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Propagation of two-dimensional vibroacoustic disturbances in a rarefied gas
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We study the effect of gas rarefaction on the propagation of vibroacoustic sound in
a two-dimensional setup of a gas confined by a planar oscillating wall. Focusing on
small-amplitude harmonic excitations imposed to only part of the surface, the problem
is analyzed in the entire range of gas rarefaction rates, governed by the ratio between the
gas mean free path and wavelength of a prescribed wall signal. Analytical solutions are
obtained in the free-molecular and continuum limits, consisting of the gas response to a
delta function and other locally confined wall actuations. The analysis is supplemented
by direct simulation Monte Carlo calculations in the intermediate range of gas rarefaction
rates. Remarkably, distinct differences are observed between sound propagation charac-
teristics in the two limits. At continuum-limit conditions, the acoustic signal propagates
isotropically in a monopole-type pattern, and decays inversely to the square root distance
from the source. In contrast, the signal in the collisionless flow regime is exponentially
decaying away from the source and follows a “nearly dipole-type” directivity field, where
the acoustic pressure vanishes in the direction normal to the source axis of motion. The dif-
ferences in results, stemming from the fundamentally distinct continuum and ballistic flow
models, are discussed and rationalized in terms of the analytical limit-case descriptions.

DOI: 10.1103/PhysRevFluids.6.093401

I. INTRODUCTION

The generation and propagation of acoustic waves in rarefied gases have been investigated in a
considerable number of works, starting in the middle of the 20th century and continuing to current
research [1–9]. Initially motivated by engineering low-pressure applications and fundamental in-
terest, it has been observed that the departure from continuum in a given acoustic setup becomes
relevant wherever the characteristic lengthscale, or timescale, of the configuration involved becomes
of the order of its kinetic microscopic counterparts, namely, the mean free path or time, respectively.
In vibroacoustic applications, such scenarios are common in micromechanical oscillators, where
short lengthscales and high frequencies take place [10–12].

Initially focusing on a uniformly vibrating planar setup (see Refs. [2,5–8,13] and papers cited
therein), a major part of existing studies has analyzed the attenuating effect of gas rarefaction on
sound propagation, quantitating an increase in the signal decay rate with departure from continuum
conditions. A parallel set of studies has then examined the thermoacoustic field generated by
temperature changes [14–19] or heat flux variations [20–22] of a surface, suggesting it as a means
for vibroacoustic sound cancellation. Following investigations have analyzed vibroacoustic and
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thermoacoustic sound generation at nonplanar geometries, by considering the canonical setups of a
pulsating cylinder [23,24] and a pulsating sphere [25].

Invariably, the above works examine acoustic wave propagation at one-dimensional configu-
rations. These include both planar- and non-planar-wall investigations, where axisymmetric flow
conditions have been assumed in the latter [23–25]. While the imposition of unidirectional sound
propagation significantly simplifies the analysis, it appears desirable to extend existing works and
investigate the effect of gas rarefaction on sound transmission at more complex and realistic source
configurations. In an effort in this direction, Wu [26] has examined the propagation of acoustic
waves in a rarefied gas confined in a two-dimensional cavity. Uniform harmonic oscillations of one
of the cavity walls were considered as the system source of sound, and the analysis combined nu-
merical solution of the linearized Boltzmann equation with analytic investigation of the collisionless
(high oscillation frequency) limit. In other works, Sader and coworkers [19,27] have considered the
acoustic field of an oscillating rigid sphere, taking into account the prevailing nonaxisymmetric
conditions and applying the Bhatnagar-Gross-Krook model of the Boltzmann equation for the
analysis.

Observing the few number of works studying sound propagation at non-one-dimensional setups,
the objective of the present paper is to analyze the particular effect of gas rarefaction on the
propagation of two-dimensional vibroacoustic sound generated by localized boundary motion.
To this end, we consider a semi-infinite expanse of a gas confined by an infinite planar wall
undergoing nonuniform time-depending normal vibrations. This may be assumed as a simple
model for characterizing sound transmission by a locally vibrating panel (speaker) at noncontinuum
conditions. The problem is formulated for an arbitrary small-amplitude profile of surface vibration,
and the effect of system two-dimensionality is emphasized by focusing on particularly “localized”
signal distributions, as opposed to uniform planar motion considered in previous one-dimensional
investigations. The problem is studied in the entire range of gas rarefaction rates, governed by the
ratio between the gas molecular mean free path and the characteristic wavelength of imposed vi-
brations. Remarkably, fundamentally distinct acoustic flow fields are observed in the highly rarefied
(free-molecular) and continuum limit regimes, in terms of both signal decay rate and directivity
pattern. These differences are rationalized based on respective analytical solutions derived in the
two limits. The results are supplemented by direct simulation Monte Carlo (DSMC) calculations,
used to bridge the gap between the two limits and obtain the acoustic-field topology at intermediate
rarefaction rates.

In the next section, the acoustic problem is stated. The analyses of the free-molecular and
continuum limits are given in Secs. III and IV, respectively, and the direct simulation Monte Carlo
algorithm applied is discussed in Sec. V. The results, shedding light on the fundamental effects of
gas rarefaction on two-dimensional sound propagation, are presented in Sec. VI, and our conclusions
are given in Sec. VII. Some technical details are relegated to the Appendices.

II. STATEMENT OF THE PROBLEM

A schematic of the problem is shown in Fig. 1. Consider a semi-infinite expanse of a monatomic
ideal gas located at y∗ > 0 and confined by an infinite solid boundary at y∗ = 0 and −∞ < x∗ < ∞
(hereafter, asterisks denote dimensional quantities). The boundary is actuated with small-amplitude
time-harmonic oscillations, prescribed by the time t∗ and position x∗ distribution of its normal
velocity component,

V ∗
w (t∗, x∗) = εU ∗

thvw(x∗) cos(ω∗t∗). (1)

In Eq. (1), U ∗
th = √

2R∗T ∗
0 denotes the mean thermal speed of a gas molecule (where R∗ is the

specific gas constant and T ∗
0 is the reference gas temperature), vw(x∗) marks the nondimensional

(U ∗
th-scaled) x∗ variation of the wall normal velocity amplitude, and ω∗ is the time frequency of

imposed oscillations. It is assumed that ε � 1, so that the gas response may be linearized about its
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FIG. 1. Schematic of the problem: A semi-infinite gas layer, nominally set at thermodynamic equilibrium,
is confined by an infinite fully diffuse planar wall at x∗ = 0. The wall is actuated with prescribed small-
amplitude time- and x∗-dependent normal velocity profile, V ∗

w = V ∗
w (t∗, x∗).

