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We study the effect of gas rarefaction and wall confinement on the propagation of
vibroacoustic disturbances in a microchannel, generated by non-uniform (localized)
time-harmonic oscillations of one of the channel walls. The problem is studied in the entire
range of gas rarefaction rates, combining continuum and free-molecular limit analyses
with direct simulation Monte Carlo calculations. Gas rarefaction is found to strongly
increase the signal decay rate, varying between a slowly decaying propagating wave
parallel to the channel walls at continuum conditions, to a near-source confined acoustic
perturbation in the free-molecular regime. The impact of the stationary scattering wall
is examined in detail, and the effect of replacing between fully diffuse and specular
boundary reflections is found to slightly reduce the decay rate of the signal. The frequency
dependence of the force generated by the gas film on the channel walls is calculated. Here,
gas rarefaction smooths the transition between resonance and antiresonance behaviours
observed in the continuum regime. A model set-up of a fully specular channel with a
point delta source is examined, for which closed-form expressions are found for the effect
of the stationary wall on the hydrodynamic perturbations and the acoustic force. These
expressions assist in rationalizing the fundamental effect of the scattering wall on the
system response.

Key words: rarefied gas flow

1. Introduction

Vibroacoustic oscillators are common components in microelectromechanical systems
(MEMS), and have been investigated extensively over the recent decades (Bao 2005;
Abdolvand et al. 2016). Specific interest has focused on the damping effect of the squeezed
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air film confined in microscale resonators, applying a surface force on the machine walls
that affects its performance. While such forces are negligible compared with inertial and
body loadings in the continuum regime, they become significant with the reduction in
scales due to the characteristic increase in the machine surface-to-volume ratio at small
sizes. Consequently, in the case of microsize oscillators, surface forces imposed by air
damping may have a crucial impact on the device performance, and their estimation is an
important step in the analysis and design processes of micromechanical systems.

Initial efforts in the investigation of surface forces in micro-oscillators have employed
continuum (Cho, Pisano & Howe 1994; Ye et al. 2003) and near-continuum (Veijola
& Turowski 2001) models for the study of small-scale vibrating structures. Yet, such
models are of limited practical value, since the characteristic length scales and time scales
considered must be large compared with their counterpart microscopic mean free path and
time, respectively. As these limitations are violated at the reduced microscales involved,
later works have applied the kinetic theory of gases, accounting for gas rarefaction effects,
to investigate the problem. A large portion of the studies have focused on free-molecular
or near-vacuum flow conditions, including the works by Hutcherson & Ye (2004), Somali
(2007), Li & Fang (2010), Leung et al. (2010) and Frangi and coworkers (Frangi 2009;
Frangi, Ghisia & Coronato 2009; Frangi et al. 2016). These investigations apply either
numerical schemes, such as molecular dynamics (Hutcherson & Ye 2004; Li & Fang
2010) and direct simulation Monte Carlo (DSMC) techniques (Leung et al. 2010), or
experimental methods (Somali 2007; Frangi et al. 2016) to study the problem in hand.
Frangi (2009) has developed a boundary element approach to analyse the free-molecular
high-frequency limit, while Frangi, Frezzotti & Lorenzani (2007) and Desvillettes &
Lorenzani (2012) considered model representations of the linearized Boltzmann equation
to analyse the gas damping force in the entire range of gas rarefaction rates.

The common set-up considered in the above studies consists of a thin gas layer confined
between parallel plates, one of which is vibrating at a prescribed frequency and the other
stationary. Since the amplitude of wall vibrations is assumed arbitrarily small, the problem
is closely related to the propagation of vibroacoustic disturbances in rarefied gases, which
has been investigated independently over the years (Greenspan 1956; Maidanik, Fox &
Heckl 1965; Sirovich & Thurber 1965; Foch & Uhlenbeck 1967; Loyalka & Cheng 1979;
Stefanov, Gospodinov & Cercignani 1998; Hadjiconstantinou 2002; Struchtrup 2012;
Tsuji & Aoki 2014). In this context, the confined-channel configuration of a ‘source’
(namely, the actuated surface) and a ‘receptor’ (the stationary wall) has been considered
in several works (e.g. Sharipov, Marques & Kremer 2002; Kalempa & Sharipov 2009;
Manela, Radtke & Pogorelyuk 2014), including set-ups where both vibroacoustic and
thermoacoustic excitations have been applied (Manela & Pogorelyuk 2014), and a case
where the nonlinear problem of large wall vibrations has been investigated (Aoki et al.
2017b). Almost invariably, these works, as well as existing computational and theoretical
investigations on acoustic resonators, have examined one-dimensional configurations,
where the walls’ sizes are assumed infinite and the excitation along the actuated surface is
uniform. While these assumptions significantly simplify the analysis, it appears desirable
to extend existing knowledge and investigate the impact of system two-dimensionality on
the gas-layer response. In the case of flexible-wall acoustic resonators, such analysis should
have a practical significance, as non-uniform deflections of the vibrating wall commonly
occur and affect the system behaviour (Abdolvand et al. 2016; Leung et al. 2010).

Until recently, only few works have considered two-dimensional sound propagation in
rarefied gases. To this end, Wu (2016) has examined the propagation of acoustic waves
in a rarefied gas confined in a two-dimensional cavity. Uniform harmonic oscillations
of one of the cavity walls were considered as the system source of sound, and the
946 A38-2
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analysis combined numerical solution of the linearized Boltzmann equation with analytic
investigation of the collisionless (high oscillation frequency) limit. In a different set-up,
Yap & Sader (2016) have studied the acoustic field of an oscillating rigid sphere,
applying the Bhatnagar–Gross–Krook model of the Boltzmann equation for the analysis.
Lately, Manela & Ben-Ami (2021) have examined two-dimensional sound radiation by a
non-uniformly vibrating plane interacting with a semi-infinite gas expanse. The effect of
gas rarefaction on the directivity of the acoustic field was studied, showing a qualitative
impact on the disturbance pattern between continuum and free-molecular conditions. A
different sequence of studies (e.g. Lorenzani et al. 2007; Tsimpoukis & Valougeorgis 2021)
has analysed the effect of gas rarefaction on two-dimensional flow fields in non-straight
microchannels. Inaba, Yano & Watanabe (2012) studied the propagation of acoustic
waves in a medium with evaporation and condensation, and Bennett et al. (2019) carried
out molecular dynamics simulations to explore waveshape distortion in high-frequency
acoustic media.

Observing the lack of studies on the propagation of two-dimensional acoustic
perturbations in a small-scale confined geometry, the present investigation aims at
examining the effect of gas rarefaction on the radiation of vibroacoustic disturbances
in a microchannel. We consider a squeezed gas film confined between a stationary
and a vibrating nominally parallel plates, which is accepted as the fundamental set-up
of an acoustic resonator (Bao 2005; Abdolvand et al. 2016). The vibrating surface
undergoes small-amplitude non-uniform time-harmonic oscillations, and the effect of
system two-dimensionality is emphasized by focusing on particularly ‘localized’ signal
distributions, as opposed to uniform planar motion considered in one-dimensional studies
hitherto. We investigate the entire range of gas rarefaction rates, governed by the ratio
between the gas molecular mean free path and the layer width, as well as between the gas
molecular mean free time and the period of wall vibrations.

In the next section, the problem of vibroacoustic sound generation by non-uniform wall
vibrations in a channel is stated. In § 3, a set-up with a fully diffuse vibrating wall and a
scattering specular or diffuse boundary is studied, in both free-molecular and continuum
limits. The semianalytic results are examined and supplemented by DSMC predictions,
and the acoustic force on the channel walls is calculated, showing resonance frequency
dependence at continuum-limit conditions that smooths out with increasing rarefaction.
Motivated by the small differences exhibited between systems with diffuse and specular
scatterers, § 4 focuses on a model configuration where both channel surfaces are fully
specular and a delta point wall source is placed. Here, the specific effect of the scattering
boundary may be expressed analytically in both continuum and collisionless limits, and
closed-form expressions are found for the acoustic force. These expressions support the
results in § 3, and assist in their rationalization. Our conclusions are given in § 5.

2. Statement of the problem

Schematic of the problem is given in figure 1. Consider a two-dimensional set-up of an
ideal monatomic gas layer confined between infinite (−∞ < x∗ < ∞) solid boundaries
placed at y∗ = 0 and y∗ = L∗ (hereafter, asterisks denote dimensional quantities). In
figure 1(a) (hereafter referred to as ‘system A’), the lower y∗ = 0 boundary is actuated
with small-amplitude time-harmonic oscillations, prescribed by time t∗ and position x∗
distribution of its normal velocity component,

V∗
w(t

∗, x∗) = εU∗
thvw(x∗) cos(ω∗t∗). (2.1)
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Diffuse/specular wall
y∗ = L∗

y∗ = 0 x∗

ρ0
∗, T0

∗

Vw
∗ (t∗, x∗)

ρ0
∗, T0

∗

x∗

y∗ y∗
Diffuse wall

Specular wall

Specular wall

Point source

(a) (b)

Figure 1. Schematic of the problem: a gas layer, nominally set at thermodynamic equilibrium with uniform
density ρ∗

0 and temperature T∗
0 , is confined in an infinite two-dimensional channel of width L∗ with (a) a fully

diffuse wall at y∗ = 0 and a fully diffuse or specular boundary at y∗ = L∗ (‘system A’); (b) fully specular
boundaries with a point wall source at the origin (‘system B’). The y∗ = 0 wall (or the origin point source
in system B) is actuated with a prescribed small-amplitude time- and x∗-dependent normal velocity profile,
V∗

w = V∗
w(t

∗, x∗).

