration consid-
ered, the gas state is governed by the probability density function f = f (t, x, y, ξ) of finding a gas

063401-3



A. MANELA AND Y. BEN-AMI

molecule with velocity about ξ = (ξx, ξy, ξz ) at a position near (x, y) at time t . At the linearized
conditions assumed, we put

f (t, x, y, ξ) = F [1 + εφ(t, x, y, ξ)], (3)

where F = π−3/2 exp[−ξ 2] denotes the nondimensional Maxwellian equilibrium distribution and
φ(t, x, y, ξ) marks the probability perturbation function [33]. Assuming the Knudsen number to be
large, we consider the collisionless two-dimensional unsteady Boltzmann equation for φ(t, x, y, ξ),

∂φ

∂t
+ ξx

∂φ

∂x
+ ξy

∂φ

∂y
= 0. (4)

The equation is supplemented by the initial condition

φ(0, x, y, ξ) = φin(x, y, ξ), (5)

which, in accordance with Eq. (1), takes the linearized form of deviation from equilibrium

φin(x, y, ξ) = ρin(x, y) + Tin(x, y)(ξ 2 − 3/2). (6)

The probability perturbation function is additionally subject to a far-field decay condition and a
boundary condition imposed at the solid wall. For the case of a fully diffuse isothermal boundary,
the latter takes the linearized half-range form

φ(iso)(t, x, 0, ξ · ŷ > 0) = ρw(t, x), (7)

where ŷ is a unit vector directed in the positive y direction (normal to the wall) and ρw(t, x) is
treated unknown. Considering a specular-wall setup, the probability perturbation function satisfies
the symmetry condition

φ(spec)(t, x, 0, ξx, ξy, ξz ) = φ(spec)(t, x, 0, ξx,−ξy, ξz ). (8)

The isothermal- and specular-wall setups are subsequently analyzed in Secs. III A and III B, respec-
tively.

A. Isothermal wall

Considering a fully diffuse isothermal wall, the solution of Eq. (4) subject to the initial condition
in Eq. (5) and boundary condition in Eq. (7) is

φ(iso)(t, x, y, ξ) =
{

ρin(x − ξxt, y − ξyt ) + Tin(x − ξxt, y − ξyt )(ξ 2 − 3/2), ξy � y/t

ρw(t − y/ξy, x − yξx/ξy), ξy > y/t,
(9)

separating, at time t and location (x, y), between particles which have (ξy > y/t) or have not (ξy �
y/t) hit the wall since the initial t = 0 time. The wall function ρw(t, x) is determined by imposing
the linearized form of the impermeability condition at the wall. Applying Eq. (3), we obtain

v(iso)(t, x, 0) = 1

π3/2

∫ ∞

−∞
ξyφ

(iso)(t, x, 0, ξ) exp[−ξ 2]dξ = 0. (10)

Substituting Eq. (9) into Eq. (10), carrying the ξz integration and making the changes of variables
s = x − ξxt and q = −ξyt , we find

ρw(t, x) = 2√
πt3

∫ ∞

0
q exp

[
−

(
q

t

)2
] ∫ ∞

−∞

[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(q

t

)2
− 1

)]

× exp

[
−

(
x − s

t

)2
]

dsdq. (11)

063401-4



TWO-DIMENSIONAL SCATTERING OF SOUND AT …

Having fixed the solution for φ(t, x, y, ξ), appropriate quadratures over the velocity space yield
expressions for the O(ε)-scaled density ρ (iso)(t, x, y), tangential velocity u(iso)(t, x, y), normal ve-
locity v(iso)(t, x, y), and stress components deviations P(iso)

i j (t, x, y) (with i and j being x, y, or z), as
documented in Appendix A 1. The acoustic pressure and temperature perturbations are then given
by

p(iso)(t, x, y) = 2
3

(
P(iso)

xx + P(iso)
yy + P(iso)

zz

)
and T (iso)(t, x, y) = p(iso)(t, x, y) − ρ (iso)(t, x, y),

(12)
respectively, with the latter marking the linearized form of the gas equation of state.

B. Specular wall

The specular wall setup may be analyzed by superposing the gas response to initial disturbances
in the absence of a boundary [y ∈ (−∞,∞)] with its symmetrical image about the surface location,
such that the boundary condition Eq. (8) is identically satisfied. Making use of the linearized free-
molecular solution in an unbounded domain [see Eqs. (4) and (5)],

φ(no−wall)(t, x, y, ξ) = φin(x − ξxt, y − ξyt, ξ), (13)

the probability perturbation function in the case of a specular wall configuration [y ∈ [0,∞)] is

φ(spec)(t, x, y, ξx, ξy, ξz ) =
{
φin(x − ξxt, y − ξyt, ξx, ξy, ξz ), ξy � y/t
φin(x − ξxt,−y + ξyt, ξx,−ξy, ξz ), ξy > y/t .

(14)

Substituting Eq. (14) into Eq. (3), the expressions for the acoustic fields follow by quadratures over
the velocity space, as stated at the end of Sec. III A [with superscripts (iso) replaced by (spec)].
Specific expressions for the hydrodynamic fields in an unbounded plane are given in Appendix A 2.
The specular-wall system response is obtained by superposition of the unbounded plane solution
with its image about the boundary.

IV. CONTINUUM LIMIT

The problem at small Knudsen numbers may be analyzed based on a slip-flow continuum-limit
model consisting of the continuum Navier-Stokes-Fourier (NSF) equations and respective wall
conditions. Yet, considering the two-dimensional unsteady problem in hand, such calculation should
require application of a fully numerical scheme that is not the focus of the present contribution. Ad-
ditionally, since the DSMC method may be applied up to markedly low Knudsen [Kn ∼ O(10−3)]
numbers, it appears sufficient to analyze the ideal-flow (inviscid) regime as a contrast limit to
the above free-molecular investigation. Advantageously, taking the Kn → 0 limit simplifies the
problem to an extent where it can be handled analytically. To start, since the order of equations is
reduced (compared with the full NSF set), the boundary conditions for the tangential velocity
and wall temperature cannot be satisfied. The problem is then identical with assuming a specular
boundary, and the solution may be obtained through a superposition of the ideal-flow response in
an unbounded domain with its symmetric reflection about y = 0. While this may be considered a
standard problem in continuum acoustics, we could not identify a specific reference where it was
previously considered, and present the analysis below and in Sec. VI B for completeness.