stationary equilibrium state of uniform density ρ∗
0 and temperature T ∗

0 . The wall is modeled as fully
diffuse with a fixed temperature T ∗

0 .
The paper analyzes the effect of gas rarefaction on the two-dimensional propagation of acoustic

waves generated by the wall excitation specified in Eq. (1). Focusing on localized wall displace-
ments confined to the vicinity of the origin x∗ = 0, the level of gas rarefaction is governed by the
ratio between the time frequency of imposed oscillations ω∗ and the mean collision frequency of
a gas molecule, ν∗

0 ≈ U ∗
th/l∗, where l∗ denotes the gas molecular mean free path. The limit-case

regimes of highly rarefied (collisionless) and continuum flows are expected to prevail at large
and low values of ω∗l∗/U ∗

th, respectively. Setting ω∗−1 and U ∗
th as the problem characteristic time

and velocity scales, respectively, the consequent lengthscale is of the order of the acoustic-signal
wavelength, U ∗

th/ω
∗. The problem is then governed by

Kn = ω∗l∗/U ∗
th and vw(x), (2)

denoting the system mean Knudsen number and prescribed wall vibrations amplitude, respectively.
The nondimensional description is completed by taking ρ∗

0 and T ∗
0 as the reference gas density and

temperature, respectively.
In what follows, Secs. III and IV analyze the specific limits of highly rarefied and continuum

limit conditions, expected at Kn � 1 and Kn � 1, respectively. The DSMC scheme, applied for
counterpart numerical analysis of the problem, is discussed in Sec. V.

III. FREE-MOLECULAR LIMIT

Within the framework of gas kinetic theory and the present two-dimensional setup, the gas state
is governed by the probability density function f = f (t, x, y, ξ) of finding a gas molecule with
velocity about ξ = (ξx, ξy, ξz ) at a position near (x, y) at time t . At the linearized conditions assumed
we write

f (t, x, y, ξ) = F [1 + εφ(t, x, y, ξ)], (3)

where F = π−3/2 exp[−ξ 2] denotes the nondimensional Maxwellian equilibrium distribution, and
φ(t, x, y, ξ) marks the probability perturbation function [28]. Assuming the Knudsen number to be
large, we consider the collisionless two-dimensional unsteady Boltzmann equation for φ(t, x, y, ξ):

∂φ

∂t
+ ξx

∂φ

∂x
+ ξy

∂φ

∂y
= 0. (4)

The free-molecular problem is amenable to a closed-form solution for an arbitrary (small-amplitude)
source time dependence, Vw = Vw(t, x). We therefore consider here the more general problem that
does not a priori assume time-harmonic wall oscillations. Equation (4) is subject to a far-field decay
condition together with a half-range fully diffuse boundary condition at the wall. After linearization,
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the latter takes the form

φ(t, x, 0, ξ · ŷ > 0) = ρw(t, x) + 2ξyVw(t, x), (5)

where ŷ is a unit vector directed in the positive y direction (normal to the boundary) and ρw(t, x) is
yet unknown. The solution for Eq. (4) subject to Eq. (5) is

φ(t, x, y, ξ) =
{

0, ξy � 0

ρw(t − y/ξy, x − yξx/ξy) + 2ξyVw(t − y/ξy, x − yξx/ξy), ξy > 0.
(6)

To determine the wall function ρw(t, x) appearing in Eq. (6), we make use of Eq. (3) and impose
the linearized form of the impermeability condition on the normal velocity component v(t, x, y),

v(t, x, 0) = 1

π3/2

∫ ∞

−∞
ξyφ(t, x, 0, ξ) exp[−ξ 2]dξ = Vw(t, x). (7)

Substituting Eq. (6) into Eq. (7), we find

ρw(t, x) = √
πVw(t, x), (8)

indicating the local dependence of the gas mass flux at the wall on its instantaneous velocity.
Having solved for φ(t, x, y, ξ), appropriate quadratures of Eq. (3) over the velocity space yield
expressions for the ε-scaled density ρ(t, x, y); tangential and normal velocity components u(t, x, y)
and v(t, x, y), respectively; and acoustic pressure p(t, x, y) perturbations. Specifically, denoting

I (n)
ξ j

(t, x, y) = 1

π

∫ ∞

−∞

∫ ∞

0
ξ n

j

(√
π + 2ξy

)
Vw

(
t − y

ξy
, x − ξx

ξy
y

)
exp

[−ξ 2
x − ξ 2

y

]
dξydξx, (9)

the perturbation fields are expressed as

ρ(t, x, y) = I (0)
ξx

, u(t, x, y) = I (1)
ξx

, v(t, x, y) = I (1)
ξy

and p(t, x, y) = 1
3

(
2I (2)

ξx
+ 2I (2)

ξy
+ I (0)

ξx

)
.

(10)

The temperature perturbation may be obtained using the linearized form of the equation of state,

T (t, x, y) = p(t, x, y) − ρ(t, x, y).

Explicit expressions for the perturbation fields at the wall (y = 0) may be consequently obtained for
an arbitrary choice of Vw(t, x). For the density, x velocity, and pressure, we obtain

ρ(t, x, 0) = π + 2

2
√

π
Vw(t, x), u(t, x, 0) = 0, and p(t, x, 0) = 3π + 8

6
√

π
Vw(t, x), (11)

respectively. Notably, the tangential velocity component vanishes at the wall. This is a consequence
of averaging over the molecular velocities of the particles right before and right after colliding with
the boundary, both maintaining Maxwellian distributions with a vanishing x-velocity component.
As discussed later on, this contributes to the non-mono-polar radiation pattern obtained at free-
molecular conditions, where no sound is propagating along the wall surface (see Sec. VI). Specific
expressions for the free-molecular space and time distributions of the acoustic fields are discussed
in Sec. VI for particular choices of Vw(t, x).