Here, U∗
th = √

2R∗T∗
0 denotes the mean thermal speed of a gas molecule (where R∗

is the specific gas constant and T∗
0 is the reference gas temperature), vw(x∗) marks the

non-dimensional (U∗
th-scaled) x∗-variation of the wall normal velocity amplitude, and ω∗

is the time-frequency of imposed oscillations. It is assumed that ε � 1, so that the system
response may be linearized about its stationary equilibrium state of uniform density ρ∗

0
and temperature T∗

0 . The animated wall is assumed fully diffuse with a fixed temperature
T∗

0 , whereas the upper y∗ = L∗ boundary is taken as either fully diffuse or specular. In
figure 1(b) (hereafter referred to as ‘system B’), both boundaries are fully specular, and a
wall point source is located at the origin. While the set-up in system B may seem highly
idealized, it enables an analytical description and rationalization of the effect of upper wall
reflections, which consists of a main objective of the present work. In terms of (2.1), the
y∗ = 0 wall normal velocity distribution in system B is vw(x∗) = δ(x∗), where δ(·) marks
the Dirac delta function. In considering fully diffuse or specular surfaces in each set-up,
the former represents a case of a ‘rough scatterer’, where the colliding particles attain
thermal equilibrium with the reflecting wall. In contrast, the specular reflector mimics a
perfectly smooth wall. While none of the diffuse or specular wall models exists in reality,
it is commonly accepted that wall reflections from actual surfaces may be described, in a
variety of applications, as a combination of diffuse and specular interactions, as formulated
by the Maxwell boundary condition (Sone 2007). The combined diffuse-specular scenario
is composed of the two limit cases examined hereafter.

The work analyses the effect of gas rarefaction on the two-dimensional propagation
of acoustic waves in a channel, generated by the wall excitation profile specified in
(2.1). Setting L∗ and U∗

th as the problem characteristic length scales and velocity scales,
respectively, the system response is governed by

Kn = l∗/L∗, ω = ω∗L∗/U∗
th and vw(x), (2.2a–c)

denoting the gas mean Knudsen number and prescribed non-dimensional source
oscillation frequency and amplitude, respectively. Here, l∗ marks the mean free path in the
gas. The non-dimensional description is completed by taking ρ∗

0 and T∗
0 as the reference

medium density and temperature, respectively, and ρ∗
0R∗T∗

0 as the pressure and stress
scale.

In what follows, §§ 3 and 4 analyse the gas response in systems A and B, respectively.
In both systems, the specific limits of highly rarefied (collisionless) and continuum
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conditions are discussed. Collisionless conditions are expected where the channel width
L∗ is small compared with l∗, i.e. Kn � 1, or where the source frequency ω∗ is large
compared with the mean collision frequency (∼ U∗

th/l
∗), i.e. ωKn � 1. Continuum limit

conditions should prevail where both Kn � 1 and ωKn � 1. The DSMC scheme, applied
for counterpart numerical analysis of the problem in system A, is discussed in § 3.3, and is
used to validate the limit case approximations and describe the intermediate range of gas
rarefaction rates.

3. Diffuse-reflecting wall source

We start by analysing the set-up in figure 1(a), where the y = 0 source boundary is diffuse
reflecting and the y = 1 wall is either diffuse or specular reflecting. Limit-case solutions
and a discussion of the DSMC numerical scheme are followed by our results for a specific
distribution of the wall signal amplitude.

3.1. Free-molecular limit
Focusing on two-dimensional highly rarefied conditions, the gas state is governed by the
probability density function f = f (t, x, y, ξ) of finding a gas molecule with velocity about
ξ = (ξx, ξy, ξz) at a position near (x, y) at time t. At the linearized conditions assumed we
express

f (t, x, y, ξ) = F
[
1 + εφ (t, x, y, ξ)

]
, (3.1)

where F = π−3/2 exp[−ξ2] denotes the non-dimensional Maxwellian equilibrium
distribution, and φ(t, x, y, ξ) marks the probability perturbation function (Kogan 1969).
Assuming the Knudsen number to be large, we consider the collisionless two-dimensional
unsteady Boltzmann equation for φ(t, x, y, ξ),

∂φ

∂t
+ ξx

∂φ

∂x
+ ξy

∂φ

∂y
= 0. (3.2)

Equation (3.2) is subject to a half-range fully diffuse boundary condition at the y = 0
oscillating wall, which takes the linearized form

φ(t, x, 0, ξ ·ŷ > 0) = ρw+(t, x)+ 2ξyVw(t, x), (3.3)

where ŷ is a unit vector directed in the positive y-direction (normal to the boundary)
and ρw+(t, x) is yet unknown. At the y = 1 boundary, a half-space linearized diffuse or
specular condition is imposed,

φ(t, x, 1, ξ ·ŷ < 0) = ρw−(t, x) or φ(t, x, 1, ξ ·ŷ < 0) = φ(t, x, 1, ξ − 2(ξ ·ŷ)ŷ),
(3.4)

respectively, where ρw−(t, x) needs to be determined.
The solution for (3.2) subject to (3.3) and (3.4) with an upper diffuse wall is

φ(diff )(t, x, y, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ
(diff )
w−

(
t − y − 1

ξy
, x − ( y − 1)ξx

ξy

)
, ξy < 0,

ρ
(diff )
w+

(
t − y

ξy
, x − yξx

ξy

)
+ 2ξyVw

(
t − y

ξy
, x − yξx

ξy

)
, ξy > 0,

(3.5)
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whereas for an upper specular boundary

φ(spec)(t, x, y, ξ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ
(spec)
w+

(
t − y − 2

ξy
, x − ( y − 2)ξx

ξy

)
− 2ξyVw

(
t − y − 2

ξy
, x − ( y − 2)ξx

ξy

)
, ξy < 0,

ρ
(spec)
w+

(
t − y

ξy
, x − yξx

ξy

)
+ 2ξyVw

(
t − y

ξy
, x − yξx

ξy

)
, ξy > 0.

(3.6)

To obtain the wall functions ρ(diff )
w± (t, x) and ρ

(spec)
w+ appearing in (3.5) and (3.6), we

make use of (3.1) and impose the linearized form of the impermeability condition on the
y-velocity component v(t, x, y) at the walls,

v(t, x, 0) = 1
π3/2

∫ ∞

−∞
ξyφ( y = 0)e−ξ2

dξ = Vw(t, x) (3.7a)

and

v(t, x, 1) = 1
π3/2

∫ ∞

−∞
ξyφ( y = 1)e−ξ2

dξ = 0. (3.7b)

The condition at y = 1 is trivially satisfied in the case of an upper specular wall.
Substituting (3.5) into (3.7), assuming harmonic time dependence of the unknown fields
in line with (2.1),

ρ(diff )
w± (t, x) = Re

{
ρ̃(diff )

w± (x) exp[iωt]
}
, (3.8)

and carrying out the changes of variables s = x ± ξx/ξy in the ξx-integrals, we obtain a set
of coupled integral equations for ρ̃(diff )

w± (x),

ρ̃(diff )
w+ (x)− 2√

π

∫ 0

−∞
ξ2

y exp(−ξ2
y + iω/ξy)

×
∫ ∞

−∞
exp(−ξ2

y (s − x)2)ρ̃(diff )
w− (s) ds dξy = √

πvw(x) (3.9a)

and

ρ̃(diff )
w− (x)− 2√

π

∫ 0

−∞
ξ2

y exp(−ξ2
y − iω/ξy)

×
∫ ∞

−∞
exp(−ξ2

y (s − x)2)
[
ρ̃(diff )

w+ (s)+ 2ξyvw(s)
]

ds dξy = 0. (3.9b)

Substituting (3.6) into the y = 0 condition in (3.7) and following a similar procedure yields
an integral equation for ρ̃(spec)

w+ (x),

ρ̃(spec)
w+ (x)− 1√

π

∫ 0

−∞
ξ2

y exp(−ξ2
y + 2iω/ξy)

×
∫ ∞

−∞
exp(−ξ2

y (s − x)2/4)
[
ρ̃(spec)

w+ (s)− 2ξyvw(s)
]

ds dξy

= √
πvw(x). (3.10)

Equations (3.9) and (3.10) are solved numerically via truncation of the infinite-limit
integrals at appropriate finite values (where the integrands effectively vanish),
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discretization along the s-axis and evaluation of the integral terms based on the trapezoidal
rule. This yields a system of linear non-homogenous algebraic equations that are solved
efficiently using MATLAB. Having obtained ρ

(diff )
w± and ρ

(spec)
w+ , φ(diff ) and φ(spec) in

(3.5) and (3.6) are known, and appropriate quadratures of (3.1) over the velocity space
yield expressions for the ε-scaled hydrodynamic perturbations. Explicit expressions for
the density ρ(t, x, y), tangential and normal velocity components, u(t, x, y) and v(t, x, y),
respectively, and the normal stress components Pxx(t, x, y), Pyy(t, x, y) and Pzz(t, x, y) are
listed in appendix A. Denoting

I(diff )
m,n,q(x, y) = 1

π

{
1

( y − 1)m

∫ 0

−∞
ξn

y exp(−iω( y − 1)/ξy − ξ2
y )

×
∫ ∞

−∞
(x − s)q exp(−(x − s)2ξ2

y /( y − 1)2)ρ̃(diff )
w− (s) ds dξy

+ 1
ym

∫ ∞

0
ξn

y exp(−iωy/ξy − ξ2
y )

∫ ∞

−∞
(x − s)q exp(−(x − s)2ξ2

y /y
2)