Adopting the scaling introduced in Sec. II, the linearized two-dimensional compressible Euler
equations consist of the balances of mass

∂ρ

∂t
+ ∂u

∂x
+ ∂v

∂y
= 0, (15)

x-momentum

∂u

∂t
= −1

2

(
∂ρ

∂x
+ ∂T

∂x

)
, (16)
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y-momentum

∂v

∂t
= −1

2

(
∂ρ

∂y
+ ∂T

∂y

)
, (17)

and energy

∂T

∂t
= −(γ − 1)

(
∂u

∂x
+ ∂v

∂y

)
, (18)

where the linearized form of the equation of state for an ideal gas, p = ρ + T , has been applied.
Equations (15)–(18) are supplemented by the set of initial conditions,

ρ(0, x, y) = ρin(x, y), T (0, x, y) = Tin(x, y) and u(0, x, y) = v(0, x, y) = 0, (19)

together with the wall impermeability constraint,

v(t, x, 0) = 0. (20)

Considering the infinite-plane setup with no boundaries [x, y ∈ (−∞,∞)], the ideal-flow prob-
lem is analyzed by taking the x- and y-Fourier transforms for each of the fields,

Ḡ(t, k, λ) =
∫ ∞

−∞
e−iλy

∫ ∞

−∞
G(no−wall)(t, x, y)e−ikxdxdy, (21)

and applying to Eqs. (15)–(18). This yields a system of ordinary differential equations in time that
may be recast as a Helmholtz-type equation for the density perturbation,

d2ρ̄

dt2
+ ω2ρ̄ = ω2

γ
[(γ − 1)ρ̄in − T̄in], (22)

where ω =
√

γ (k2 + λ2)/2 and the transformed form of the initial conditions in Eqs. (19) has been
utilized. The solution for ρ̄(t, k, λ) is then

ρ̄(t, k, λ) = 1

γ
(ρ̄in + T̄in ) cos(ωt ) + 1

γ
[(γ − 1)ρ̄in − T̄in], (23)

followed by expressions for the transformed temperature

T̄ (t, k, λ) = γ − 1

γ
(ρ̄in + T̄in ) cos(ωt ) − 1

γ
[(γ − 1)ρ̄in − T̄in], (24)

velocity components

ū(t, k, λ) = − ik

2ω
(ρ̄in + T̄in ) sin(ωt ) and v̄(t, k, λ) = − iλ

2ω
(ρ̄in + T̄in ) sin(ωt ), (25)

and pressure

p̄(t, k, λ) = (ρ̄in + T̄in ) cos(ωt ) (26)

fields. The physical-domain solution in an unbounded plane is then calculated by taking the inverse
Fourier transform,

G(no−wall)(t, x, y) = 1

4π2

∫ ∞

−∞
eiλy

∫ ∞

−∞
Ḡ(t, k, λ)eikxdkdλ, (27)

of the transformed perturbations and omitting the imaginary parts.
Having obtained the unbounded gas response, the calculation of the specular-wall system

solution is carried out by superposing G(no−wall)(t, x, y) with its symmetrical image about y = 0,
similar to the discussion in Sec. III B. This ensures the vanishing of all odd (with respect to the
y-molecular-velocity component) hydrodynamic moments at y = 0, as required by the specular
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boundary condition. For given initial density and temperature perturbations, the solution may be
computed in detail, as demonstrated in Secs. VI and VII.

V. NUMERICAL SCHEME: DSMC METHOD

The DSMC method, initially developed by Bird [34], is a stochastic particle-based method,
routinely applied to simulate gas flows at noncontinuum conditions. In the present work, we make
use of the DSMC scheme to validate the analytical ballistic- and ideal-flow limit solutions presented
in Secs. III and IV, respectively, and explore the system behavior at arbitrary rarefaction rates. We
accordingly adopt Bird’s algorithm, together with the hard-sphere molecular interaction model [34],
to simulate the gas state.

Each computation started at t∗ = 0, where either initial temperature or density disturbances were
imposed, in line with the problem formulation. For the temperature-driven case, the particles were
assigned uniformly distributed random initial positions. Their velocities were chosen according to a
Maxwellian distribution, with the temperature (governing the variance of particles’ distribution)
following the prescribed initial profile. For the density-driven case, the particles were assigned
random uniformly distributed initial positions and a uniform-temperature Maxwellian distribution.
Then, additional particles with positions distributed according to the prescribed density perturbation
were added to satisfy the initial density condition. Each simulation followed in time until terminat-
ing at t∗

sim ≈ 3L∗/U ∗
th, which proved sufficient for the investigation of the interaction between the

disturbance front [initially placed about (x∗, y∗) = (0, L∗)] and the y∗ = 0 boundary. In line with
problem formulation, the wall surface was assumed either specular or fully diffuse with prescribed
uniform temperature T ∗

0 .
The size of the computational domain was set such that the signal does not reach (and is therefore

not affected by) the virtual outer boundaries placed at y∗
sim = 6L∗ and ±x∗

sim = 6L∗. The (x∗, y∗) ∈
([−x∗

sim, x∗
sim], [0, y∗

sim]) domain was divided into ≈7000 cells and an additional division of each
cell into collisional subcells was carried to comply with the mean-free-path limitations. A typical
run consisted of ≈108 particles, where ≈100 realizations were followed to sufficiently reduce the
numerical noise. In line with the linearized problem formulation, a value of ε = 0.1 was taken, for
which nonlinear effects proved to be negligible.

Inasmuch as the DSMC scheme was applied to support the limit-case analytical results, the
accuracy of DSMC predictions may be supported by its agreement with the independent calculations
at large and small Knudsen numbers. Thus, the close agreement at free-molecular and ideal-flow
conditions, illustrated in Sec. VII, indicates the convergence of our DSMC calculations. Addition-
ally, we performed numerical experiments in which we reduced the cell size and time step below
their above-mentioned values. These had a negligible effect on the results, similarly supporting the
convergence of our DSMC computations.

VI. IMPULSE RESPONSE

Applying the above schemes, our results may be obtained for arbitrary choices of the gas initial
density and temperature perturbations, ρin(x, y) and Tin(x, y). In this section, results are presented for
the case of an impulse input of either the density or temperature fields. Placing the initial disturbance
at a unity distance from the wall, we set

ρin(x, y) = δ(x)δ(y − 1) or Tin(x, y) = δ(x)δ(y − 1), (28)

where δ(·) marks the Dirac Delta function. The cases of density and temperature perturbations
are treated separately, i.e., with only one of the fields initially perturbed while the other is set
uniform. The Delta-function formulation has the advantage of yielding closed-form results in
the free-molecular and invisicd-flow limits, manifesting the system characteristic response to a
point-localized two-dimensional input. Yet, the DSMC scheme could not be applied due to the
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ambiguous representation of a Delta-function source in simulations. Numerical validation of our
calculations is therefore deferred to Sec. VII, where a Gaussian input perturbation is discussed.