IV. CONTINUUM LIMIT

The problem at small Knudsen numbers is next analyzed based on a first-order “slip-flow”
continuum-limit model consisting of the continuum Navier-Stokes-Fourier (NSF) balance equations
and respective wall and far-field conditions. The model is first presented, after which its compress-
ible ideal-flow (Kn → 0) limit solution is derived (Sec. IV A). The problem analysis at small yet
finite Kn �1 is considered in Sec. IV B.
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Adopting the scaling introduced in Sec. II, the linearized two-dimensional NSF equations consist
of the balances of mass,

∂ρ

∂t
+ ∂u

∂x
+ ∂v

∂y
= 0, (12)

x momentum,

∂u

∂t
= −1

2

(
∂ρ

∂x
+ ∂T

∂x

)
+ K̃n

(
4

3

∂2u

∂x2
+ ∂2u

∂y2
+ 1

3

∂2v

∂x∂y

)
, (13)

y momentum,

∂v

∂t
= −1

2

(
∂ρ

∂y
+ ∂T

∂y

)
+ K̃n

(
∂2v

∂x2
+ 4

3

∂2v

∂y2
+ 1

3

∂2u

∂x∂y

)
, (14)

and energy,

∂T

∂t
= −γ K̃n

Pr

(
∂2T

∂x2
+ ∂2T

∂y2

)
− (γ − 1)

(
∂u

∂x
+ ∂v

∂y

)
, (15)

where the linearized form of the equation of state for an ideal gas, p = ρ + T , has been applied. In
Eqs. (14) and (15), the viscosity-based Knudsen number,

K̃n = ω∗
0μ

∗
0

ρ∗
0U ∗2

th

, (16)

is introduced, where μ∗
0 denotes the gas dynamic viscosity at the reference temperature T ∗

0 .
Considering a hard-sphere gas kinetic model, we fix μ∗

0 = (5
√

π/16)ρ∗
0Uthl∗ [29], yielding K̃n =

(5
√

π/16)Kn [cf. Eq. (2)]. Also appearing in Eq. (15) are the gas Prandtl number, Pr, and ratio
of specific heats, γ , which equal 2/3 and 5/3, respectively, in an ideal monatomic gas. Equations
(12)–(15) are supplemented by the wall impermeability condition,

v(t, x, 0) = Vw(t, x), (17)

together with first-order velocity slip,

u(t, x, 0) = cu

(
∂u

∂y
+ ∂v

∂x

)
(t,x,0)

+ c(1)
T

∂T

∂x

∣∣∣∣
(t,x,0)

, (18)

and temperature jump,

T (t, x, 0) = c(2)
T

∂T

∂y

∣∣∣∣
(t,x,0)

, (19)

conditions, as formulated by Aoki et al. [30]. A temperature jump component contributed by the
normal stress at the wall (∝ ∂v/∂y) is not included in Eq. (19), as it is of higher order in the present
linearized setup [see Eq. (118) in Ref. [30], et seq.]. Assuming a hard-sphere gas model,

cu ≈ 1.111Kn, c(1)
T ≈ 0.573Kn, and c(2)

T ≈ 2.127Kn. (20)

Far-field (x, y → ∞) decay conditions are additionally imposed on all perturbations.
In line with the harmonic time dependence of the wall forcing signal [see Eq. (1)], we assume

sinusoidal time variation of all fields,

F (t, x, y) = Re{F̃ (x, y) exp[it]}. (21)

Further, since the flow domain is infinite in the x direction, it is useful to apply the x-Fourier
transform,

F̄ (k, y) =
∫ ∞

−∞
F̃ (x, y) exp[−ikx]dx, (22)
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to the above problem. The system of Eqs. (12)–(15) is then transformed into

iρ̄ + ikū + v̄′ = 0, iū = − ik

2
(ρ̄ + T̄ ) + 5Kn

√
π

16

(
ū′′ − 4k2

3
ū + ik

3
v̄′

)
,

iv̄ = −1

2
(ρ̄ ′ + T̄ ′) + 5Kn

√
π

16

(
ik

3
ū′ + 4

3
v̄′′ − k2v̄

)
, (23)

iT̄ = −25Kn
√

π

32

(
T̄ ′′ − k2T̄

) − 2

3
(ikū + v̄′),

where primes denote derivatives in the y direction. These are supplemented by the transformed form
of the boundary conditions in Eqs. (17)–(20),

v̄(k, 0) = V̄w(k), ū(k, 0) = [cu(ū′ + ikv̄) + ikc(1)
T T̄ ](k,0) and T̄ (k, 0) = c(2)

T T̄ ′(k, 0). (24)

The analysis of the k-plane problem is described in Sec. IV B. Once completed, the solution in the
physical (t, x, y) domain is obtained by applying the inverse transformation,

F (t, x, y) = 1

2π
Re

{
exp[it]

∫ ∞

−∞
F̄ (k, y) exp [ikx]dk

}
, (25)

to each of the hydrodynamic perturbations. Before considering the general slip-flow solution, we
discuss the ideal-flow (Kn → 0) problem in Sec. IV A.

A. Ideal-flow limit

Assuming Kn → 0 in Eq. (23), the problem degenerates into its ideal compressible (Euler) flow
limit, where viscous and heat-conduction effects are neglected. Here, the dynamic and thermody-
namic flow descriptions are decoupled, and the wall slip and thermal boundary conditions cannot
be imposed. The hydrodynamic equations may be cast into a single equation for the flow velocity
potential, forming the Helmholtz k-plane equivalent of the linear wave equation. The transformed
normal velocity accordingly satisfies

v̄′′ + λ2v̄ = 0, (26)

where

λ(k) =
√

6 − 5k2

5
. (27)

Imposing a nondiverging condition at y → ∞ and the impermeability condition in Eq. (24), we
obtain the particular solution

v̄(k, y) = v̄w(k) exp [iλy], (28)

and consequent expressions for all other transformed perturbations:

ū(k, y) = k

λ
v̄w(k) exp [iλy], ρ̄(k, y) = − 6

5λ
v̄w(k) exp [iλy],

T̄ (k, y) = 2

3
ρ̄(k, y) and p̄(k, y) = 5

3
ρ̄(k, y). (29)

The multiplying-factor dependence between the density and temperature perturbations reflects the
isentropic relation, T = (γ − 1)ρ = 2ρ/3, effective at ideal-flow conditions. The hydrodynamic
fields in the (t, x, y) plane are calculated using Eq. (25). The solution obtained thereby will be
applied in Sec. VI to illustrate the contrast between the system behavior in the continuum and
free-molecular limits.