×
[
ρ̃(diff )

w+ (s)+ 2ξyvw(s)
]

ds dξy

}
(3.11a)

and

I(spec)
m,n,q (x, y) = 1

π

{
1

( y − 2)m

∫ 0

−∞
ξn

y exp(−iω( y − 2)/ξy − ξ2
y )

×
∫ ∞

−∞
(x − s)q exp(−(x − s)2ξ2

y /( y − 2)2)
[
ρ̃(spec)

w+ (s)− 2ξyvw(s)
]

ds dξy

+ 1
ym

∫ ∞

0
ξn

y exp(−iωy/ξy − ξ2
y )

∫ ∞

−∞
(x − s)q exp(−(x − s)2ξ2

y /y
2)

×
[
ρ̃(spec)

w+ (s)+ 2ξyvw(s)
]

ds dξy

}
, (3.11b)

the perturbation-field amplitudes are given by

ρ̃(diff )(x, y) = I(diff )
1,1,0 , ũ(diff )(x, y) = I(diff )

2,2,1 , ṽ(diff )(x, y) = I(diff )
1,2,0 ,

P̃(diff )
xx (x, y) = I(diff )

3,3,2 , P̃(diff )
yy (x, y) = I(diff )

1,3,0 , P̃(diff )
zz (x, y) = I(diff )

1,1,0 /2

⎫⎬⎭ (3.12)

in the upper-diffuse-wall case, and

ρ̃(spec)(x, y) = I(spec)
1,1,0 , ũ(spec)(x, y) = I(spec)

2,2,1 , ṽ(spec)(x, y) = I(spec)
1,2,0 ,

P̃(spec)
xx (x, y) = I(spec)

3,3,2 , P̃(spec)
yy (x, y) = I(spec)

1,3,0 , P̃(spec)
zz (x, y) = I(spec)

1,1,0 /2

⎫⎬⎭ (3.13)

in the upper-specular-wall set-up. The time-domain fields are then given by

G(t, x, y) = Re
{

G̃(x, y) exp[iωt]
}
. (3.14)

The acoustic pressure p(t, x, y) is expressed as

p(t, x, y) = 2
3

[
Pxx(t, x, y)+ Pyy(t, x, y)+ Pzz(t, x, y)

]
, (3.15)
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and the temperature perturbation may be calculated using the linearized form of the
equation of state, T(t, x, y) = p(t, x, y)− ρ(t, x, y). Our results for the free-molecular
system response are presented in § 3.4 for a particular choice of vw(x).

3.2. Continuum limit
The problem at small Knudsen numbers is next analysed based on a ‘slip flow’
continuum-limit model consisting of the continuum Navier–Stokes–Fourier (NSF)
equations and respective wall conditions.

Adopting the scaling introduced in § 2, the linearized two-dimensional NSF equations
consist of the balances of mass,

∂ρ

∂t
+ ∂u
∂x

+ ∂v

∂y
= 0, (3.16)

x-momentum,

∂u
∂t

= −1
2

(
∂ρ

∂x
+ ∂T
∂x

)
+ K̃n

(
4
3
∂2u
∂x2 + ∂2u

∂y2 + 1
3
∂2v

∂x∂y

)
, (3.17)

y-momentum,

∂v

∂t
= −1

2

(
∂ρ

∂y
+ ∂T
∂y

)
+ K̃n

(
∂2v

∂x2 + 4
3
∂2v

∂y2 + 1
3
∂2u
∂x∂y

)
(3.18)

and energy,

∂T
∂t

= −γ K̃n
Pr

(
∂2T
∂x2 + ∂2T

∂y2

)
− (γ − 1)

(
∂u
∂x

+ ∂v

∂y

)
, (3.19)

where the linearized form of the equation of state for an ideal gas, p = ρ + T , has been
applied. In (3.18)–(3.19), the viscosity-based Knudsen number,

K̃n = μ∗
0

ρ∗
0 U∗

thL∗ , (3.20)

is introduced, where μ∗
0 denotes the gas dynamic viscosity at the reference temperature

T∗
0 . Considering a hard-sphere gas kinetic model, μ∗

0 = (η
√

π/4)ρ∗
0 U∗

thl∗ with η ≈ 1.27
(Sone 2007), yielding K̃n = (η

√
π/4)Kn (cf. (2.2a–c)). Also appearing in (3.19) are the

gas Prandtl number, Pr, and the ratio of specific heats, γ , which equal 2/3 and 5/3,
respectively, for an ideal monatomic gas. (3.16)–(3.19) are supplemented by the wall
impermeability conditions,

v(t, x, 0) = Vw(t, x) and v(t, x, 1) = 0, (3.21a,b)

together with first-order velocity slip,

u(t, x, 0) = cu

(
∂u
∂y

+ ∂v

∂x

)
(t,x,0)

+ c(1)T
∂T
∂x

∣∣∣∣
(t,x,0)

(3.22a)

and

u(t, x, 1) = cu

(
−∂u
∂y

+ ∂v

∂x

)
(t,x,1)

+ c(1)T
∂T
∂x

∣∣∣∣
(t,x,1)

, (3.22b)
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and temperature jump,

T(t, x, 0) = c(2)T
∂T
∂y

∣∣∣∣
(t,x,0)

and T(t, x, 1) = −c(2)T
∂T
∂y

∣∣∣∣
(t,x,1)

, (3.23a,b)

conditions, as formulated by Aoki et al. (2017a). Conditions (3.22) and (3.23a,b) are valid
for fully diffuse boundaries only, whereas the realization of specular walls at Kn → 0
will be considered in § 4. A temperature jump component contributed by the normal
stress at the wall (∝ ∂v/∂y) is not included in (3.23a,b), as it is of higher-order in the
present linearized set-up (cf. Eq. (118) in Aoki et al. (2017a) et seq.). We have numerically
validated that inclusion of this term has no visible effect on the results obtained. Strictly,
the boundary conditions analysis by Aoki et al. (2017a) is restricted to a rigid body motion
of the surface. Yet, in the present linearized and time-harmonic set-up, the amplitude of
boundary motion is taken arbitrarily small about its nominal location, so that any physical
displacement of the wall is negligible. This is equivalent to imposing the impermeability
condition on a stationary boundary position with prescribed small-amplitude normal
velocity. Assuming a hard-sphere gas model,

cu ≈ 1.111Kn, c(1)T ≈ 0.573Kn and c(2)T ≈ 2.127Kn, (3.24a–c)

where the above numerical values have been obtained after multiplying their counterparts
in Aoki et al. (2017a) by

√
π/2 due to different scaling.

Considering sinusoidal time dependence of all fields as in (3.14) and applying the
x-Fourier transform,

Ḡ(k, y) =
∫ ∞

−∞
G̃(x, y) exp[−ikx] dx, (3.25)

the system of (3.16)–(3.19) is transformed into

iωρ̄ + ikū + v̄′ = 0, iωū = − ik
2

(
ρ̄ + T̄

)+ ηKn
√

π

4

(
ū′′ − 4k2

3
ū + ik

3
v̄′
)
,

iωv̄ = −1
2

(
ρ̄′ + T̄ ′)+ ηKn

√
π

4

(
ik
3

ū′ + 4
3
v̄′′ − k2v̄

)
and iωT̄ = −5ηKn

√
π

8

(
T̄ ′′ − k2T̄

)
− 2

3

(
ikū + v̄′) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.26)

where primes denote derivatives in the y-direction. These are supplemented by the
transformed form of the boundary conditions in (3.21)–(3.23),

v̄(k, 0) = v̄w(k), v̄(k, 1) = 0,

ū(k, 0) =
[
cu
(
ū′ + ikv̄

)+ ikc(1)T T̄
]
(k,0)

, ū(k, 1) =
[
cu
(−ū′ + ikv̄

)+ ikc(1)T T̄
]
(k,1)

,

T̄(k, 0) = c(2)T T̄ ′(k, 0) and T̄(k, 1) = −c(2)T T̄ ′(k, 1).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.27)

To analyse the problem in (3.26)–(3.27), the transformed density ρ̄(k, y) is extracted
from the continuity equation in (3.26),

ρ̄ = − k
ω

ū + i
ω
v̄′, (3.28)
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and substituted into the x- and y-momentum balances. The system obtained is cast as a set
of six coupled first-order equations,

g′ = Ag, (3.29)

where g = [ū, ū′, v̄, v̄′, T̄, T̄ ′]T is the vector of unknown functions and A = A(k,Kn) is the
matrix of coefficients. The general solution for (3.29) is

g = Σ6
n=1Dnvn exp[βny], (3.30)

where vn(k,Kn, ω) and βn(k,Kn, ω) mark the n = 1, . . . , 6 eigenvectors and eigenvalues
of the matrix A, respectively, and Dn are unknown scalar coefficients to be determined
using the walls boundary conditions. Analysis of the characteristic sixth-order polynomial
of the matrix A at Kn � 1 indicates that its roots βn consist of three complex pairs
of alternating signs. Carrying a Kn � 1 expansion of the characteristic equation,
approximate expressions for βn(k,Kn, ω) are obtained,

β1,2 = ±i

√
6ω2 − 5k2

5

[
1 − 21iη

√
πω3

10(6ω2 − 5k2)
Kn + O

(
Kn2

)]
,

β3,4 = ± 2
√

iω√
π1/2ηKn

[1 + O (Kn)] and β5,6 = ± 2
√

2iω√
3π1/2ηKn

[1 + O (Kn)] .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.31)

As Kn → 0, β1,2 converge to their ideal-flow limit, iβ = ±
√
(6ω2 − 5k2)/5, effective at

inviscid compressible flow conditions (see (4.10)–(4.12)). The β3,4 and β5,6 eigenvalues,
as well as the O(Kn) correction for β1,2, reflect viscous and heat conduction effects,
inevitably missing at Euler-flow conditions.