A. Free-molecular limit

Starting with the free-molecular limit for a specular-wall system, we substitute Eqs. (28) into
Eqs. (A6) and (A7) and superpose all fields with their symmetric images about y = 0. Integrating
and denoting

�
(δρ )
m,n (t, x, y) = xne−(x/t )2

πt2+m+n

{
(y − 1)m exp

[
−

(
y − 1

t

)2
]

+ (y + 1)m exp

[
−

(
y + 1

t

)2
]}

,

� (δT )
m,n (t, x, y) = xne−(x/t )2

πt2+m+n

{
(y − 1)m exp

[
−

(
y − 1

t

)2
][(x

t

)2
+

(
y − 1

t

)2

− 1

]

+(y + 1)m exp

[
−

(
y + 1

t

)2
][(x

t

)2
+

(
y + 1

t

)2

− 1

]}
, (29)

we find for the free-molecular (FM) specular-wall response

ρ
(spec)
FM = �

(δρ )
0,0 + �

(δT )
0,0 , u(spec)

FM = �
(δρ )
0,1 + �

(δT )
0,1 , v

(spec)
FM = �

(δρ )
1,0 + �

(δT )
1,0 ,

P(spec)
xx,FM = �

(δρ )
0,2 + �

(δT )
0,2 , P(spec)

yy,FM = �
(δρ )
2,0 + �

(δT )
2,0 , (30)

and

P(spec)
zz,FM = 1

2
�

(δρ )
0,0 + e−(x/t )2

2πt2

{
exp

[
−

(
y − 1

t

)2
][(

x

t

)2

+
(

y − 1

t

)2
]

+ exp

[
−

(
y + 1

t

)2
][(x

t

)2
+

(
y + 1

t

)2
]}

, (31)

where the �
(δρ )
m,n and � (δT )

m,n parts in Eqs. (30) mark the separate contributions of the density ρin(x, y) =
δ(x)δ(y − 1) and temperature Tin(x, y) = δ(x)δ(y − 1) perturbations to the acoustic fields, respec-
tively. Similarly, �

(δρ )
0,0 /2 and the remaining part in Eq. (31) denote the separate contributions of the

density and temperature perturbations to P(spec)
zz,FM , respectively. The acoustic pressure and temperature

fields are obtained using the specular-wall counterparts of Eqs. (12), namely,

p(spec)
FM (t, x, y) = 2

3

[
P(spec)

xx,FM + P(spec)
yy,FM + P(spec)

zz,FM

] = 2

3

[
�

(δT )
0,2 + �

(δρ )
0,2 + �

(δT )
2,0 + �

(δρ )
2,0 + 1

2
�

(δρ )
0,0

+ e−(x/t )2

2πt2

{
exp

[
−

(
y − 1

t

)2][(
x

t

)2

+
(

y − 1

t

)2]

+ exp

[
−

(
y + 1

t

)2][(
x

t

)2

+
(

y + 1

t

)2]}]
(32)

and T (spec)
FM (t, x, y) = p(spec)

FM − ρ
(spec)
FM , respectively. Counterpart expressions for the free-molecular

isothermal-wall system response to an impulse input are tabulated in Appendix B.

B. Ideal-flow limit

Traversing to the other extreme of ideal-flow conditions, we substitute ρ̄in = 1 and T̄in = 1 for
the above delta-function excitations [see Eqs. (28) and (21)] into Eqs. (23)–(26). Focusing on the
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acoustic pressure in Eq. (26), the ideal-flow (IF) system response to a delta-function input in an
unbounded domain is

p(no−wall)
IF (t, x, y) = 1

4π2

∫ ∞

−∞
eiλy

∫ ∞

−∞
cos

(√
γ (k2 + λ2)

2
t

)
eikxdkdλ, (33)

for either density or temperature perturbations. Since the acoustic signal in the absence of bound-
aries propagates isotropically in all directions, we may, with no loss of generality, limit the
calculation to a single direction, say x = 0. Additionally, changing to polar coordinates, k = r cos θ

and λ = r sin θ , we obtain

p(no−wall)
IF (t, 0, y) = 1

4π2

∫ ∞

0
reirt

√
γ /2

∫ 2π

0
eiry sin θdθdr. (34)

Applying a Bessel function identity [35], the θ integral is amenable to a closed-form expression,
yielding

p(no−wall)
IF (t, 0, y) = 1

2π

∫ ∞

0
J0(ry)eirt

√
γ /2rdr, (35)

where J0(·) denotes the Bessel function of the first kind and zeroth order. Numerical evaluation
of the r integral in Eq. (35) indicates that p(no−wall)

IF vanishes throughout the (−∞,∞) y interval
apart from sharp singularities at y = ±t

√
γ /2. This result is further discussed in Sec. VI C, where

the far-field (y 
 1) evaluation of p(no−wall)
IF is carried out. Once p(no−wall)

IF (t, 0, y) is obtained, the
specular-wall system response is calculated by superposing

p(spec)
IF (t, 0, y) = p(no−wall)

IF (t, 0, y − 1) + p(no−wall)
IF (t, 0, y + 1). (36)

The entire two-dimensional acoustic field p(spec)
IF (t, x, y) is computed based on Eq. (36) and the

property of pressure isotropicity in the absence of a boundary.

C. Results

Figure 2 compares the specular-wall free-molecular and ideal-flow system responses. The fig-
ure presents two-dimensional color maps of the acoustic pressure at times t = 0.2, 1, and 2. In
the free-molecular regime, the cases of density impulse [Figs. 2(d)–2(f)] and temperature impulse
[Figs. 2(g)–2(i)] systems are shown. Figures 2(a)–2(c) show counterpart results in the inviscid limit,
where the density- and temperature-driven pressure perturbations are identical [see Eq. (26)].

Starting with the inviscid response, we observe that the pressure disturbance at early times
propagates as a circular discontinuity with radius t

√
γ /2 = t

√
5/6. In each of Figs. 2(a)–2(c), the

results have been rescaled by the pressure maximum value to restrict its upper bound to unity and
thus regularize its singularity. Since the disturbance expands in the mean speed of sound (=√

γR∗T ∗
0

or
√

γ /2 = √
5/6 in mean-thermal-speed units), the signal is reflected at the wall at time t = √

6/5.
The pressure perturbation therefore retains its circular form in both Figs. 2(a) (for t = 0.2) and 2(b)
(for t = 1). The impact of wall reflection is observed in Fig. 2(c), manifested by the lower circular
arc emanating from the image source positioned at (x, y) = (0,−1). While the singular character of
the inviscid (nondiffusing) wave propagation carries to later times, its pointwise amplitude decays,
as characteristic of two-dimensional acoustic sources and quantitated below [see Eq. (39) et seq.].