093401-6



PROPAGATION OF TWO-DIMENSIONAL VIBROACOUSTIC …

B. Slip-flow limit

Assuming nonzero Kn � 1 values, the problem in Eqs. (23) and (24) is considered. To this end,
Eq. (23) is cast as a system of coupled first-order equations,

g′ = Ag, (30)

where g = [ū, ū′, v̄, v̄′, T̄ , T̄ ′]T is the vector of unknown functions and A = A(k, Kn) is the matrix
of coefficients. The general solution for Eq. (30) is

g = �6
n=1Dnvn exp[λny], (31)

where vn(k, Kn) and λn(k, Kn) mark the n = 1, . . . , 6 eigenvectors and eigenvalues of the matrix
A, respectively, and Dn are the unknown scalar coefficients multiplying the respective vn exp[λny]
components. Analysis of the characteristic sixth-order polynomial of the matrix A at Kn � 1
indicates that its roots λn consist of three complex pairs of alternating signs. Omitting the three
eigenvalues with Re{λn} > 0 to satisfy the far-field decay condition, the Kn � 1 approximations
for the remaining λ1,2,3 are

λ1 = i

√
6 − 5k2

5

[
1 − 21i

√
π

8(6 − 5k2)
Kn + O(Kn2)

]
,

λ2 = − 4
√

i√
5π1/2Kn

[
1 − 5

√
π

32
k2Kn + O(Kn2)

]
and λ3 = − 4

√
2i√

15π1/2Kn

[
1 − 5i

√
π

16

(
3k2

4
− 1

15

)
Kn + O(Kn2)

]
. (32)

As Kn → 0, λ1 recovers its ideal-flow limit, iλ = i
√

(6 − 5k2)/5, obtained in Eq. (28). The λ2 and
λ3 eigenvalues, as well as the O(Kn) correction to λ1, reflect viscous and heat conduction effects,
inevitably missing at ideal-flow conditions. With decreasing Kn → 0, the contributions of the λ2,3

modes become confined to the immediate vicinity of the solid wall, as Re{λ2,3} ∝ −Kn−1/2. With
increasing Kn, these eigenmodes affect a wider gas layer, resulting in deviations between the Euler
and NSF flow descriptions.

To specify the particular solution in Eq. (31), the coefficients Dn multiplying vn exp[λny] in
Eq. (31) (n = 1, 2, 3) are calculated through the imposition of the impermeability, slip, and jump
wall conditions in Eq. (24). The result in the (t, x, y) physical domain is then obtained using Eq. (25).

V. NUMERICAL SCHEME: DSMC METHOD

The DSMC method, initially proposed by Bird [31], is a stochastic particle method commonly
applied for the analysis of rarefied gas flows. In the present paper, we make use of the DSMC
scheme to examine the free-molecular and continuum limit solutions obtained in Secs. III and IV,
respectively, and to capture the system behavior at intermediate Knudsen numbers. We accordingly
adopt Bird’s algorithm, together with the hard-sphere model of molecular interaction, to simulate the
gas state. In line with the problem formulation, the wall surface is assumed fully diffuse, with a fixed
temperature and a prescribed x∗-dependent time-harmonic normal velocity profile. To simulate the
boundary condition yet maintain the surface fixed (which considerably simplifies the calculation),
an algorithm for adding or subtracting particles has been applied, ensuring that the number flux of
gas particles emitted at the wall agrees with the flux required to satisfy the impermeability condition.
The algorithm is described below.

Considering the linearized problem, the difference between the reflected and incoming particles
number flux at the wall is equal to ρ∗

0v∗
w(x∗)/m∗, where m∗ denotes the particle molecular mass.

Assuming a simulated wall of length L∗
w actuated at a uniform velocity with a maximal amplitude

v∗max
w during a time step �t∗, the difference between the total number of outgoing and incoming
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particles is

Ndiff = Nout − Nin = ρ∗
0

m∗ v∗max
w �t∗L∗

w. (33)

To simulate the present two-dimensional x∗-dependent (nonuniform) distribution of v∗
w(x∗), an

acceptance-rejection scheme has been applied for adding or deleting particles. In a case where
the difference in Eq. (33) is positive, Ndiff attempts were made to add particles to the simulation
domain. In each attempt, the boundary velocity v∗

w(x∗
p) at the particle impingement location x∗

p was
calculated and a particle was added if

v∗
w(x∗

p)

v∗max
w

> RU , (34)

where RU ∈ [0, 1] denotes a uniformly distributed random number. If added, the particle was given a
velocity in accordance with the diffuse reflection distribution. In the opposite case where Ndiff < 0,
particles that impinged the boundary were subject to a similar acceptance-rejection scheme for
their removal. Here, the wall velocity at the particle’s impingement location was calculated and the
scheme in Eq. (34) was used to decide whether the particle should be omitted from the domain.

Each computation was started from an initial equilibrium state and followed in time until a final
periodic state was reached, typically after two to three oscillation periods. To mimic the formulated
half-space problem, a rectangular computational domain was set, with virtual “side” and “top”
boundaries placed far enough to not affect the system response. In practice, placing these boundaries
at x∗

sim, y∗sim ≈ 10 − 15U ∗
th/ω

∗ has proved sufficiently far to neglect their impact at Kn � 0.1. At
lower Knudsen numbers, however, the signal decay rate was found too low to neglect the influence
of sound reflection by the virtual boundaries (see Sec. VI). While this could be overcome through
an increase in the computation domain size, it would have made the calculation at small Knudsen
numbers prohibitively expensive. This limitation, hindering a quantitative comparison between the
continuum-limit and DSMC results at Kn � 1, is illustrated in Sec. VI (see Figs. 6 and 7).

In a typical calculation, the domain was divided into 3–6 × 103 cells. An additional division of
each cell into collisional subcells was carried out to comply with the mean-free-path limitations.
The subcells size was set to l∗/4 and the simulation time step was taken 1/4 × l∗/U ∗

th. A typical run
consisted of ≈4 × 107 particles, with ≈200 realizations carried to sufficiently reduce the numerical
noise. Each simulation lasted from several hours in the free-molecular limit up to a week in
the continuum limit using a ten-core Intel i7-6950 machine. In line with the linearized problem
formulation, a value of ε = 0.05 was taken, for which nonlinear effects were found negligible.

Having described the above DSMC algorithm, it is noted that previous studies have developed
particular low-variance DSMC schemes that may be better suited for analyzing the present lin-
earized [32] and time-periodic [33] setup. Yet, for the purpose of validating our analytical-limit
results and illustrating the system behavior at intermediate-flow conditions, we find the current
scheme satisfactory. Additionally, the present computation has the advantage of not assuming (and
thus not being limited to) small signal amplitudes or time periodic behavior of the solution. In
this sense, it provides a more general description that examines the validity of these assumptions,
namely, the significance of system nonlinearity at a given signal amplitude, and the system conver-
gence to harmonic solution.