To specify the particular solution in (3.30), the coefficients Dn multiplying vn exp[βny]
are calculated via the imposition of the impermeability, slip and jump wall conditions in
(3.27). The result in the physical (t, x, y) plane is then obtained by applying the inverse
transform,

G(t, x, y) = 1
2π

Re
{

exp[iωt]
∫ ∞

−∞
Ḡ(k, y) exp [ikx] dk

}
, (3.32)

to each of the hydrodynamic perturbations.

3.3. Numerical scheme: DSMC method
The DSMC method, initially proposed by Bird (Bird 1994), is a stochastic particle method
commonly applied for the analysis of rarefied gas flows. In the present work, we make
use of the DSMC scheme to examine the free-molecular and continuum limit solutions
derived in §§ 3.1 and 3.2, respectively, and to capture the system behaviour at intermediate
Knudsen numbers. We accordingly adopt Bird’s algorithm, together with the hard-sphere
model of molecular interaction, to simulate the gas state. In line with the problem
formulation, the wall at y∗ = 0 is assumed fully diffuse with a prescribed x∗-dependent
time-harmonic normal velocity profile. The stationary wall at y∗ = L∗ is taken either fully
diffuse or specular. A fixed temperature T∗

0 is assigned at the diffuse surfaces.
In a recent contribution (Manela & Ben-Ami 2021), the authors have developed an

algorithm for simulating small-amplitude non-uniform wall normal velocity conditions,
while maintaining the surface fixed. This has been achieved by adding or subtracting
particles and ensuring that the number flux of gas particles emitted at the boundary
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agrees with the flux required to satisfy the impermeability condition. The same algorithm
is applied in the present work to simulate the vibroacoustic signal at the wall y∗ = 0,
specified in (2.1). Additionally, the present simulation also calculates the normal acoustic
force acting at the stationary y∗ = L∗ boundary. This is carried out via summation over
the change in the y∗-momentum of all i = 1, . . . ,N particles reflected at the y∗ = L∗
stationary surface during a time interval [t∗, t∗ +t∗],

F∗
s (t

∗) = m∗

t∗

N∑
i=1

(
ξ in∗

y,i − ξout∗
y,i

)
. (3.33)

Here, m∗ marks the gas molecular mass, and the superscripts ‘in’ and ‘out’ correspond to
the respective properties of incoming and reflected particles.

In each simulation, the computation has started from an initial equilibrium state and
followed in time through a final periodic state, typically established after two to three
oscillation periods. To mimic the formulated infinite channel set-up (yet maintain a finite
computation domain), virtual ‘side’ boundaries have been placed sufficiently far from the
source zone to not affect the system response. Since the signal decay rate decreases with
decreased rarefaction, this has required simulating larger channel sections, and resulted
in demanding computations at continuum-limit conditions. In a typical calculation, the
domain was divided into 4 − 12 × 103 equally sized cells. An additional division of each
cell into collisional subcells was carried out to comply with the mean-free-path limitations.
The subcells’ size was set to a maximum of l∗/4, and the simulation time step was
taken as 0.25/U∗

th × min{l∗,x∗,y∗}, where x∗ and y∗ are the cell dimensions. A
typical run consisted of ≈ 4 × 107 particles and was followed for three to four periods,
where the results presented were taken from the last period. To sufficiently reduce the
statistical noise inherent in DSMC calculations, the results were averaged over a large
number of realizations of the above procedure. The number of samples taken was ≈ 500
in the ballistic limit and only ≈ 50 in the continuum limit (Kn = 0.01), where DSMC
computations become extremely time consuming. This may be viewed by the much larger
noise-to-signal ratio obtained in the simulation results in figure 4 compared with figure 2.
Since the wall signal considered below (see (3.34)) is symmetric about x = 0, the expected
flow field symmetry was applied to average over the simulation output in the x < 0 and the
x > 0 plane parts, as a means for further reducing numerical noise scatter. Each simulation
lasted from several hours in the free-molecular limit up to a week in the continuum limit
using a 10-core Intel i7-6950 machine. In line with the linearized problem formulation, a
value of ε = 0.04 was taken, for which nonlinear effects were found negligible.

3.4. Results
To illustrate our findings, we present results for a Gaussian-distributed wall signal source
amplitude,

v(G)w (x) = exp
[
−αx2

]
, (3.34)

where α is a fixed constant, taken sufficiently large (α = 10) to focus on a relatively
‘localized’ excitation. For practical purposes, the Gaussian distribution aims at resembling
a two-dimensional counterpart of a vibrating membrane. A similar configuration has
been depicted by the acoustic resonators geometries shown in figure 5 in Abdolvand
et al. (2016), also sketched in figure 1 of Lu & Horsley (2015) and in the vibroacoustic
measurements of Julius et al. (2018) (see figure 4 therein). The analytical limit-case
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Figure 2. Effect of the scattering wall condition on the free-molecular acoustic pressure amplitude at ω = 1:
(a,b) colourmaps of the pressure amplitude for a scattering y = 1 diffuse (a) and specular (b) wall systems;
(c,d) sections of the acoustic pressure amplitude at (c) x = 0 and (d) y = 0.85. The black and blue curves
in (c,d) correspond to channels with y = 1 diffuse and specular boundaries, respectively, and the crosses show
respective DSMC predictions at Kn = 5. All the results are for Gaussian wall excitation with α = 10.

results are compared with DSMC predictions for the purposes of numerical validation
and illustration of the system behaviour at intermediate flow conditions. The results
in the continuum-limit regime follow the procedure outlined in § 3.2 with v̄

(G)
w (k) =√

π/α exp[−k2/4α]. The inverse Fourier transform, as well as the quadratures required
in the free-molecular solution in § 3.1, are calculated numerically.

3.4.1. The acoustic flow field
Starting with the free-molecular regime, figure 2 presents the effect of the y = 1 scattering
wall condition (diffuse or specular) on the Kn → ∞ acoustic pressure amplitude at
ω = 1. Figure 2(a,b) show colourmaps of the pressure amplitude with a scattering
diffuse or specular wall, respectively, whereas figure 2(c,d) present detailed comparisons
with DSMC Kn = 5 predictions of the diffuse- and specular-wall signals at x = 0 and
y = 0.85, respectively. At first we note the general minor differences between the diffuse
and specular wall systems, where both signals are confined to the proximity of the source
zone and mainly propagate to the scattering wall in the normal y-direction. While the
colourmaps in figure 2(a,b) appear nearly identical, slight differences are viewed in
figure 2(c,d), where the specular-wall signal (marked by the blue curves) penetrates to a
slightly larger distance from the source (see figure 2d). Indeed, since no energy is absorbed
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by the y = 1 surface in the specular-wall case, the respective pressure fluctuation spreads
over a larger x-distance in the spanwise direction. The close agreement in figure 2(c,d)
between the free-molecular and DSMC predictions at Kn = 5 supports these findings.
The simulation results in the ballistic limit (not presented here) do not exhibit any
visible differences from the Kn = 5 data. The free-molecular solution has the advantage
of producing smoothly varying results with minimal computational effort, whereas the
inherent numerical noise contained in the DSMC signal is clearly visible. Since practically
negligible differences have been obtained between the diffuse- and specular-wall systems,
further results will focus on a diffuse walls system only.

Maintaining ω = 1, figure 3 presents the effect of gas rarefaction on the acoustic
pressure signal. To this end, the figure shows time snapshots, at period time (t = 2π/ω),
of the acoustic disturbance at a sequence of Knudsen numbers varying between the
free-molecular (Kn → ∞, figure 3a) and near-continuum (Kn = 0.05, figure 3f ) regimes.
The Kn → ∞ field in figure 3(a) is obtained using the analysis in § 3.1, while figure 3(b–f )
present DSMC predictions. The statistical noise inherent in the DSMC-calculated signals
is noted again. As stated in § 3.3, DSMC computations become significantly demanding
with decreasing Kn, due to both the increased number of molecular collisions and the
required extension in the computation domain, to prevent unwarranted reflections from
the far virtual sidewalls.

Comparing between the results in figure 3(a–c), it is seen that free-molecular conditions
essentially prevail through Kn � 1, as also supported by the comparisons in figure 2(c,d)
at Kn = 5. Yet, with further decreasing Kn, a decaying wave-like pattern of the signal
in the ±x-directions is observed, characterized by a unique wavenumber. The decay
rate decreases with decreasing Kn, hence the acoustic perturbation propagates to larger
|x|-distances. Notably, the pressure field varies mainly in the x-direction, while markedly
weak y-dependence is seen at near-continuum conditions. As will be discussed in § 4, in
the ideal-flow (Kn → 0) regime, the above behaviour degenerates to the propagation of a
non-decaying one-dimensional acoustic wave at a wavelength of λ = 2π

√
5/6/ω.