Comparing between the inviscid and free-molecular acoustic fields in Fig. 2, several fundamental
differences are observed. At first, the free-molecular signal is not confined to a thin circular curve but
spreads over a large portion of the (x, y) plane presented. Additionally, the pressure levels at large
Knudsen numbers decay rapidly with time and the signal propagates in practice to only a few length
scales away from the source. The time of signal initial impact at the boundary appears earlier in the
free-molecular than in the ideal-flow case. Different from the latter, the signal impact time cannot
be precisely defined in the free-molecular regime. Rather, the interaction of the acoustic disturbance
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FIG. 2. The specular-wall ideal-flow [Kn → 0, (a)–(c)] and free-molecular [Kn → ∞, (d)–(i)] acoustic
pressures in response to impulse perturbations of the density field [(d)–(f)], temperature field [(g)–(i)], and
the density or the temperature [(a)–(c)]. Presented are two-dimensional color maps of the ε-scaled acoustic
pressure at times t = 0.2 [(a), (d), (g)], t = 1 [(b), (e), (h)], and t = 2 [(c), (f), (i)]. In [(a)–(c)], the results have
been scaled by their maximum values, to regularize pressure singularity.

with the wall at large Knudsen numbers may be described as a continual process, reflecting the
molecular interaction of different noncolliding particles originating at the source and hitting the
surface with varying speeds at different times. Since the free-molecular interaction of the acoustic
disturbance with the wall occurs at all times, and is affected at early time by fast molecules that
travel at speeds larger than the speed of sound, it is observed that the information on the initial
perturbation reaches the wall earlier than in the continuum limit.

The fast time decay of the free-molecular signal, illustrated by the low O(10−2) pressure levels
at t = 2 [see Figs. 2(f) and 2(i)], reflects the strong effect of molecular dispersion on sound
propagation at large Knudsen numbers. Comparing between the density-driven [Figs. 2(d)–2(f)]
and temperature-driven [Figs. 2(g)–2(i)] responses, we observe that somewhat lower pressure
amplitudes characterize the latter. Additionally, different propagation patterns are seen in the two
cases. Here, at late times and with increasing distance from the source, the temperature-driven
pressure exhibits multiple extremal points before eventual decay, whereas the density-driven signal
is characterized by a single maximum that travels away from the initial excitation point with
increasing time.

To quantify the above observations and gain further insight into the differences between the
system responses in the ballistic and continuum regimes, we inspect the respective far-field (|x| 
 1
or y 
 1) descriptions of the acoustic pressure. The closed-form expressions obtained in Sec. VI A
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FIG. 3. The free-molecular acoustic pressure in response to an impulse excitation for a specular wall system
at times t = 4 (a) and t = 10 (b). The figures show y variations of the pressure perturbation at x = 0 for the
cases of initial density (black lines) and temperature (blue curves) impulse inputs. The solid and dashed lines
present the full solution and far-field approximations, respectively.

for the free-molecular fields may be readily simplified to obtain the far-field behavior. In the ideal-
flow regime, the far-field pressure is estimated through asymptotic evaluation of the integral in
Eq. (35).

Starting with the free-molecular acoustic pressure in Eq. (32) and taking R =
√

x2 + y2 
 1, we
find

p(δρ ,spec)
FM ≈ 4

3πt2

[(
R

t

)2

+ 1

2

]
exp

[
−

(
R

t

)2
]

and

p(δT ,spec)
FM ≈ 4R2

3πt4

[(
R

t

)2

− 1

2

]
exp

[
−

(
R

t

)2
]

(37)

for the far-field acoustic pressure in response to the density and temperature Delta-function pertur-
bations, respectively. Thus, both fields exhibit an exponential decay with the square distance from
the source. Yet, the decay is nonmonotonic, containing a maximum at R/t ≈ 2−1/2 in the density-
driven case, and minimum and maximum values at R/t ≈

√
5 − 171/2/2 and R/t ≈ √

5 + 171/2/2,
respectively, in the temperature-driven field. These results are illustrated in Fig. 3, where the y
variation of the free-molecular acoustic pressure along x = 0 is plotted at times t = 4 [Fig. 3(a)]
and t = 10 [Fig. 3(b)] and the far-field approximations in Eqs. (37) are compared with their exact
counterparts in Eq. (32). The far-field approximations improve with increasing time, where the
acoustic pressure turns smaller and its extremal values occur further away from the source. The
different decay patterns in the density- and temperature-driven pressure variations qualitatively
agree with the results in Fig. 2, showing a minimum-maximum variation of the temperature-driven
signal in Figs. 2(h) and 2(i), in variance from the single maximum behavior depicted in Figs. 2(e)
and 2(f).

To consider the far-field system response in the inviscid Kn → 0 limit, we substitute the large-
argument approximation for the Bessel function [35],

J0(ry) =
√

2

πry
sin

(
ry + π

4

)
+ O((ry)−3/2),
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FIG. 4. Effect of surface boundary conditions on the acoustic pressure at time t = 2 and distance y = 2
from the surface. (a) and (b) present the pressure perturbation in response to density and temperature impulse
excitations, respectively. The blue and red lines show results for specular- and isothermal-wall systems and the
dashed black lines depict the pressure variation in the absence of a wall.

into the right-hand side of Eq. (35). The leading-order approximation for the acoustic pressure in
the absence of a boundary may than be evaluated by

p(no−wall)
IF (t, 0, y 
 1) ≈ 1

2π
√

2y|y − t
√

γ /2|3/2
. (38)

The far-field specular-wall response is calculated using Eq. (36), yielding

p(spec)
IF (t, 0, y 
 1) ≈ 1

π
√

2y|y − t
√

γ /2|3/2
. (39)

Similar to Eq. (36), the far p(spec)
IF (t, x, y) distribution is obtained using Eq. (39) and the property of

pressure isotropicity in the absence of a wall.
In line with the results in Figs. 2(a)–2(c), the ideal-flow far acoustic field in Eq. (39) exhibits

a singular behavior at y = t
√

γ /2, namely, at a distance traveled by the disturbance at time t via
propagation in the scaled speed of sound

√
γ /2. This is coupled with a square-root geometric decay

of the signal [∝y−1/2 in Eq. (39)], preserving the system acoustic power as common in inviscid
two-dimensional problems. Comparing with Eqs. (37) and Fig. 3, it is noted again that the free-
molecular and ideal-flow fields qualitatively differ in both amplitude and pattern. As in Fig. 2, while
the Kn → 0 response is identical for both density- and temperature-driven signals, it varies between
the two in the ballistic limit.