VI. RESULTS

Focusing on the time-harmonic wall oscillations as specified in Eq. (1), we present our results
for specific choices of the x distribution of the wall velocity amplitude,

v(δ)
w (x) = δ(x) and v(G)

w (x) = exp[−αx2], (35)

corresponding to dirac-delta and Gaussian excitations, respectively. While the dirac-delta response
of the system is amenable to a closed-form solution in the free-molecular and continuum limits, its
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DSMC realization appears ambiguous. We therefore consider also the gas response to a Gaussian
wall perturbation (where α is a fixed parameter), for the purpose of numerical validation and
illustration of the system behavior at intermediate Kn ∼ O(1) numbers. The delta-function and
Gaussian excitation gas responses are discussed in Secs. VI A and VI B, respectively.

A. Delta-function excitation

Starting with the free-molecular system response, we substitute v(δ)
w (x) = δ(x) into the nondi-

mensional ε-scaled counterpart of Eq. (1) and then into Eqs. (9) and (10). Carrying out the ξx

quadratures explicitly, we find

ρ
(δ)
FM(t, x, y) = 1

πy

∫ ∞

0
ξy(

√
π + 2ξy) exp

[
i

(
t − y

ξy

)
−

(
1 + x2

y2

)
ξ 2

y

]
dξy,

u(δ)
FM(t, x, y) = x

πy2

∫ ∞

0
ξ 2

y (
√

π + 2ξy) exp

[
i

(
t − y

ξy

)
−

(
1 + x2

y2

)
ξ 2

y

]
dξy,

v
(δ)
FM(t, x, y) = 1

πy

∫ ∞

0
ξ 2

y (
√

π + 2ξy) exp

[
i

(
t − y

ξy

)
−

(
1 + x2

y2

)
ξ 2

y

]
dξy,

p(δ)
FM(t, x, y) = 2

3πy

∫ ∞

0
ξ 3

y

(
x2

y2
+ 1 + 1

2ξ 2
y

)
(
√

π + 2ξy) exp

[
i

(
t − y

ξy

)
−

(
1 + x2

y2

)
ξ 2

y

]
dξy,

(36)

where the real part should be taken to obtain the physical-space solution for the density, x-velocity,
y-velocity, and pressure perturbation fields, respectively. The “FM” subscript denotes the free-
molecular limit of the solution. Inspecting the above expressions, we find that the density, y velocity,
and acoustic pressure are even functions of x, while the x velocity is odd, indicating that the
disturbance propagates symmetrically about x = 0. Additionally, all even perturbations obtain their
maximum absolute value at x = 0 (at given t and y), as indicated by the exponential x dependence
of their respective integrands. Along the wall and excluding the source location (i.e., for y = 0
and x �= 0) all fields vanish due to their exp[−x2/y2] factor, in agreement with the expressions in
Eq. (11) for Vw(t, x) = δ(x) cos(t ). Specifically, no pressure disturbance is radiated along the wall
(perpendicular to the axis of source oscillations) in the free-molecular limit.

Traversing to the Kn → 0 ideal-flow limit, we substitute the Fourier-transformed v̄(δ)
w (k) = 1 into

Eqs. (28) and (29) and then into Eq. (25), to obtain

ρ
(δ)
Eu (t, x, y) = − 3

5π

∫ ∞

−∞

1

λ
exp [i(t + kx + λy)]dk,

u(δ)
Eu (t, x, y) = 1

2π

∫ ∞

−∞

k

λ
exp [i(t + kx + λy)]dk,

v
(δ)
Eu (t, x, y) = 1

2π

∫ ∞

−∞
exp [i(t + kx + λy)]dk,

p(δ)
Eu (t, x, y) = − 1

π

∫ ∞

−∞

1

λ
exp [i(t + kx + λy)]dk. (37)

As in Eq. (36), the real part in each field should be taken. The “Eu” subscript denotes the Euler-
flow limit of the solution. The following discussion on the differences between the free-molecular
and continuum-limit results relies on numerical and asymptotic evaluations of the quadratures in
Eqs. (36) and (37).

Figure 2 presents colormap snapshots at quarter period (t = π/2) of the ε-scaled acoustic
pressure and x-velocity component in response to a time-harmonic delta-function excitation. The
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FIG. 2. Colormaps of the ε-scaled instantaneous (a), (b) acoustic pressure and (c), (d) x-velocity component
at quarter period (t = π/2) in response to a delta function excitation in the (a), (c) free-molecular and (b), (d)
ideal-flow limits.

figure compares between the free-molecular [Figs. 2(a) and 2(c)] and ideal-flow [Figs. 2(b) and
2(d)] system responses. Remarkably, distinct differences are observed between the two limits, in
both directivity and decay rate of the acoustic signal. In the continuum limit, the signal propagates
isotropically from the source in a monopole-type pattern with slowly decaying oscillations that
remain significant within the presented (−15 � x � 15, 0 � y � 15) zone. At free-molecular con-
ditions, a nonisotropic propagation pattern is viewed, achieving its maximum along the y direction
(the axis of wall oscillations) and vanishing in the x direction along the wall. The free-molecular
signal is rapidly diminishing, penetrating to only y � 5 acoustic wavelengths in the y direction
(and to smaller distances in other directions) into the gas. The even and odd characteristics of the
pressure and x-velocity fields, respectively, expected from problem symmetry and the expressions
in Eqs. (36) and (37), are observed.

To gain further insight into the above differences, Fig. 3 compares between the directivity
fields of the acoustic signals in the collisionless and ideal-flow limits. Focusing on the far-field
acoustic pressure, the figure shows the variation of the scaled pressure amplitude, |p|/|pmax|, with
the azimuthal direction θ at a fixed distance r � 1 from the origin. Here, |pmax| marks the maximum
value of the pressure amplitude at the chosen r distance, so that |p|/|pmax| � 1. The direction θ = 0
coincides with the positive y axis, whereas θ = π/2 and −π/2 mark the positive and negative x
directions, respectively. Our calculations indicate that the results in Fig. 3 are independent of the
specific choice of r for r � 1, and that |pmax| invariably occurs at θ = 0.

Inspecting the results in Fig. 3, the differences between the continuum and free-molecular limits
are evident. Indeed, at Kn → 0 the signal is emitted isotropically in all directions, as seen by the
semicircle form of the solid black line, satisfying |p|/|pmax| = 1 for all −π/2 � θ � π/2. The
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FIG. 3. Directivity map of the far-field scaled acoustic pressure amplitude, |p|/|pmax|, in response to a delta
function excitation at free-molecular (blue line) and ideal-flow (black curve) conditions. The thin dashed curve
presents the directivity field of a dipole at continuum conditions, |p|/|pmax| = | cos θ |. The half-circle black
curve indicates monopolar radiation at Kn → 0, whereas the blue line depicts a “nearly-dipole” source pattern
at Kn → ∞.