To further inspect the system behaviour in the continuum limit, figure 4 compares
between DSMC and NSF predicted pressure fields at Kn = 0.01 and ω = 1. Figure 4(a,b)
show period-time snapshots of the DSMC- and NSF-calculated fields, which, at first,
appear rather different. The observed discrepancies originate from errors introduced by
both schemes. In the DSMC computation, spurious reflections from the side virtual walls
(placed at x = ±15 for Kn = 0.01) affect the pressure field. In the NSF model, the acoustic
boundary layers (of width ∼ O(

√
Kn) ∼ 0.1, see Inaba et al. (2012) and Hattori & Takata

(2019)) occurring along the channel walls, as well as the regions in the vicinity of the
source and its y = 1 reflection, are not captured well. Indeed, within the neighbourhood of
the localized wall excitation, the local Knudsen number, based on the characteristic length
scale of the wall velocity profile (see (3.34)), becomes significantly larger, resulting in the
breakdown of the continuum-limit description. The above discrepancies are highlighted
in figure 4(d), comparing between the NSF- and DSMC-calculated signals at y = 0.1
and t = 2π/ω. The effect of the high local Knudsen number is viewed through the
large deviation between the fields about x = 0, whereas the discrepancies at large |x| � 5
may be attributed to the DSMC-calculated reflections from the sidewalls. After partially
removing these zones from figure 4(b), the zoomed-in pressure field at the channel bulk in
figure 4(c) closely agrees with the DSMC-calculated field in figure 4(a). With decreasing
Kn, the unwarranted inaccuracies of the continuum-limit model should diminish, and the
slip-flow solution is expected to accurately capture the entire system behaviour. Due to
the costly DSMC calculations required for Kn < 0.01 simulations, a comparison at lower
Knudsen numbers was not carried out for further verification. Similarly, examination of
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Figure 3. Variation with Kn of the acoustic pressure at period time (t = 2π/ω) in response to Gaussian wall
excitation with α = 10 and ω = 1 in a channel with diffuse walls: (a) Kn → ∞; (b) Kn = 5; (c) Kn = 1;
(d) Kn = 0.5; (e) Kn = 0.1; ( f ) Kn = 0.05. The results in (a) are based on the free-molecular analysis and the
colourmaps in (b–f ) show DSMC predictions.

the comparison for Gaussian excitations with lower α (where near-source gradients are
smaller) is precluded, since the signal propagates to larger distances with decreasing α,
necessitating the modelling of a larger computational domain, which is not in the capacity
of our computational resources. A better approximation of the near-field source zone
at small (yet finite) Knudsen numbers may be achieved using high-order hydrodynamic
models, such as extended moment schemes (Struchtrup 2005). The application of these
models, however, is not in the scope of the present contribution.

Figure 5 examines the effect of the signal time-frequency ω on the free-molecular
(figure 5a,b) and continuum-limit (Kn = 0.004, figure 5c,d) system response. The figure
presents x-distributions at y = 0.5 of the pressure amplitude (figure 5a,c) and time
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Figure 4. Comparison between Kn = 0.01 NSF slip flow and DSMC predicted acoustic pressure fields at
period time (t = 2π/ω) in response to Gaussian wall excitation with α = 10 and ω = 1 in a channel with
diffuse walls: (a,b) colourmaps of the (a) DSMC and (b) NSF-calculated pressures; (c) zoom-in of the NSF
field within the strip confined by the dashed lines in (b); (d) x-variations of the NSF (solid curve) and DSMC
(crosses) fields at y = 0.1. The dark-blue zones in (b) mark regions in the vicinity of the source origin and
y = 1 facing reflection removed from the presentation for better clarity (see discussion).

snapshots at period time (figure 5b,d) in response to source actuation at ω = 0.2, 1 and
5. A comparison is made between the free-molecular and DSMC predictions at Kn = 5,
supporting the occurrence of collisionless flow conditions at the indicated Kn and the
presented frequencies.

Considering the free-molecular fields in figure 5(a,b), we observe that the signal extends
over larger distances from the source with decreasing ω, and maintains higher pressure
amplitudes. In contrast, at large frequencies the acoustic fluctuations are confined to the
proximity of the source, and the effect of the channel y = 1 wall becomes negligible. This
is a consequence of our numerical solution for (3.9), indicating that the integral terms
therein are negligibly small at ω � 1, yielding

ρ̃(diff )
w+ (x;ω � 1) ≈ √

πvw(x) and ρ̃(diff )
w− (x;ω � 1) � 1. (3.35a,b)

(The large-ω decay rate of ρ̃(diff )
w− (x) may be evaluated by substituting ρ̃(diff )

w+ = √
πvw(x)

into the second equation in (3.9) and taking the ω � 1 limit, yet the details are skipped
here for brevity.) The problem at ω � 1 therefore degenerates into its semi-infinite
counterpart, considered in Manela & Ben-Ami (2021). At lower ω ∼ O(1) values, the
signal decay rate reduces, and the effect of the stationary wall reflections, intensifying the
transmission of sound to larger x-distances, becomes significant. While a general reduction
in pressure amplitude with increasing ω is also observed in the continuum limit, the results
in figure 5(c,d) show a qualitatively different behaviour compared with the free-molecular
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Figure 5. Effect of the signal time-frequency ω on the (a,b) free-molecular (Kn → ∞) and (c,d) slip flow NSF
(Kn = 0.004) acoustic pressure: x-distributions at y = 0.5 of the pressure amplitude (a,c) and time snapshots
at period time (t = 2π/ω, panels b,d). The numbers indicate the values of ω. All results are for Gaussian
wall excitation with α = 10 and a channel with fully diffuse walls. The crosses in panels (a,b) show DSMC
predictions at Kn = 5.

regime. Here, the acoustic pressure is oscillatory decaying with x, exhibiting fluctuations
that are characterized by a shorter wavelength at higher frequencies. In figures 3(e–f ) and
4(a–c), these fluctuations are reflected as the decaying x-wise wave patterns of the acoustic
signal (see also figure 9 et seq.).

3.4.2. The acoustic force on the walls
As mentioned in the introduction, a key parameter in the design and operation of microsize
oscillators is the force generated by the gas layer on the apparatus walls. In the current
set-up, the gas loadings per unit length normal to the vibrating and stationary boundaries,
scaled by ρ∗

0R∗T∗
0 L∗, are

Fv(t; Kn, ω) =
∫ ∞

−∞
Pyy(t, x, 0) dx and Fs(t; Kn, ω) =

∫ ∞

−∞
Pyy(t, x, 1) dx,

(3.36a,b)
respectively, while the tangential forces vanish due to problem symmetry. Following the
above analysis, Fv(t) and Fs(t) may be evaluated in both collisionless and continuum
limits. Considering the former and focusing on the upper-diffuse-wall system, we
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Figure 6. Variations with ω/π of the amplitudes of the normal forces on the y = 0 (a) and y = 1 (b)
walls: comparison between continuum-limit (Kn = 0.004 and 0.001, black and red lines, respectively) and
free-molecular (Kn → ∞, blue curves) predictions. The blue circles in (b) present DSMC data at Kn = 5. The
results are for a fully diffuse channel with Gaussian wall excitation at α = 10.

substitute P̃(diff )
yy (x, y) in (3.12) together with (3.14) into (3.36a,b), to obtain

Fv(t; Kn � 1, ω) = 2eiωt
∫ ∞

−∞

[
ρ̃w+(x)

4
+ vw(x)√

π
− 1

π

∫ 0

−∞
ξ3

y exp
(

−ξ2
y + iω

ξy

)

×
∫ ∞

−∞
exp(−ξ2

y (s − x)2)ρ̃w−(s) ds dξy

]
dx,

Fs(t; Kn � 1, ω) = 2eiωt
∫ ∞

−∞

[
ρ̃w−(x)

4
+ 1

π

∫ ∞

0
ξ3

y exp
(

−ξ2
y − iω

ξy

)
×
∫ ∞

−∞
exp

(
−ξ2

y (s − x)2
) (
ρ̃w+(s)+ 2ξyvw(s)

)
ds dξy

]
dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.37)

Substituting the continuum-limit expression for Pyy into (3.36a,b) and applying the
analysis in § 3.2, we obtain

Fv,s(t; Kn � 1, ω) = eiωt

2π

∫ ∞

−∞

∫ ∞

−∞

[
−p̄ + 5

√
π

12
Kn

(
2v̄′ − ikū

)]
y={0,1}

eikx dk dx.

(3.38)
Here, our numerical calculations indicate that the contribution of the O(Kn) viscous-stress
term (vanishing at ideal-flow conditions) is small.

Figure 6 presents the variation with ω/π of the amplitudes of the normal forces on the
vibrating (figure 6a) and stationary (figure 6b) walls. Each figure part compares between
the free-molecular (Kn → ∞) and continuum-limit (Kn = 0.004 and Kn = 0.001) results.
The blue circles in figure 6(b) mark DSMC-calculated predictions at Kn = 5 for |Fs|,
showing close agreement with the respective free-molecular values. The divergence of
the force at low frequencies (ω → 0) in all cases should be accounted as a non-physical
effect of our model, since the associated O(ε/ω) wall displacement (see (2.1)) cannot be
considered small, thus violating the linearized scheme assumption.
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Focusing on continuum-limit conditions in figure 6(a,b), we observe that the walls’
forces exhibit distinct descending peaks at ω values approaching

ωn ≈ nπ
√

5/6, n = 1, 2, . . . (3.39)

as Kn → 0. The
√

5/6 factor appearing in (3.39) originates from the scaling introduced in
§ 2, in which the frequency has been normalized by U∗

th/L
∗, rather than by the continuum

speed-of-sound-based c∗
0/L

∗ measure (where c∗
0 = √

γR∗T∗
0 ). The resonance frequencies

noted in (3.39) correspond to the acoustic wavelengths

λn = 2π/ωn ≈ 2
√

6/5/n, n = 1, 2, . . . , (3.40)

indicating that large force amplitudes at continuum-limit conditions occur in cases where
the channel width is in the proximity of the acoustic wave antinodes. In contrast, effective
minima in the acoustic force take place in set-ups where the generated acoustic wave has
its node points at the channel walls, i.e. for

ωn/2 = π(n + 1/2)
√

5/6 and λn/2 = 4
√

6/5/(2n + 1), n = 0, 1, . . . (3.41)

Since non-ideal flow conditions prevail in all cases (where the Knudsen number is
small yet finite), viscous effects are present to some extent, causing the damping of
the resonance- and antiresonance-like system behaviour. The force maxima reduce with
increasing ωn (and decreasing λn), due to the growing impact of viscous dissipation on
shorter waves.