Figure 4 illustrates the effect of wall surface conditions on the system response. The fig-
ure presents x-variations of the acoustic pressure at time t = 2 and a distance y = 2 from the
boundary for the density- [Fig. 4(a)] and temperature-impulse-excited [Fig. 4(b)] systems. Each
figure compares between the specular- (blue lines) and isothermal- (red curves) wall signals. The
reference acoustic pressure in the absence of a wall is presented by the dashed black curves. It is
first observed that the specular- and isothermal-wall systems show similar qualitative behaviors,
following the flat-peak [in Fig. 4(a), for the density-driven case] and double-peak [in Fig. 4(b), for
the heating-excited response] x-variations in Figs. 2(f) and 2(i), respectively. Yet, the specular-wall
signal is systematically larger in amplitude than the isothermal due to the exchange of energy
between the gas and the surface, taking place in the latter and missing in the former. It may therefore
be deuced that the specular-wall system, while simplifying the analysis, retains the qualitative
characteristics of the isothermal-wall response, and can serve as an upper bound measure for the
wall effect. Expectedly, both signals are larger in amplitude than the counterpart no-wall pressure,
which propagates isotropically in all directions with no surface reflection.
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FIG. 5. Time variations of the free-molecular acoustic force on a specular (solid lines) and an isothermal
(dashed curves) wall in response to an impulse perturbation of the density (black curves) and the temperature
(blue lines) fields.

The discussion of the system response to an impulse is concluded by considering the normal
acoustic force (per unit length) acting on the solid surface, given by

Fwall(t ) = −
∫ ∞

−∞
Pyy(t, x, 0)dx. (40)

No net shear force is induced at the wall due to problem symmetry. In the free-molecular limit and
for a specular-wall system, substituting P(spec)

yy,FM in Eqs. (30) into Eq. (40) and integrating, we obtain

F (δρ ,spec)
wall,FM (t ) = − 2√

πt3
e−1/t2

and F (δT ,spec)
wall,FM (t ) = − 2√

πt3

[(
1

t

)2

− 1

2

]
e−1/t2

(41)

for the cases of density and temperature input impulses, respectively. Following a similar procedure
in the free-molecular isothermal-wall case, we find

F (δρ ,iso)
wall,FM(t ) = − 1

t2

(
1√
πt

+ 1

2

)
e−1/t2

and F (δT ,iso)
wall,FM (t ) = − 1

t2

(
1√
πt

+ 1

2

)[(
1

t

)2

− 1

2

]
e−1/t2

.

(42)
In the ideal-flow limit, we substitute Pyy = p(spec)

IF in both density- and temperature-driven cases.
Using Eq. (36) together with Eq. (33) in Eq. (40) and applying the Delta-function identity δ(s) =∫ ∞
−∞ exp[isz]dz, we find

F (spec)
wall,IF(t ) = −δ(t

√
γ /2 − 1), (43)

remanifesting the propagation of the initial discontinuity at inviscid flow conditions and its impact
at the surface at the time of signal reflection at the wall, t∗ = L∗/(γR∗T ∗

0 )1/2. This is markedly
different from the smoothly varying and infinitely weaker force in the collisionless limit, given by
Eqs. (41) and (42).

The results for the free-molecular acoustic force are presented in Fig. 5. Both temperature- and
density-driven forces vanish at short (t � 0.3) times, when the signal enforced at y = 1 has not yet
affected the surface. At a later time, a maximum repelling force is observed in the two setups, caused
by the interaction of the signal front with the boundary. Focusing on the specular-wall configuration,
the maximum force in the density-driven case occurs at a later time (t = √

2/3 ≈ 0.817) and with
a lower amplitude (F (δρ ,spec) ≈ −0.463) compared with the temperature-perturbed system (where
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F (δT ,spec) ≈ −0.740 at t = [(6 − 2
√

6)/3]1/2 ≈ 0.606). Indeed, it is plausible that the gas particles
in the thermally excited system obtain higher mean speeds, and thus arrive at the surface at earlier
times and with a larger impact. Comparing between the specular (solid lines) and isothermal (dashed
curves) force signals, the latter follows similar trends, yet exhibits lower repulsion maxima. As in
Fig. 4, this is attributed to the transfer of thermal energy between the gas and the boundary, occurring
in the isothermal-surface case and missing in the specular-wall system.

Remarkably, the acoustic force in the thermally driven system shows a slight attraction force
(Fwall > 0) at late times, reaching a maximum of F (δT ,spec) ≈ 0.028 at time t = [(6 + 2

√
6)/3]1/2 ≈

1.906. A similar result is observed in the isothermal-wall system, while no such trend is viewed in
the density-impulse case. Reverting to the expression for the normal wall stress Pyy(t, x, 0) in the
specular-wall system [appearing in the integrand for Fwall(t ) in Eq. (40)], we apply Eqs. (30) to find

P(δρ ,spec)
yy,FM (t, x, 0) = 2

πt4
e−(x2+1)/t2

and P(δT ,spec)
yy,FM (t, x, 0) = 2

πt4
e−(x2+1)/t2

(
x2 + 1

t2
− 1

)
. (44)

Thus, while P(δρ ,spec)
yy,FM (t, x, 0) is invariantly positive, yielding a repelling force at all times for

a density-perturbed system, P(δT ,spec)
yy,FM (t, x, 0) becomes negative through the −√

t2 − 1 < x <√
t2 − 1 portion of the wall for t > 1. This, in turn, leads to a positive attraction force at late times.

To trace the origin of the change in sign in P(δT ,spec)
yy,FM (t, x, 0), we recall that [cf. Eq. (A1)]

P(δT ,spec)
yy (t, x, 0) = π−3/2

∫ ∞

−∞
ξ 2

y φ(δT ,spec)(t, x, 0, ξ)e−ξ 2
dξ, (45)

where [cf. Eq. (14) together with Eqs. (6) and (28)]

φ(δT ,spec)(t, x, 0, ξ) = δ(x − ξxt )δ(|ξy|t − 1)(ξ 2 − 3/2). (46)

Hence, it is the change in sign in ξ 2 − 3/2 (and, specifically, the −3/2 term within) in the probability
perturbation function that leads to the late-time attraction force. Occurring for particles with |ξ | <√

3/2, this change is attributed to the lower amount of slower particles, compared to equilibrium
conditions, that arrive at the boundary at later times. Being fewer in number, their total impact is
in the production of a positive attraction force. No similar mechanism is observed in the density-
driven case, where the imposed increase in gas density leads to an invariantly positive value of
φ(δρ ,spec)(t, x, 0, ξ).