Kn → ∞ curve, however, shows a nonisotropic propagation pattern, with a maximum achieved
along the θ = 0 axis, and a vanishing signal in the ±x directions. Equivalently supported by the
expression for p(δ)

FM in Eq. (36), it is established that gas rarefaction qualitatively affects sound
directivity in the current setup, turning it from a monopole-type to a “nearly dipole.” Yet, an “exact”
dipole pattern is not obtained here, as shown by comparison between the solid blue curve and the
dashed black line in Fig. 3 (the latter marking the directivity |p|/|pmax| = | cos θ | of a dipole source
at continuum conditions). Physically, such a pattern should not be anticipated here, and is added
only for reference, as the model governing sound propagation at highly rarefied conditions is much
different from the continuum limit. At the kinetic level, the tangential velocity in the free-molecular
limit originates from the gradient in the molecular flux along the boundary, which is dominated by
the imposed normal wall velocity. Specifically, as indicated by Eq. (11), the tangential gas velocity
vanishes at the wall surface, contributing to the directivity pattern obtained. In the continuum
limit, in contrast, normal momentum is inevitably transformed into tangential momentum through
the mechanism of molecular collisions at all distances from the surface, leading to the calculated
monopolar signal field.

Having discussed the acoustic field directivity, it is of additional interest to evaluate the acoustic
decay rate at large distances from the source and rationalize the differences between the large- and
small-Kn limits. Kinetically, in the free-molecular regime, the wall-reflected molecules are carrying
information from the boundary with no intermolecular collisions taking place. Hence, molecules at
a given location and time superpose the diverse wall states along a period at different retarded times.
The disparity in these states is the cause for the strong signal decay observed in the Kn → ∞ limit.
In the continuum limit, however, the molecules are traveling “ballistically” an average distance of
one mean free path, which is much shorter than the acoustic wavelength. Their velocities are then
much more “in-phase,” leading to a lower decay rate of the signal.

To obtain a quantitative estimate of the signal decay rate, we consider the y � 1 limit of the
free-molecular and ideal-flow acoustic fields specified in Eqs. (36) and (37), respectively. Starting
with the far-field free-molecular response, we examine integrals of the form

In(y) =
∫ ∞

0
(
√

π + 2ξy)ξ n
y exp

[
−i

y

ξy
− ξ 2

y

]
dξy with n = 1, 2, . . . , (38)

where the exp[−x2/y2] Gaussian x dependence appearing in Eq. (36) has been omitted for x ∼ O(1).
This approximation holds for x = 0, where all even fields attain their aforementioned maximum
value, and should also be valid for x � O(1) � y. Following Abramowitz [34], the far-field leading-
order expressions for the hydrodynamic perturbations are obtained in Appendix A 1. Specifically,
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FIG. 4. Comparison between the y variations of the integral-based (solid lines) and asymptotic (dashed
curves) evaluations of the acoustic far field at x = 0 in the (a) free-molecular and (b) ideal-flow limits in
response to time-harmonic delta-function excitation. The black and blue curves depict the solutions at period
and quarter period times, respectively.

the leading-order far-field acoustic pressure is estimated as

p(δ)
FM(t, x ∼ O(1), y � 1) ≈ −1 + i

√
3

21/3
√

27π
y1/3 exp

[
it − 3(1 + i

√
3)

25/3
y2/3

]
, (39)

indicating that the far free-molecular pressure decay rate is ∼ O(y1/3 exp[−3y2/3/25/3]). In line with
the analysis in Sec. III, it is noted that this estimate is limited to distances y far from the source that
are yet small compared with the gas kinetic mean free path (y � Kn in the present nondimensional
formulation).

Turning to continuum-limit conditions, we examine Eq. (37) and seek for a far-field approxima-
tion of

I (x, y) =
∫ ∞

−∞
F (k) exp [i(kx + λy)]dk, (40)

where the harmonic exp[it] time dependence has been omitted for convenience. Substituting λ(k) =√
(6 − 5k2)/5 into Eq. (40) [see Eq. (27)] and making a change of variables s = k

√
5/6, the integral

is recast in the form

I (x, y) =
∫ ∞

−∞
F (s) exp

[√
6

5
i(xs + y

√
1 − s2)

]
ds. (41)

Applying the method of stationary phase, the y � 1 limit of I (x, y) at x ∼ O(1) is evaluated in
Appendix A 2. Specifically, the far acoustic pressure is given by

p(δ)
Eu (t, x ∼ O(1), y � 1) ≈ −

√
2
√

5

πy
√

6
exp

[
i

(
t +

√
6

5
y − π

4

)]
, (42)

indicating that it is oscillatory decaying at a rate ∼O(y−1/2) and a scaled wave number of
√

6/5.
The latter originates from the ratio between the mean thermal speed (presently used as the problem
velocity scale, U ∗

th = √
2R∗T ∗

0 ) and the mean speed of sound at continuum conditions (= √
γR∗T ∗

0 ).
Comparing between Eq. (42) and the free-molecular decay rate in Eq. (39), the vanishing of the

latter at significantly smaller distances from the source, viewed in Fig. 2, is quantitated. The validity
of the far-field approximations for the free-molecular and continuum limit pressures is illustrated in
Fig. 4, comparing between the y � 1 estimates and their integral-form counterparts in Eqs. (36) and
(37). The stronger decay rate of the free-molecular pressure perturbation is noted again, vanishing
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FIG. 5. Comparison between the collisionless-flow description (solid lines) and DSMC results at Kn =
5 (crosses), Kn = 0.5 (blue circles), and Kn = 0.1 (red triangles) for the acoustic pressure in response to
Gaussian excitation with α = 10 along x = 0 at (a) period (t = 2π ) and (b) quarter period (t = π/2) times.

at only a few acoustic wavelengths from the source. In Fig. 4(a), the asymptotic result for the free-
molecular field contains the leading-order and first two correction terms (see Appendix A 1), and is
in an excellent agreement with the integral-based result for y � 1. In Fig. 4(b), slight deviations are
observed between the solid and dashed curves, caused by higher-order corrections in the asymptotic
calculation that were not evaluated here.

Considering the fundamentally disparate mathematical models governing the free-molecular
(collisionless Boltzmann equation) and continuum (linear wave equation) limits, the qualitatively
different results observed in Figs. 2 and 3 may have been anticipated. Yet, these differences could
not be revealed in previous one-dimensional investigations of the problem, where unidirectional
acoustic transmission was imposed. In particular, the two-dimensional study allows for the different
characteristics of sound directivity to become effective, as demonstrated by Fig. 3 and its interpre-
tation.