In qualitative difference from the continuum-limit response, the acoustic forces in the
free-molecular regime do not exhibit any resonance-like frequency dependence. Here, as
viewed by the results in figures 2, 3(a) and 5(a,b), the (x, y) flow pattern is not governed by
a single dominant wave, as the continuum wave equation model is not followed. Inspecting
the blue curve in figure 6(b), we find that the force amplitude at the y = 1 wall decreases
nearly monotonically and approaches a vanishing value at large ω. The force at the y = 0
surface shows non-monotonic variation between π/2 � ω � π and reaches a constant
value at large ω. Indeed, in the ω � 1 limit, substituting (3.35a,b) together with the
Gaussian signal considered in (3.34) into (3.37), we find

F(G)v (t; Kn � 1, ω � 1) ≈ π + 4
2
√
α

eiωt, (3.42)

while Fs(t; Kn � 1, ω � 1) is asymptotically small. Equation (3.42) captures the ω � 1
limit of |Fv| ≈ 1.13 shown by the blue line in figure 6(a) for α = 10.

Summarizing the results in figure 6, the free-molecular acoustic force on the vibrating
wall retains a nearly constant value at ω � π, where it is governed primarily by its
‘near-field’ interaction with the gas, and is nearly unaffected by channel confinement.
The situation markedly changes at the y = 1 boundary: here, the monotonic decay of |Fs|
occurs due to the reduced interaction of the acoustic signal with the far wall. While a
quantitative comparison between the non-dimensional free-molecular and continuum-limit
force amplitudes is obviated due to the different scaling introduced (each normalized
by ρ∗

0R∗T∗
0 L∗), it is worthwhile noting that the free-molecular force (valid also at

large yet finite Kn) becomes larger than its continuum-limit counterpart close to the
continuum-based ωn/2 = π(n + 1/2)

√
5/6 (n = 0, 1, . . .) nodes at y = 0, and near the

respective n = 0 node at y = 1. This result should remain inevitably effective also in
dimensional quantities for systems at sufficiently small Knudsen numbers, due to their
antiresonance behaviour resulting in a vanishingly small force (cf. figure 10).
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4. Point wall source in a specular-reflecting channel

The set-up illustrated in figure 1(b), containing a specular-reflecting channel with a point
delta source located at its y = 0 boundary,

v(δ)w (x) = δ(x), (4.1)

is next considered. Here, the effect of the channel upper wall scattering may be analytically
expressed in terms of the semi-infinite solution presented in Manela & Ben-Ami (2021),
and its superposition with appropriate images about the channel surfaces. This simplifies
the description of the effect of upper-wall confinement, in terms of both mathematical and
physical rationalizations. The analysis is carried out in the free-molecular and ideal-flow
limits. DSMC calculations were not carried out due to the ambiguous representation of
a delta-function source in the simulation. Recalling the results in the previous section,
indicating a minor quantitative effect of the scattering wall condition (being fully diffuse
or specular) on the acoustic field properties, the following analysis aims at further
shedding light on the general impact of channel confinement on sound propagation at
non-continuum conditions. To relate to the Gaussian wall distribution studied above, the
α � 1 limit of vw(x) = √

α/π exp[−αx2] distribution yields the present delta function.
Advantageously, its relative simplicity enables the derivation of the closed-form results
presented below. Being a limit case of an ‘infinitely steep’ Gaussian, it is expected that
the delta function system reflects qualitatively similar results to the Gaussian case, yet
with larger amplitudes and gradients in the vicinity of the point source, as illustrated
subsequently.

4.1. Free-molecular limit
As the effect of molecular collisions is negligible in this limit and all particle–surface
interactions are taken specular, any disturbance in gas equilibrium occurs directly due
to particles emission from the point source. Specifically, such particles may arrive at an
(x0, y0) channel bulk location either via ‘free flight’ from the source location, or after being
reflected by the specular walls in-between source emission and (x0, y0) arrival. These
scenarios are illustrated schematically in figure 7, where the solid black line marks the
free-flight particle path, and the dashed blue and red lines denote trajectories of particles
reflected from the source and colliding with the specular channel surfaces once or twice,
respectively. Clearly, the dashed colourline trajectories demonstrate the scattering effect
of the y = 1 wall, missing in the half-space problem. Due to the specular-wall interaction
considered, this effect may be equivalently modelled as a series of image reflections
about the y = 0 and y = 1 surfaces, as partially shown by the solid blue (y = 2) and
red (y = −2) lines in figure 7. The series of wall images (further extending to yimage =
±2s, s = 1, 2, . . .) replaces the scattering y = 1 surface by a sequence of half-space
point wall source problems, enabling the satisfaction of the impermeability condition
at y = 1. To illustrate the equivalence in particle kinematics between the physical and
wall-image set-ups, it is observed that the dashed blue ‘real’ trajectory is equal in length
(and in physical significance) to the dash–dotted image path radiated at (x, y) = (0, 2).
Similarly, the dash–dotted red trajectory of an image particle initiated at (x, y) = (0,−2)
is equivalent to the dashed red pathline. Particle trajectories with an increasing number
of wall collisions are consequently captured by placing image surfaces at an increasing
distance from y = 0, and considering the paths connecting their point images at (0,±2s)
with (x0, y0). With increasing s, the trajectories length increases, hence their effect on the
acoustic field decays.
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Point image

Point image

Point source

Specular wall

y = 2

y = 1

y = 0

(x0, y0)

y = –2

Figure 7. Schematic of particle trajectories and equivalent wall image kinematics in the free-molecular regime
for a point wall source system: the dashed blue and red lines denote trajectories of particles reflected from the
source at (x, y) = (0, 0) and arriving at (x0, y0) after colliding with the specular channel surfaces once or twice,
respectively. The dash–dotted lines depict the equivalent trajectories initiated at the image point sources located
at (x, y) = (0, 2) and (x, y) = (0,−2), respectively. The dashed and dash–dotted lines coincide along their final
segments, between the last wall reflection and (x0, y0). The solid line connecting the point source with (x0, y0)
marks the ‘free-flight’ direct particle trajectory, also occurring in the semi-infinite problem.

The above description supplies a useful means for analysing the system response based
on the semi-infinite solution obtained in Manela & Ben-Ami (2021). Thus, the gas state
may be expressed as a superposition of the half-space flow field generated by the y = 0
wall, its images about the y = 1 surface and their reflections. Denoting

Jm,n(t, x, y) = 1
πym

∫ ∞

0
ξn

y
(√

π + 2ξy
)

exp
[

iω
(

t − y
ξy

)
−
(

1 + x2

y2

)
ξ2

y

]
dξy, (4.2)

the density, x-velocity, y-velocity and normal stresses perturbations may be expressed as

ρ(δ)(t, x, y) = J1,1(t, x, y)+
∞∑

s=1

[
J1,1(t, x, 2s − y)+ J1,1(t, x, 2s + y)

]
,

u(δ)(t, x, y) = x

[
J2,2(t, x, y)+

∞∑
s=1

[
J2,2(t, x, 2s − y)+ J2,2(t, x, 2s + y)

]]
,

v(δ)(t, x, y) = J1,2(t, x, y)−
∞∑

s=1

[
J1,2(t, x, 2s − y)− J1,2(t, x, 2s + y)

]
,

P(δ)xx (t, x, y) = x2

[
J3,3(t, x, y)+

∞∑
s=1

[
J3,3(t, x, 2s − y)+ J3,3(t, x, 2s + y)

]]
,

P(δ)yy (t, x, y) = J1,3(t, x, y)+
∞∑

s=1

[
J1,3(t, x, 2s − y)+ J1,3(t, x, 2s + y)

]
and

P(δ)zz (t, x, y) = 1
2

[
J1,1(t, x, y)+

∞∑
s=1

[
J1,1(t, x, 2s − y)+ (t, x, 2s + y)

]]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)
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respectively. In each field, the first term on the right-hand side denotes the half-space
solution contributed by particles arriving directly from the source origin to (x, y). The
remaining series represent the impact of the scattering wall, combining contributions of
reflections from image surfaces located at yimage = ±2s (s = 1, 2, . . .).

Inspecting the scattering-wall contributions in (4.3), the high-order series terms may be
approximated asymptotically in cases where |ωyimage| � 1 and |yimage| � |x|. To this end,
introducing

Fn(z) =
∫ ∞

0
ξn

y exp
[
−z/ξy − ξ2

y

]
dξy, (4.4)

and following Abramowitz (Abramowitz 1953), we evaluate

Fn(z) ≈ 3−n/2ζ n/2
√

π

3

[
1 + O

(
ζ−1

)]
e−ζ , n = 0, 1, . . . , (4.5)

where z � 1 and ζ = 3(z/2)2/3. Setting z = i|ωyimage| with |ωyimage| � 1 and |yimage| �
x, the quadratures Jm,n in (4.2) are estimated by

Jm,n(z � 1) ≈ 1
πym

image

[√
πFn(z � 1)+ 2Fn+1(z � 1)

]
eiωt, (4.6)

and the contribution of the large-s series terms to the hydrodynamic perturbations in (4.3)
may be expressed. Focusing on the acoustic pressure and applying (3.15), it is viewed that
p ≈ 2Pyy/3 for z � 1. The decay rate D of the high-order terms in the series representation
of p is then

D ∼ O
(
(ωyimage)

1/3ω exp
[
−3|ωyimage|2/3/25/3

])
. (4.7)

In practice, the above estimate is valid for series terms with |z| = |ωyimage| = 2ωs � 4, i.e.
where the image is located at |yimage| = 2s � 4/ω. Observing the exponential attenuation,
this indicates that the acoustic pressure (similar to all other hydrodynamic perturbations)
is dominated by the superposition of the half-space solution and only first few s-series
terms at ω ∼ O(1). Recalling the discussion in figure 7, these terms represent the effect
of particles colliding only few times with the channel walls before arriving at (x, y), or,
equivalently, the acoustic signal generated by image surfaces placed relatively close to
the channel walls. At higher frequencies, the signal becomes solely dominated by the
half-space solution, where the effect of the scattering y = 1 surface is negligible. At low
frequencies, in contrast, the signal propagates to an increasing distance from the origin,
and the effect of upper boundary reflections is significant. These observations support the
findings discussed in figure 5(a,b).