VII. GAUSSIAN EXCITATION

While the system response to an impulse was discussed in detail in the collisionless and ideal-
flow regimes, DSMC analysis of the gas behavior at intermediate Knudsen numbers requires the
consideration of a continuous initial distribution. To this end, we analyze the system response to a
two-dimensional Gaussian excitation of either the density or the temperature,

ρin(x, y) = exp[−α((x − 1)2 + y2)] or Tin(x, y) = exp[−α((x − 1)2 + y2)], (47)

marking a smooth initial disturbance peaked at (x, y) = (0, 1). A value of α = 20 (
1) is taken
to consider a relatively localized initial perturbation that decays sharply about its peak and does
not interact with the y = 0 surface at t = 0+. Additionally, a Gaussian distribution may be related
to the above-studied impulse input via the limit δ(s) = limα→∞

√
α/π exp[−αs2]. In this respect,

while the Gaussian signal may be considered qualitatively similar to an impulse input, it is lower
in amplitude and not as focused as the impulse, leading to quantitatively different results. These
differences may be viewed by comparing between the pressure fields and acoustic forces presented
below with those in Figs. 2 and 5 at large and small Knudsen numbers.

In what follows, the free-molecular and inviscid approximations are compared with DSMC
predictions at finite Knudsen numbers to test their applicability and breakdown. Based on the scaling
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FIG. 6. The density perturbation in response to a Gaussian temperature excitation for a specular-wall
system. (a), (b) Density color maps at time t = 1 for Kn → ∞ (analytical solution) and Kn = 10 (DSMC),
resepctively. (c), (d) y variations along x = 0 of the density at times t = 0.5 and t = 1, respectively. The solid
lines mark the free-molecular solution and the red triangles, black crosses, and blue circles denote DSMC
results at Kn = 10, 1 and 0.1, respectively.

introduced in Sec. II, the expected flow regime may be determined by the ratio between the Knudsen
number and the time elapsed since the initiation of flow disturbance. To this end, collisionless flow
conditions should prevail at t/Kn � 1, whereas the continuum limit approximation is expected
valid at t/Kn 
 1. In between, the intermediate regime should take place and follow the transition
described below. To make presentation concise, our results mainly focus on the case of thermal
system excitation.

Figure 6 compares between the free-molecular and DSMC predictions for a thermally ex-
cited specular-wall system. The figure presents two-dimensional color maps for the collisionless
[Fig. 6(a)] and DSMC Kn = 10 [Fig. 6(b)] density perturbations at t = 1, together with pointwise y
variations of the free-molecular and DSMC Kn = 10, 1 and 0.1 solutions at times t = 0.5 [Fig. 6(c)]
and t = 1 [Fig. 6(d)]. At time t = 1, the acoustic signal is characterized by a strong interaction
between the disturbance front and the boundary, captured by Figs. 6(a) and 6(b). While the DSMC-
predicted field in Fig. 6(b) is inevitably noisy, its close agreement with the collisionless-regime
result in Fig. 6(a) is evident. The detailed comparison in Figs. 6(c) and 6(d) further validates the
effectiveness of the free-molecular description. Notably, at t = 0.5 [presented in Fig. 6(c)], the
collisionless field matches with both Kn = 10 and 1 DSMC predictions for all y, while departing
from the Kn = 0.1 field only about y ≈ 1. With increasing time, the agreement of the Kn → ∞
result with Kn = 0.1 predictions breaks down at earlier times, manifesting the growing impact of
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FIG. 7. Effect of gas rarefaction on the acoustic pressure in response to a Gaussian temperature excitation
in a specular-wall system. Presented are two-dimensional color maps at t = 1.5 with (a) Kn → ∞, (b) Kn = 1,
(c) Kn = 0.1, and (d) Kn = 0.01.

molecular collisions. As stated above, it is expected that the collisionless description remains valid
at small enough values of t/Kn, where the time elapsed since system excitation is short compared
with the mean free time. In practice, the results indicate that the ballistic description remains valid
up to times that are of the order of the mean free time, t ≈ Kn, and even slightly later.

Having demonstrated the applicability of the free-molecular solution, Fig. 7 presents the overall
effect of gas rarefaction on the acoustic field. Fixing t = 1.5, the figure shows two-dimensional
color maps of the pressure perturbation for a thermally excited specular-wall system at various
Knudsen numbers, starting from the ballistic [Kn → ∞, Fig. 7(a)] through the continuum-limit
[Kn = 0.01, Fig. 7(d)] regime. First, we note that the pressure magnitudes in Fig. 7 are small
compared with their counterparts in Fig. 2, where the response to an impulse was considered [cf.
Figs. 2(h) and 2(i)]. This is in accordance with the quantitatively weaker Gaussian perturbation
considered herein. In agreement with Fig. 6, the free-molecular acoustic field in Fig. 7(a) closely
matches with the acoustic pressure in Fig. 7(b) for Kn = 1, for which t/Kn = 1.5 ∼ O(1). However,
with decreasing Kn (and increasing t/Kn) to Kn = 0.1 [t/Kn = 15, Fig. 7(c)] and Kn = 0.01
[t/Kn = 150, Fig. 7(d)], the acoustic field departs from its ballistic counterpart. Specifically, the
maximum pressure level increases and the effect of molecular diffusion weakens, leading to a more
focused signal. This is in line with the results in Figs. 2(a)–2(c), showing the sustaining of the initial
impulse singularity at late times in the inviscid limit.

To follow Fig. 7, Fig. 8 inspects the validity of the inviscid (Kn → 0) solution derived in Sec. IV.
The figure compares between the ideal-flow acoustic pressure calculated at time t = 1.5 and the
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FIG. 8. Comparison between the ideal-flow [Kn → 0 (a)] and Kn = 0.001 DSMC predictions (b), (c) for
the acoustic pressure at time t = 1.5 in response a Gaussian temperature excitation of specular (b) and
isothermal (c) wall systems. (d) DSMC-calculated y variations of the pressure perturbation at x = 0 for an
isothermal-wall system with Kn = 0.01 (red circles) and Kn = 0.001 (blue crosses). The solid line presents
the counterpart ideal-flow (Kn → 0) result.

