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ABSTRACT
We study the effect of a rigid boundary on the propagation of thermodynamic disturbances in a gas under non-continuum conditions. We
consider a semi-infinite setup confined by an infinite planar wall and introduce initial gas disturbances in the form of density and temperature
inhomogeneities. The problem is formulated for arbitrary small-amplitude perturbations and analyzed in the entire range of gas rarefaction
rates, governed by the Knudsen (Kn) number. Our results describe the system relaxation to equilibrium, with specific emphasis on the effect of
the solid surface. Analytical solutions are obtained in the free-molecular and near-continuum (based on the Navier–Stokes–Fourier and reg-
ularized 13 moment equations) regimes and compared with direct simulation Monte Carlo results. The impact of the solid wall is highlighted
by comparing between diffuse (adiabatic or isothermal) and specular boundary reflections. Focusing on a case of an initial temperature dis-
turbance, the results indicate that the system relaxation time shortens with increasing Kn. The isothermal boundary consistently reverberates
the weakest acoustic disturbance, as the energy carried by the impinging wave is partially absorbed by the surface. The specular and adiabatic
wall systems exhibit identical responses in the continuum limit while departing with increasing Kn due to higher-order moment effects. The
unsteady normal force exerted by the gas on the surface is quantified and analyzed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020947., s

I. INTRODUCTION

The characterization of acoustic reflection and absorption at a
solid surface is a canonical problem in continuum-flow acoustics,
which has been studied extensively over the years.1 The fundamen-
tal problem of interest is the interaction of incident small-amplitude
disturbances, or a local point source, with a rigid boundary. Tra-
ditional works have considered the effects of the surface geometri-
cal and impedance properties on its acoustic transmission. Recent
progress has been motivated by the primary need for designing
“acoustically invisible” structures, for which, at given flow condi-
tions, the surface location cannot be identified through its acoustic
scattering.2

In cases where sound propagation in gases is considered at
length- or time-scale that are of the order of the molecular mean free
path or time, respectively, the continuum description breaks down

and the system should be treated in the framework of gas kinetic the-
ory. Prompted by small-scale and low-pressure evolving technolo-
gies, acoustic wave propagation in rarefied gases has been studied
in a considerable number of works, beginning in the middle of the
twentieth century and continuing to current and ongoing research
(e.g., Refs. 3–16). Primarily, these works have focused on a setup
of a planar wall undergoing small-amplitude mechanical4–7,10,11,13–15

or thermal9,12,14,16 excitations, where the actuated surface was iden-
tified as the system source of sound. Other studies have consid-
ered the propagation of acoustic waves in narrow (micro-/nano-
scale) channels.8,17–20 Driven by time-harmonic particle influx, the
sources modeled in these investigations effectively mimic vibroa-
coustic sound generation, similar to the above-mentioned oscillating
wall systems.

Motivated by a different topic of interest, several researchers
have analyzed the propagation of flow-induced disturbances in
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rarefied gases. Specifically, setups with gas-fluidic thermal sources,
having a fundamental relevance in the fields of microscale heat
transfer21,22 and ultrafast heating processes,23 have been considered.
Logan24 and, later on, Berkovsky and Bashtovoi25 focused on the
propagation of thermal disturbances in a non-confined gas based
on Grad’s moment equations and other model approximations of
the Boltzmann equation. Follow-up investigations have addressed
the expansion of heat sources in the vicinity of boundaries, yet
were limited to the continuum limit of exceedingly small Knud-
sen numbers.26,27 The gas response to local compression has been
studied by Danforth and Long,28 who allowed large initial perturba-
tions, but assumed a non-confined setup and focused on numerical
simulations at near-continuum states.

Acknowledging the above, the objective of the present work
is to investigate the effect of a rigid boundary on the propaga-
tion of gas-induced acoustic disturbances under non-continuum
conditions. To this end, we consider a semi-infinite gas expanse
confined by an infinite planar wall and introduce initial ther-
modynamic disturbances in the fluid. The small-amplitude dis-
turbances are prescribed as either initial density or temperature
inhomogeneities, which may physically occur due to gas local com-
pression or heating, respectively. The problem is formulated for
arbitrary small-amplitude initial perturbations and analyzed in the
entire range of gas rarefaction levels. Following the gas evolu-
tion in time and space, our results describe the system relaxation
to equilibrium, with specific emphasis on the effect of the solid
surface. Analytical solutions are obtained in the free-molecular
and near-continuum [based on the Navier–Stokes–Fourier (NSF)
and regularized moment equations] regimes and compared with
direct simulation Monte Carlo (DSMC) predictions. The impact
of the solid wall is highlighted by comparing between the non-
confined and confined gas responses with different surface con-
ditions, including fully diffuse (adiabatic or isothermal) and fully
specular wall reflections. Ideally, obtaining an “acoustically invis-
ible” surface should be equivalent to recapturing the reference
unbounded gas response in the presence of a cloaked wall. While
this is not addressed here, the present analysis may be consid-
ered as a first step in this direction through preliminary analysis
of the impact of different wall conditions on the boundary acoustic
reverberation.

In Sec. II, the problem is stated. The free-molecular limit is con-
sidered in Sec. III, and the near-continuum regime is analyzed in
Sec. IV. Description of the direct simulation Monte Carlo scheme,
used to validate our findings, is given in Sec. V. Our results are dis-
cussed in Sec. VI, followed by concluding comments in Sec. VII.
Technical details regarding the free-molecular solution are relegated
to Appendixes A and B.