4.2. Ideal-flow limit
The Kn → 0 compressible inviscid limit is next examined. This is considered a realization
of the specular-wall set-up in the continuum limit, as only wall-impermeability is imposed
at the walls, with no prescription of the velocity slip or thermal gas state at the boundaries.
Following the scheme presented in § 3.2 and omitting the viscous and heat-conduction
terms, the x-Fourier-transformed problem in the ideal-flow regime is governed by the
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system of balance equations (cf. (3.26))

iωρ̄ + ikū + v̄′ = 0, iωū = − ik
2

(
ρ̄ + T̄

)
, iωv̄

= −1
2

(
ρ̄′ + T̄ ′) and iωT̄ = −2

3

(
ikū + v̄′) , (4.8a–d)

supplemented by the transformed form of the impermeability conditions for a delta point
source (cf. (3.27)),

v̄(k, 0) = 1 and v̄(k, 1) = 0. (4.9a,b)

In line with linear acoustics theory, the system of equations may be transformed into
a single Helmholtz-type equation (equivalent to the linear wave equation in the (t, x, y)
plane) for the normal velocity field,

v̄′′ + β2v̄ = 0, (4.10)

where

β(k) =
√

6ω2 − 5k2

5
. (4.11)

The general solution for (4.10) is

v̄(k, y) = A1(k) exp
[
iβy

]+ A2(k) exp
[−iβy

]
. (4.12)

The particular solution for v̄(k, y) (and, consequently, for all other perturbation fields) can
now be calculated by applying the boundary conditions in (4.9a,b), yielding

A1(k) = 1
1 − exp[2iβ]

and A2(k) = exp[2iβ]
exp[2iβ] − 1

. (4.13a,b)

For the k-plane acoustic pressure one obtains

p̄(k, y) = −2ω
β

(
A1(k) exp

[
iβy

]− A2(k) exp
[−iβy

])
. (4.14)

For the purpose of discussing the specific effect of the scattering y = 1 wall, it becomes
instructive, as in § 4.1, to formulate the solution as a superposition of the half-space field
generated by a single point-wall source at y = 0 with its mirror images about the scattering
wall, which ensure the imposition of the impermeability condition at y = 1. Placing the
mirror-wall images at yimage = ±2s (with s = 1, 2, . . .; cf. figure 7), we obtain a series
representation for the y-velocity, x-velocity and acoustic pressure fields in the (t, x, y)
plane,

v(δ)(t, x, y) = v
(δ)
0 (t, x, y)+ eiωt

2π

∞∑
s=1

∫ ∞

−∞
(exp(iβ(2s + y))− exp(iβ(2s − y))) eikx dk,

u(δ)(t, x, y) = u(δ)0 (t, x, y)+ eiωt

2π

∞∑
s=1

∫ ∞

−∞
k
β
(exp(iβ(2s + y))− exp(iβ(2s − y))) eikx dk,

and p(δ)(t, x, y) = p(δ)0 (t, x, y)− eiωt

π

∞∑
s=1

∫ ∞

−∞
1
β
(exp(iβ(2s + y))− exp(iβ(2s − y))) eikx dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.15)
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respectively, where

v
(δ)
0 (t, x, y) = 1

2π

∫ ∞

−∞
exp

[
i(ωt + kx + βy)

]
dk,

u(δ)0 (t, x, y) = 1
2π

∫ ∞

−∞
k
β

exp
[
i(ωt + kx + βy)

]
dk,

and p(δ)0 (t, x, y) = − 1
π

∫ ∞

−∞
1
β

exp
[
i(ωt + kx + βy)

]
dk (4.16a–c)

denote the half-space solutions for a single point-source wall placed at the origin. As
in (4.3), the series terms in (4.15) specify the impact of the scattering wall, combining
contributions from the image surfaces set at yimage = ±2s (s = 1, 2, . . .).

The high-order (s � 1) terms in the series in (4.15) may be evaluated asymptotically, to
partially estimate the order of magnitude of the scattering wall effect. To this end, we seek
to approximate

I(x, ỹ) =
∫ ∞

−∞
F(k) exp

[
i (kx + λỹ)] dk, ỹ = 2s ± y (4.17)

at |λỹ| � 1. Substituting β(k) =
√
(6ω2 − 5k2)/5 into (4.17) (see (4.11)) and making a

change of variables ψ = (k
√

5/6)/ω, the integral is recast in the form

I(x, ỹ) =
∫ ∞

−∞
F(ψ) exp

[√
6
5

iω
(
ψx + ỹ

√
1 − ψ2

)]
dψ. (4.18)

Applying the method of stationary phase (Bender & Orszag 1999), the ỹ � ω−1 limit
of I(x, ỹ) at x � O(1) may be evaluated, as the integrand has a stationary phase point at
ψ = 0. The leading-order approximation is

I(x � O(1), ỹ � ω−1) ≈ F(0)

√
2π

√
5

ωỹ
√

6
exp

[
i

(√
6
5
ωỹ − π

4

)]
, (4.19)

which may be used to evaluate the s � 1 terms in (4.15). Specifically, the high-order terms
in the expression for the acoustic pressure are approximated by

p(δ)s�1(t, x � O(1), ỹ � ω−1) ≈ −
√

2
√

5

π
√

6
(ωỹ)−1/2 exp

[
i

(
ωt +

√
6
5
ωỹ − π

4

)]
, ỹ = 2s ± y,

(4.20)
indicating an oscillatory decaying contribution at a rate ∼ O(1/

√
2ωs). In practice, this

estimate is valid for series terms with s � 4/ω, i.e. a smaller s with increasing ω.
Comparing with the exponential attenuation of the scattering wall impact found in the
free-molecular limit (cf. (4.7)), the slower decay in the continuum limit rationalizes the
extension of the acoustic signal ‘penetration depth’ to significantly larger distances from
the source, as observed in § 3.4 (see figures 3–5).

4.3. Results
Other than estimating the order-of-magnitude effect of the scattering wall reflections, the
series representation of the point wall system response is also useful in quantitating the
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Figure 8. The free-molecular acoustic pressure at period time (t = 2π/ω) in a specular-wall channel with
a point source (system B) actuated at ω = 1: (a–c) colourmaps of the total pressure field (a) and separate
half-space (b) and scattering wall (c) components; (d) x-variations of the total (black), half-space (blue) and
scattering-wall (red) fields at y = 0.85.

separate contributions of the source (y = 0) and scatterer (y = 1) to the total acoustic field.
To this end, figure 8 focuses on the free-molecular response and presents colourmaps of
the total acoustic pressure at period time (figure 8a) together with its separate half-space
(figure 8b) and scattering-wall (figure 8c) contributions. Figure 8(d) shows specific
x-variations of the three fields at y = 0.85. The sum of figure 8(b,c) yields the result in
figure 8(a). Similarly, the sum of the blue and the red curves in figure 8(d) yields the black
line therein. Note that the colourmaps in figure 8(a–c) show only the upper 0.5 ≤ y ≤ 1
part of the channel, to avoid distortion of the results in the vicinity of the delta source
origin.

Similar to the results in figure 2(a,b), the total acoustic signal in figure 8(a) is
propagating mainly in the normal y-direction between the walls. Yet, compared with the
semi-infinite signal in figure 8(b), the impact of back reflections of the scattering surface,
transmitted in the ±x-directions as shown by the light blue zones at |x| > 2 in figure 8(a),
is clearly seen. This impact is specifically highlighted in figure 8(c), showing the separate
y = 1 wall contribution to the acoustic field. While its magnitude is significantly lower
than in the source region, the back signal near (x, y) = (0, 1) and consequent pressure
fluctuations away from x = 0 are observed. Figure 8(d) further demonstrates the above
observation, focusing on the pressure signal at y = 0.85, relatively close to the y = 1
surface. Clearly, the semi-infinite signal in blue shows pressure disturbances only close
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Figure 9. The acoustic pressure at ideal-flow (Kn → 0) conditions in a specular-wall channel with a point
source (system B) actuated at ω = 1: (a) colourmap of the pressure fluctuation at quarter-period time (t =
π/2ω); (b) comparison between the x-variations of the pressure field at y = 0.85 and t = π/2ω at ideal flow
(black solid line) and slip flow (Kn = 0.004 in system A, dashed blue curve) conditions.

to the x = 0 peak, while the red scattering-wall reflection contributes to the propagation
of acoustic fluctuations to increasing x-distances.