DSMC-predicted pressure fields at Kn = 0.001 for a temperature-excited system with specular
[Fig. 8(b)] and isothermal [Fig. 8(c)] walls. These are supplemented by Fig. 8(d), showing DSMC-
calculated y variations of the pressure at x = 0 for an isothermal-wall system with Kn = 0.01 (in red
circles) and Kn = 0.001 (blue crosses), compared with the counterpart inviscid signal (solid line).
We first observe the close resemblance of the inviscid and Kn = 0.001 fields in Figs. 8(a)–8(c),
indicating the convergence of the numerical DSMC solution to the ideal flow result at small Kn.
The peak pressure level is yet largest in Fig. 8(a), where the effect of molecular diffusion vanishes.
The convergence is further approved by Fig. 8(d), illustrating the sharpening of the signal peaks with
decreasing Kn, varying between the Kn = 0.01 result and the Kn → 0 solid-line asymptote. In line
with the differences between specular- and isothermal-wall systems discussed in Fig. 4, the pressure
levels in the latter are slightly lower. Yet, these overall differences become quantitatively minor
at the markedly small Knudsen numbers considered, where the impact of surface impermeability
dominates wall thermal conditions. In the vicinity of the y = 0 boundary, where the effect of thermal
surface conditions is more pronounced, relatively large deviations appear between the ideal and
isothermal-wall systems, as seen in Fig. 8(d).

We conclude the discussion of results by considering the acoustic force on the surface in response
to a Gaussian excitation. The results follow Eq. (40) for the limit-case calculations, or a momentum
balance over the impinging and reflected particles in the DSMC scheme. Figure 9 presents time
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FIG. 9. Time variations of the ε-scaled acoustic force on a specular wall in response to a Gaussian
excitation of the density (a) and the temperature (b) fields. The solid lines present the free-molecular result
and the blue circles and red triangles show DSMC data at Kn = 1 and 0.1, respectively. The dashed curves
present the free-molecular DSMC-calculated force in a large-amplitude case of ε = 1 [see Eq. (1)] and the
dash-dotted red line in (b) highlights Fwall ≡ 0, for reference. The inset in (b) is a zoom into the late time force
in the linear (solid line) and nonlinear (dashed curve) thermally excited free-molecular systems.

variations of the acoustic force on a specular wall in response to density [Fig. 9(a)] and temperature
[Fig. 9(b)] Gaussian excitations. The solid lines show the free-molecular results and the symbols
depict counterpart DSMC data at Kn = 1 and 0.1. Comparing with the results in Fig. 5, the
free-molecular force exhibits similar trends to those in the cases of impulse excitations. These
include the initial-time vanishing of Fwall and the larger repelling force obtained at an earlier time in
the temperature-driven compared with the density-driven case. The current Gaussian-excited force
is considerably smaller in amplitude than its impulse counterpart, in line with the smaller initial
perturbation amplitude. In view of the small-magnitude signal (being ε times smaller before scaling)
and the inevitable numerical noise level involved, the agreement between the free-molecular and
DSMC predictions at Kn = 1 is very good. At Kn = 0.1, the effect of molecular collisions becomes
apparent in the deviation from the free-molecular result at t ∼ O(1).

Focusing on the late-time result in the temperature-driven case, we observe that the weak free-
molecular attraction force viewed in the impulse-driven system (see Fig. 5) and remanifested in
the Gaussian case [see the inset in Fig. 9(b)] is not distinctly captured by DSMC calculations,
due to the small amplitude concealed by the numerical noise. To further validate the occurrence
of late-time attraction, we carried large-amplitude DSMC computations, where the thermodynamic
fields were initially perturbed with nonsmall ε = 1 deviations [see Eq. (1)]. Increasing the initial
disturbance amplitude magnified the signal-to-noise ratio, and thus reduced the unwarranted effect
of the numerical scatter. The dashed lines in Figs. 9(a) and 9(b) present the free-molecular DSMC-
calculated force at ε = 1. Notably, although the linear approximation should be formally invalid at
such conditions, the large-amplitude calculation is in qualitative agreement with the ε-scaled linear
result in Fig. 9(b). In particular, the DSMC results support the occurrence of a late-time attraction
force in a thermally perturbed system at high Knudsen numbers. Additional simulation results with
ε = 1 and finite Knudsen numbers (excluded here for brevity) indicate that a late-time positive
attraction force persists through Kn � 1 and slightly below.

VIII. CONCLUSION

We investigated the effect of gas rarefaction on the propagation and wall reflection of two-
dimensional thermodynamic disturbances. Initial system perturbations were modeled as arbitrary
(local) small-amplitude density or temperature inhomogeneities, prescribed in the vicinity of an
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impermeable specular or diffuse (isothermal) wall. The problem was analyzed in the free-molecular
and ideal-flow limits, complemented by DSMC calculations at arbitrary rarefaction rates. Closed-
form results were obtained for the collisionless and ideal-flow gas responses to impulse excitations,
followed by comparison between DSMC and limit-case predictions for the case of Gaussian
perturbations. While the acoustic signal is subject only to a geometric two-dimensional decay and
carries to large distances in the inviscid limit, it was found to decay rapidly at high rarefaction
rates due to the mechanism of molecular dispersion. Different from the identical gas responses to
local compression and heating in the continuum limit, qualitative differences were highlighted and
analyzed in the free-molecular regime. The results additionally indicated lower pressure levels in
an isothermal- compared with a specular-wall system due to the exchange of gas-surface energy
taking place in the former and missing in the latter. The acoustic force acting on the solid surface
was studied. Remarkably, apart from an early-time repelling impact, a late-time attraction force was
found and rationalized in the case of gas heating excitation at high Knudsen numbers.

The system free-molecular response to local compression differs considerably from its response
to heating. In the case of a local density increase, the imposed perturbation leads to an invariantly
positive value of the probability density perturbation function, as its initial value is uniformly
proportional to the gas density at all molecular speeds [see Eq. (6) with Tin = 0]. This changes
qualitatively in the case of gas heating, where the initial gas state contains more particles with higher
velocities (corresponding to a positive value of the probability perturbation function) and a fewer
number of slower molecules [reflected by a negative value of the probability perturbation function;
see Eq. (6) with ρin = 0 and the discussion leading to Eq. (46)]. Consequently, fundamentally
different system responses are obtained in the two cases at high Knudsen numbers, for both the
hydrodynamic fields and acoustic force variations. In particular, the occurrence of the late-time
positive attraction force in the case of gas heating (missing for a density pulse) is directly related to
the smaller number of slower particles mentioned above, as rationalized at the end of Sec. VI C.