B. Gaussian excitation

As the gas response to a delta-function excitation was not modeled using DSMC calculations,
the system response to Gaussian-distributed wall actuation is next considered. This is used to
examine our limit-case solutions and illustrate the gas behavior at intermediate Knudsen numbers.
We assume the wall velocity profile v(G)

w (x) = exp[−αx2] specified in Eq. (35), and take α = 10 to
focus on a source concentrated at |x| � 1. To calculate the free-molecular gas response, v(G)

w (x) is
substituted into the nondimensional ε-scaled counterpart of Eq. (1) and then into Eqs. (9) and (10).
Carrying out the ξx quadratures, we obtain the integral expressions specified in Appendix B for
the acoustic perturbations. In the continuum limit, we substitute the Fourier-transformed v̄(G)

w (k) =√
π/α exp[−k2/(4α)] into Eqs. (28) and (29) and then into Eq. (25) to formulate the integral

expressions for the acoustic perturbations at ideal-flow conditions. The results in the slip-flow (NSF)
regime follow the procedure outlined in Sec. IV B with the same form for v̄(G)

w (k). The integrals, in
both free-molecular and continuum limits, are evaluated numerically.

To examine the validity of the free-molecular solution, Fig. 5 compares between the acoustic
pressure field at collisionless flow conditions, p(G)

FM(t, x, y) [see Eq. (B1)], and DSMC results at
different Knudsen numbers. The comparison is made at both period [Fig. 5(a)] and quarter period
[Fig. 5(b)] times, where the pressure y variation is presented at x = 0. The agreement between
the Kn → ∞ (solid lines) and Kn = 5 (crosses) results is good, in support of the validity of the
former description at large enough Knudsen numbers. Yet, the DSMC signal is found noisier at
quarter period time, where the wall velocity instantaneously vanishes and the pressure amplitude is
relatively small. At Kn = 0.5, DSMC predictions (denoted by blue circles) show slight systematic
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FIG. 6. Effect of the Knudsen number on the acoustic pressure in response to Gaussian excitation with
α = 10: time snapshots at quarter period (t = π/2) with (a) Kn → ∞, (b) Kn = 5, (c) Kn = 0.5, (d) Kn = 0.1,
(e) Kn = 0.01, and (f) Kn → 0. The results in Figs. 6(a) and 6(f) describe the analytical free-molecular and
ideal-flow solutions, respectively, while Figs. 6(b)–6(e) present numerical DSMC computations.

deviations from the collisionless result. These deviations become more significant at Kn = 0.1, as
depicted by the red triangles data. Indeed, the free-molecular description is expected to break down
at Kn � 1, where the effect of molecular collisions turns significant, and the transition from the
nearly dipole to the monopole scattering pattern discussed in Sec. VI A should become visible.

Figure 6 illustrates the effect of gas rarefaction on the acoustic pressure field in response to
Gaussian wall excitation. Similarly to Fig. 2, pressure colormaps are presented in the collisionless
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FIG. 7. Comparison between the DSMC (a) and slip-flow NSF (b) predicted pressure fields in response to
Gaussian excitation with α = 10 and Kn = 0.01. The results are presented at quarter period, t = π/2.

[Kn → ∞, Fig. 6(a)] and ideal-flow [Kn → 0, Fig. 6(f)] limits at quarter period time. Additionally,
DSMC-calculated fields are shown in Figs. 6(b)–6(e) at the intermediate Knudsen numbers Kn =
5, 0.5, 0.1, and 0.01. The free-molecular and continuum limit results appear generally similar to
their counterparts in Figs. 2(a) and 2(b), respectively, as both delta-function and Gaussian sources
are confined to the vicinity of the origin and propagate symmetrically about the y axis of wall
motion.

Remarkably, the results in Fig. 6 demonstrate the transition between the nearly dipole [Kn → ∞,
Fig. 6(a)] and monopole [Kn → 0, Fig. 6(f)] acoustic patterns with decreasing rarefaction rate.
Thus, at Kn = 0.5 [Fig. 6(c)], relatively weak “wavy” pressure oscillations are observed near the
origin. With decreasing Kn, the amplitude of these oscillations increases, as shown by the results
in Figs. 6(d) and 6(e). At Kn = 0.01 (and, to some extent, also at Kn = 0.1), the decay rate of
pressure oscillations becomes small enough so that the unwarranted effect of wave reflection at the
virtual boundaries (placed at x = ±15 and y = 15) is non-negligible. As explained in Sec. V, while
this could be overcome by considering a larger domain size for the simulation, it would make the
computation at small Knudsen numbers prohibitively time consuming, and was therefore not carried
out here. The expected convergence of the Kn � 1 result to its ideal-flow limit in Fig. 6(f) looks
nevertheless apparent.

To better quantitate the effect of the virtual boundaries on DSMC results at small Kn, Fig. 7
compares between the DSMC-calculated pressure in Fig. 6(e) [repeated here as Fig. 7(a) for easy
reference] and its counterpart NSF-calculated field obtained in Sec. IV B. While the two fields
appear similar in the vicinity of source, the effect of the virtual boundaries, placed in the DSMC
computation at x = ±15 and y = 15, and missing in the NSF half-space calculation, is clearly
visible through a “cutoff” vanishing of the acoustic field in Fig. 7(a) near the side and top surfaces.
Recalling the characteristic inverse-square-root decay of the signal at continuum-limit conditions
[see Eq. (42)], it is expected that the acoustic pressure fluctuation is yet significant at O(101)
distances from the source, turning its accompanying unwarranted effect of reflection by the virtual
walls visible in the DSMC-calculated field.

VII. CONCLUSION

We investigated the effect of gas rarefaction on the propagation of vibroacoustic sound in
a half-space setup of a gas confined by a planar oscillating wall. Focusing on small-amplitude
harmonic excitations imposed to only part of the surface, the problem was analyzed in the
entire range of gas rarefaction rates, governed by the ratio between the gas mean free path
and wavelength of a prescribed wall signal. Analytical solutions were derived in the free-
molecular and continuum limits, consisting of the gas response to delta-function and Gaussian wall
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actuations. The analysis was supplemented, in the latter case, by direct simulation Monte Carlo
calculations in the intermediate range of gas rarefaction rates. Remarkably, distinct differences
were observed between sound propagation characteristics in the two limits. At continuum-limit
conditions, the acoustic signal propagates isotropically in a monopole-type pattern, and decays
inversely to the square root distance from the source. In contrast, the signal in the collisionless
flow regime is exponentially decaying away from the source and follows a nearly dipole-type
directivity field, with the acoustic pressure vanishing in the normal direction to the axis of
source motion. The differences in results, stemming from the fundamentally distinct continuum
and ballistic flow models, were discussed and rationalized in terms of the far-field limit-case
descriptions.