Considering the ideal-flow limit studied in § 4.2, figure 9 presents the respective acoustic
pressure in system B actuated at ω = 1. Figure 9(a) shows a colourmap of the acoustic
pressure at quarter period time between 0.5 ≤ y ≤ 1. Figure 9(b) focuses on y = 0.85
and compares between the current and counterpart result obtained in system A (with a
Gaussian source in a fully diffuse channel) at Kn = 0.004. Notably, the ideal-flow signal
in figure 9(a) does not decay with the distance from the source. This is in line with the
trend observed in figure 4, showing that decreasing rarefaction results in the propagation
of the acoustic signal to larger distances from the origin in the form of one-dimensional
monochromatic waves. Indeed, examining the ideal-flow problem set in (4.8a–d) and
substituting v̄ = 0, the acoustic pressure is amenable to the non-trivial one-dimensional
solution

p ∝ exp
[
iω
(

t ± x
√

6/5
)]
, (4.21)

containing a non-decaying pair of waves of length λ = 2π
√

5/6/ω propagating in the
positive and negative x-directions. The waves’ common amplitude is governed by the more
complex two-dimensional behaviour in the source region at |x| � O(1), where the flow
pattern differs from a monochromatic waveform. Figure 9(b) qualitatively illustrates the
differences between the continuum-limit (with Kn /= 0) and ideal-flow descriptions, where
the former decays with the distance from the origin due to thermoviscous effects. The
quantitatively large differences in pressure amplitudes are attributed to the different source
types (Gaussian versus delta-function) considered.

The point source system is also useful in obtaining simpler (and, in part, closed-form)
expressions for the acoustic forces generated on the channel walls. To this end, in the
free-molecular limit, substitute P(δ)yy in (4.3) at y = 0, 1 into (3.36a,b), to obtain

F(δ)v (t; Kn � 1, ω) = 2
∫ ∞

−∞

[
J1,3(t, x, 0)+ 2

∞∑
s=1

J1,3(t, x, 2s)

]
dx (4.22a)
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and

F(δ)s (t; Kn � 1, ω) = 2
∫ ∞

−∞

[
J1,3(t, x, 1)+

∞∑
s=1

[
J1,3(t, x, 2s − 1)+ J1,3(t, x, 2s + 1)

]]
.

(4.22b)
At ω � 1, the s-series part in F(δ)v , accounting for the scattering wall effect, becomes
asymptotically small, and the force on the vibrating wall approaches

F(δ)v (t; Kn � 1, ω � 1) ≈ 2√
π

(
1 + π

4

)
eiωt (4.23)

(cf. (3.42)). In the expression for F(δ)s (t; Kn � 1, ω), however, all terms are ω-dependent,
and the force becomes asymptotically small at high frequencies.

To evaluate the acoustic forces in the ideal-flow limit, we substitute (4.14) in (3.38) with
the viscous-stress component omitted, and apply the delta-function identity

∫∞
−∞ eikx dx =

2πδ(k). This yields the closed-form expressions for the vibrating and stationary wall forces

F(δ)v (t; Kn → 0, ω) =
√

10
3

eiωt 1 + exp(2iω
√

6/5)
1 − exp(2iω

√
6/5)

(4.24a)

and

F(δ)s (t; Kn → 0, ω) =
√

40
3

eiωt exp(iω
√

6/5)
1 − exp(2iω

√
6/5)

. (4.24b)

The results in (4.22) and (4.24) are plotted in figure 10, presenting the ω/π-variations
of the amplitudes of the normal gas loadings on the y = 0 (|Fv|, figure 10a) and y = 1
(|Fs|, figure 10b) boundaries. Similarly to figure 6, each part compares between the
free-molecular and ideal-flow frequency variations. The respective Kn = 0.001 results
appearing in figure 6 for system A are repeated here for reference. Remarkably, the figure
captures all the features discussed in figure 6 for system A. In the free-molecular limit,
these include the monotonic decay of |Fs| and the approach of |Fv| to a constant value,
here given by |F(δ)v | ≈ 2.01 according to (4.23). Additionally, (4.24) predicts the expected
behaviour in the continuum limit, including the occurrence of force resonances at ω = ωn
and the vanishing of |Fv| (as well as minimization of |Fs|) at ω = ωn/2. Missing from the
expressions in (4.24) is the damping of resonance peaks viewed in figure 6, as viscous
effects are excluded in the present ideal-flow description.

5. Conclusion

We investigated the effect of gas rarefaction and wall confinement on the propagation
of vibroacoustic disturbances in a microchannel, generated by non-uniform (localized)
time-harmonic oscillations of one of the channel walls. The problem was studied in
the entire range of gas rarefaction rates, combining continuum and free-molecular limit
analyses with DSMC calculations. Gas rarefaction was found to strongly increase the
signal decay rate, varying between a non-decaying propagating wave parallel to the
channel walls at continuum conditions, to a confined ‘near-field’ acoustic perturbation in
the free-molecular regime. The impact of the stationary scattering wall was examined in
detail, and the effect of replacing between fully diffuse and specular boundary reflections
was found to slightly reduce the decay rate of the signal. The frequency dependence of the
force generated by the gas film on the channel walls was calculated, showing resonance and
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Figure 10. Variations with ω/π of the amplitudes of the normal forces on the y = 0 (a) and y = 1 (b) walls
in response to a delta-source wall excitation (system B): comparison between ideal flow (Kn → 0, black lines)
and free-molecular (Kn → ∞, blue curves) results. The red lines show the respective frequency variations at
Kn = 0.001 in system A, also presented in figure 6.

antiresonance behaviours at continuum conditions that reduce with increasing rarefaction.
A model set-up of a fully specular channel with a point delta source was examined, for
which closed-form expressions were obtained for the effect of the stationary wall on the
hydrodynamic perturbations and the acoustic force on the walls. These expressions were
found useful in rationalizing the fundamental effect of the scattering wall on the system
response. While the results were presented for specific (Gaussian or Dirac delta) choices
of the wall signal amplitude, the current scheme may be readily applied to calculate the
gas response to any small-amplitude vibration profile of the resonator.

The work analyses the free-molecular, continuum and intermediate flow regimes in
the propagation of two-dimensional vibroacoustic disturbances in a channel. Physically,
collisionless conditions are expected where the channel width L∗ is small compared
with l∗, i.e. Kn � 1, or where the source frequency ω∗ is large compared with the
mean collision frequency (∼ U∗

th/l
∗), i.e. ωKn � 1. Continuum limit conditions should

occur where both Kn � 1 and ωKn � 1, whereas the intermediate regime prevails where
Kn ∼ O(1) or ωKn ∼ O(1). The continuum-limit system behaviour, and in particular the
Kn → 0 (ideal flow) limit discussed in § 4.2, are characterized by vanishing dissipation
rates, for which the acoustic disturbances in the present channel-confined configuration
propagate in a one-dimensional manner with no decay in the far field (see figure 9).
With increasing Knudsen numbers, viscous effects become significant, confining the
‘penetration distance’ of the acoustic signal to smaller distances from the source, as
illustrated in figure 3. At the extreme conditions of free-molecular flow, the acoustic
disturbance reaches only a few channel-width units away from the origin, as illustrated
in figures 2 and 8. The same physical mechanism of increasing thermoviscous effects at
larger rarefaction rates prevents the occurrence of system resonance, as demonstrated in
figures 6 and 10. Here, at large departures from continuum, the signal generated at one wall
decays rapidly enough to not reach the other boundary and transmit acoustic feedback. In
addition, and in qualitative difference from the continuum limit governed by the acoustic
wave equation dynamics, the flow field at free-molecular conditions is not dominated
by a single wave, which further obviates the effective magnification (at resonance) and
cancellation (at antiresonance) of the acoustic pressure.

The present work may be extended in several directions. To start with, high-order
hydrodynamic models, such as extended moment schemes (Struchtrup 2005), may be
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examined to capture the system intermediate response between free-molecular and
continuum limits. This may also prove useful in better approximating the acoustic field
at relatively small Knudsen numbers in the vicinity of the acoustic source, discussed
in figure 4. In a different direction, the counterpart thermoacoustic problem, where
the vibroacoustic source is replaced by local thermal wall excitations (in the form of
small-amplitude temperature or heat-flux boundary variations), may be studied. Here,
again, the effect of system two-dimensionality may be examined by considering a localized
source, as opposed to uniform boundary heating assumed in previous one-dimensional
studies (Manela & Hadjiconstantinou 2007, 2010). Finally, the problem of vibroacoustic
sound propagation in a two-dimensional fully confined enclosure may be considered. The
analysis in this case should take account of the added effect of the sidewalls, enclosing the
domain in the x-direction, and sum their respective reflections. These constitute topics for
ongoing investigations.
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Appendix A. Expressions for the acoustic field perturbations in the free-molecular
limit

In terms of the perturbation to the probability density function φ(t, x, y, ξ) obtained in
(3.5) or (3.6), the acoustic density, tangential and normal velocities and normal stress
components are given by the linearized velocity-space quadratures (Sone 2007)

ρ(t, x, y) = π−3/2
∫ ∞

−∞
φe−ξ2

dξ ,

u(t, x, y) = π−3/2
∫ ∞

−∞
ξxφe−ξ2

dξ , v(t, x, y) = π−3/2
∫ ∞

−∞
ξyφe−ξ2

dξ ,

Pxx(t, x, y) = π−3/2
∫ ∞

−∞
ξ2

x φe−ξ2
dξ , Pyy(t, x, y) = π−3/2

∫ ∞

−∞
ξ2

y φe−ξ2
dξ and

Pzz(t, x, y) = π−3/2
∫ ∞

−∞
ξ2

z φe−ξ2
dξ = ρ(t, x, y)/2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A1)

respectively, where dξ = dξx dξy dξz. The expressions for the pressure and temperature
perturbations then follow from (3.15) and the linearized form of the equation of state,
T(t, x, y) = p(t, x, y)− ρ(t, x, y), respectively.
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