Advantageously, the DSMC method could be applied in the present paper up to markedly low
rarefaction rates, capturing the entire transition and convergence of the numerical solution to the
inviscid flow limit. This replaced the utilization of near-continuum schemes, such as the NSF and
higher order hydrodynamic models, that should have been employed numerically in the current
two-dimensional unsteady setup. A desired extension of the present paper would be an analysis of
the two-dimensional scattering of a local source about a finite-length surface, where the effects of
structure edges should be examined. This constitutes a topic of a work underway. An additional
extension would be the investigation of the counterpart nonlinear problem, where large initial
deviations from equilibrium are considered.

APPENDIX A: ACOUSTIC FIELD IN THE FREE-MOLECULAR LIMIT

In terms of the probability perturbation function φ(t, x, y, ξ) introduced in Eq. (3), the free-
molecular ε-scaled acoustic density, tangential and normal velocities, and normal stress components
are given by the linearized velocity-space quadratures [32]

ρ(t, x, y) = π−3/2
∫ ∞

−∞
φe−ξ 2

dξ,

u(t, x, y) = π−3/2
∫ ∞

−∞
ξxφe−ξ 2

dξ, v(t, x, y) = π−3/2
∫ ∞

−∞
ξyφe−ξ 2

dξ,

Pxx(t, x, y) = π−3/2
∫ ∞

−∞
ξ 2

x φe−ξ 2
dξ, Pyy(t, x, y) = π−3/2

∫ ∞

−∞
ξ 2

y φe−ξ 2
dξ and

Pzz(t, x, y) = π−3/2
∫ ∞

−∞
ξ 2

z φe−ξ 2
dξ, (A1)
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respectively, where dξ = dξxdξydξz. In Appendices A 1 and A 2, specific expressions follow for the
cases of isothermal- and specular-wall systems, respectively.

1. Isothermal-wall system

Substituting Eq. (9) for φ = φ(iso)(t, x, y, ξ) into Eq. (A1) and integrating with ξz, we denote

Im,n(t, x, y) = 1

πt2

∫ ∞

0

(
y − q

t

)m

exp

[
−

(
y − q

t

)2
] ∫ ∞

−∞

(
x − s

t

)n

exp

[
−

(
x − s

t

)2
]

×
[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(

y − q

t

)2

− 1

)]
dsdq and

Jm,n(t, x, y) = ym+1

π

∫ t

0

1

(t − q)m+3
exp

[
−

(
y − q

t

)2
] ∫ ∞

−∞

(
x − s

t − q

)n

exp

[
−

(
x − s

t − q

)2
]

× ρw(q, s)dsdq. (A2)

In terms of the above notations, we find

ρ (iso) = I0,0 + J0,0, u(iso) = I0,1 + J0,1, v(iso) = I1,0 + J1,0, P(iso)
xx = I0,2 + J0,2 and

P(iso)
yy = I2,0 + J2,0. (A3)

The normal-to-plane stress component is given by

P(iso)
zz = 1

2πt2

∫ ∞

0
exp

[
−

(
y − q

t

)2
] ∫ ∞

−∞
exp

[
−

(
x − s

t

)2
]

×
[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(

y − q

t

)2
)]

dsdq + 1

2
J0,0. (A4)

2. Infinite plane system

Substituting Eq. (13) for φ = φ(no−wall)(t, x, y, ξ) into Eq. (A1) and integrating with ξz, we denote

Km,n(t, x, y) = 1

πtm+n+2

∫ ∞

−∞
(y − q)m exp

[
−

(
y − q

t

)2
] ∫ ∞

−∞
(x − s)n exp

[
−

(
x − s

t

)2
]

×
[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(

y − q

t

)2

− 1

)]
dsdq. (A5)

In terms of Km,n, we write

ρ (no−wall) = K0,0, u(no−wall) = K0,1, v(no−wall) = K1,0, P(no−wall)
xx = K0,2 and P(no−wall)

yy = K2,0.

(A6)

The normal-to-plane stress component is given by

P(no−wall)
zz = 1

2πt2

∫ ∞

−∞
exp

[
−

(
y − q

t

)2
]∫ ∞

−∞
exp

[
−

(
x − s

t

)2
]

×
[
ρin(s, q) + Tin(s, q)

((
x − s

t

)2

+
(

y − q

t

)2
)]

dsdq. (A7)
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APPENDIX B: FREE-MOLECULAR HYDRODYNAMIC FIELDS FOR AN IMPULSE-EXCITED
ISOTHERMAL-WALL SYSTEM

Substituting Eqs. (28) into Eqs. (A3) and (A4) and making the changes of variables s = x −
yξx/ξy and q = t − y/ξy, we denote

�
(δρ )
m,n (t, x, y) = xn(y − 1)m

πt2+m+n
exp

[
−

(
x

t

)2

−
(

y − 1

t

)2
]

+ y1+m

π

∫ t

0

1

(t − q)3+m

× exp

[
−

(
y

t − q

)2] ∫ ∞

−∞

(
x − s

t − q

)n

exp

[
−

(
x − s

t − q

)2
]
ρ

(δρ )
w (q, s)dsdq (B1)

and

�(δT )
m,n (t, x, y) = xn(y − 1)m

πt2+m+n

[(x

t

)2
+

(
y − 1

t

)2

− 1

]
exp

[
−

(x

t

)2
−

(
y − 1

t

)2
]

+ y1+m

π

∫ t

0

1

(t − q)3+m
exp

[
−

(
y

t − q

)2
] ∫ ∞

−∞

(
x − s

t − q

)n

exp

[
−

(
x − s

t − q

)2
]

× ρ (δT )
w (q, s)dsdq, (B2)

where [see Eq. (11) together with Eqs. (28)]

ρ
(δρ )
w (t, x) = 2√

πt3
exp

[
−

(
1

t

)2

−
(x

t

)2
]

and

ρ (δT )
w (t, x) = 2√

πt3

[(x

t

)2
+

(
1

t

)2

− 1

]
exp

[
−

(
1

t

)2

−
(x

t

)2
]
. (B3)

By means of �
(δρ )
m,n (t, x, y), we then obtain

ρ
(δρ ,iso)
FM = �

(δρ )
0,0 , u(δρ ,iso)

FM = �
(δρ )
0,1 , v

(δρ ,iso)
FM = �

(δρ )
1,0 ,

P(δρ ,iso)
xx,FM = �

(δρ )
0,2 , P(δρ ,iso)

yy,FM = �
(δρ )
2,0 and P(δρ ,iso)

zz,FM = �
(δρ )
0,0 /2 (B4)

for the free-molecular hydrodynamic perturbations in response to a density impulse in an
isothermal-wall system. Counterpart expressions for the hydrodynamic fields in the case of a heating
impulse are obtained by replacing the δρ superscripts in Eqs. (B4) with δT .
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