Having considered the two-dimensional vibroacoustic configuration, several extensions may be
carried out. To start with, the two-dimensional thermoacoustic problem of the pressure fluctuation
generated by a locally thermally perturbed boundary may be readily studied. Here, boundary exci-
tations may be imposed through either prescribed wall temperature variations or normal heat-flux
nonuniformities. The combination of thermally and vibroacoustic-induced disturbances may then
be considered to examine the feasibility of a “silent” vibrating wall, as was done in previous
one-dimensional investigations [20–22]. Further extensions may include examination of confined
setups, such as wall-bounded channels, where the effect of gas rarefaction on sound radiation by a
point wall source can be studied. These constitute topics for future investigations.
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APPENDIX A: FAR-FIELD APPROXIMATIONS FOR THE SYSTEM RESPONSE
TO A DELTA-FUNCTION EXCITATION

1. Free-molecular limit

Abramowitz [34] applied the method of steepest descent to derive the asymptotic estimate

Jn(y) =
∫ ∞

0
sn exp[−s2 − z/s]ds = 3−n/2ζ n/2

√
π

3

[
1 + a(1)

n

ζ
+ a(2)

n

ζ 2
+ O(ζ−3)

]
, n = 0, 1, . . . ,

(A1)

where z � 1, ζ = 3(z/2)2/3, a(1)
n = (3n2 + 3n − 1)/12, and a(2)

n = 9n4 + 6n3 − 51n2 − 24n +
25)/288. Setting z = iy with y � 1, the quadratures In in Eq. (38) may be expressed as

In(y) = √
πJn(y) + 2Jn+1(y).

Subsequently, the far-field leading-order expressions for the free-molecular hydrodynamic pertur-
bations in Eq. (36) are given by the real parts of

ρ
(δ)
FM(t, x ∼ O(1), y � 1) = 2ζ 2/3

y
√

3π
exp[it − 3ζ 2/3][1 + O(y−1/3)],

u(δ)
FM(t, x ∼ O(1), y � 1) = 2xζ

y2
√

3π
exp[it − 3ζ 2/3][1 + O(y−1/3)],

v
(δ)
FM(t, x ∼ O(1), y � 1) = 2ζ

y
√

3π
exp[it − 3ζ 2/3][1 + O(y−1/3)],

p(δ)
FM(t, x ∼ O(1), y � 1) = 4ζ 4/3

3y
√

3π
exp[it − 3ζ 2/3][1 + O(y−1/3)]. (A2)
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The ζ−1 and ζ−2 corrections appearing in Eq. (A1) and omitted in Eq. (A2) for brevity become
nonsmall with decreasing distance y from the wall. Substituting ζ = 3(iy/2)2/3 in the expression
for p(δ)

FM, we obtain the leading-order approximation stated in Eq. (39).

2. Continuum limit

Inspecting Eq. (41) and rescaling

x̃ = x
√

6/5 and ỹ = y
√

6/5,

we seek to estimate

I (x̃, ỹ) =
∫ ∞

−∞
F (s) exp[i(sx̃ +

√
1 − s2 ỹ)]ds (A3)

for ỹ � 1 and x̃ ∼ O(1). Within the (−∞,−1] and [1,∞) intervals the integrand is exponentially
small and their contributions are accordingly negligible. Yet, within [−1, 1] the exponential power
is purely imaginary and we therefore focus on evaluating

I (x̃, ỹ) ≈
∫ 1

−1
F (s) exp {i[sx̃ + φ(s)ỹ]}ds, (A4)

where

φ(s) =
√

1 − s2. (A5)

The integrand in Eq. (A4) has a stationary-phase point at s0 = 0, where φ(s0) = 1 and φ′′(s0) = −1.
Expanding about s = s0, we find [35]

I (x̃ ∼ O(1), ỹ � 1) ≈
√

2π

ỹ
F (0) exp [i(ỹ − π/4)]. (A6)

Using Eq. (A6), the far-field approximations for the y-velocity and pressure perturbations in Eq. (37)
are

v
(δ)
Eu ≈

√
3

5π ỹ
exp

[
i
(

t + ỹ − π

4

)]
and p(δ)

Eu ≈ −
√

2

π ỹ
exp

[
i
(

t + ỹ − π

4

)]
, (A7)

valid for ỹ � 1 and x̃ ∼ O(1).

APPENDIX B: FREE-MOLECULAR SYSTEM RESPONSE TO A GAUSSIAN EXCITATION

We substitute v(G)
w (x) = exp[−αx2] into the ε-scaled nondimensional form of Eq. (1) and then

into Eqs. (9) and (10). Carrying out the ξx quadratures, we obtain

ρ
(G)
FM (t, x, y) = 1√

π
exp[it − αx2]

∫ ∞

0

√
π + 2ξy√
ξ 2

y + αy2
ξy exp

[
−i

y

ξy
− ξ 2

y + α2x2y2

ξ 2
y + αy2

]
dξy,

u(G)
FM(t, x, y) = αxy√

π
exp[it − αx2]

∫ ∞

0

√
π + 2ξy(

ξ 2
y + αy2

)3/2 ξ 2
y exp

[
−i

y

ξy
− ξ 2

y + α2x2y2

ξ 2
y + αy2

]
dξy,

v
(G)
FM (t, x, y) = 1√

π
exp[it − αx2]

∫ ∞

0

√
π + 2ξy√
ξ 2

y + αy2
ξ 2

y exp

[
−i

y

ξy
− ξ 2

y + α2x2y2

ξ 2
y + αy2

]
dξy,
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p(G)
FM(t, x, y) = 1

3
√

π
exp[it − αx2]

∫ ∞

0

[
ξ 2

y

(
ξ 2

y + αy2 + 2α2x2y2
)(

ξ 2
y + αy2

)2 + 2ξ 2
y + 1

]

×
√

π + 2ξy√
ξ 2

y + αy2
ξy exp

[
−i

y

ξy
− ξ 2

y + α2x2y2

ξ 2
y + αy2

]
dξy, (B1)

for the free-molecular density, x-velocity, y-velocity, and acoustic pressure perturbations, respec-
tively, in response to a time-harmonic Gaussian wall source. The integrals are evaluated numerically
and the real part in each expression is taken to obtain the physical solution.
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