II. STATEMENT OF THE PROBLEM
Consider a semi-infinite expanse of a monatomic gas, set at

x∗ > 0 and confined by an infinite solid boundary at x∗ = 0 (here-
after, asterisks denote dimensional quantities). At time t∗ = 0, the
gas is maintained at rest, with given distributions of its local density
and temperature fields,

ρ∗(x∗, 0) = ρ∗0 + ερ∗in(x
∗
) and T∗(x∗, 0) = T∗0 + εT∗in(x

∗
), (1)

respectively. In Eq. (1), it is assumed that ε ≪ 1, where the gas is
only slightly perturbed about its equilibrium state of uniform den-
sity ρ∗0 and temperature T∗0 , and the system linearized response is
considered. Such scenarios may occur due to any small thermody-
namic non-uniformities imposed by external disturbances of local
compression or heating.

The work analyzes the effect of the solid boundary on the
propagation of gas initial disturbances, specified above, following
through the system final equilibrium state. To this end, we compare
between perfectly reflecting (specular) and fully diffuse (adiabatic
or isothermal) wall surfaces. These two extreme cases may be con-
sidered as limit realizations of completely reflecting and accommo-
dating boundaries, respectively. Diffuse scattering takes place over
“rough” surfaces, where the colliding particles attain thermal equi-
librium with the reflecting wall and evaporate accordingly. Specular
interactions occur when the incident molecules collide with a solid
surface and rebound elastically as if hitting a perfectly smooth wall.
While none of these idealized scenarios exists in reality, it is com-
monly accepted that wall reflections from “engineering” surfaces
may be described, in a variety of applications, as a combination of
diffuse and specular interactions, as formulated in the commonly
applied Maxwell-type condition.29 In the present context, the com-
bined diffuse-specular case merely superposes the above two limits
and is therefore not discussed in detail.

Considering the problem formulation in the adiabatic and
isothermal surface configurations, the wall heat-flux q∗wall and tem-
perature T∗wall are prescribed by

q∗wall = 0 or T∗wall = T∗0 , (2)

respectively. To realize the isothermal boundary condition, it is
assumed that the boundary is attached to a heat reservoir at a
constant temperature. Conversely, an adiabatic condition may be
enforced using a heat-insulating wall having vanishing heat con-
ductivity. In the other extreme of a perfectly reflecting wall, the
gas response may be conveniently formulated by superposing the
counterpart gas evolution in an unbounded domain (to be derived
hereafter) with its symmetrical image about the surface location.
In both diffuse and specular setups, a dimensionless description of
the problem is obtained by scaling the position by a length scale
L∗ characterizing the prescribed initial disturbance, the velocity by
the mean thermal speed of a gas molecule U∗th =

√
2R∗T∗0 (with

R∗ denoting the specific gas constant), and the time by the conse-
quent time scale L∗/U∗th. The density and temperature are scaled by
ρ∗0 and T∗0 , respectively, the pressure by ρ∗0 R∗T∗0 , and the heat flux
by ρ∗0 U∗3

th . The non-dimensional problem is governed by the scaled
initial disturbances ρin(x) and Tin(x), together with the Knudsen
number

Kn = l∗/L∗, (3)

marking the ratio between the mean free path of a gas molecule
and the system characteristic length scale. An explicit expression
for the gas molecular mean free path l∗, and subsequently to Kn,
is given after Eq. (21), where the kinetic law of molecular interaction
is specified.

The above-described diffuse- and specular-wall systems are
analyzed in Secs. III and IV, where the limit cases of collision-free
and near-continuum regimes are investigated. The reference case
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of gas relaxation in an unbounded domain is used to identify the
impact of the solid surface. Analytical limit-case solutions are com-
pared with DSMC predictions to test their validity and cover the
entire range of gas rarefaction rates. As demonstrated in Sec. VI, the
prevailing gas regime is governed by both the value of the Knud-
sen number and the time elapsed since the initial disturbance has
been applied. Specifically, at times much shorter or longer than the
mean free time, t∗coll ≈ l∗/U∗th, the expected flow regime should turn
free-molecular (t/Kn ≪ 1) or near-continuum (t/Kn ≫ 1), respec-
tively. Transition between the two limits is expected at intermediate
t/Kn ∼ O(1) times.

III. FREE-MOLECULAR LIMIT
In the framework of gas kinetic theory and the unsteady one-

dimensional configuration considered, the gas state is governed
by the probability density function f = f (x, t, ξ) of finding a gas
molecule with velocity about ξ = (ξx, ξy, ξz) at a position near x at
time t. At the linearized conditions assumed, we write

f (x, t, ξ) = F[1 + εϕ(x, t, ξ)], (4)

where F = π−3/2 exp[−ξ2] denotes the non-dimensional Maxwellian
equilibrium distribution and ϕ(x, t, ξ) marks the probability per-
turbation function.30 Assuming the Knudsen number to be large,
we consider the collisionless one-dimensional unsteady Boltzmann
equation for ϕ(x, t, ξ),

∂ϕ
∂t

+ ξx
∂ϕ
∂x
= 0. (5)

The equation is supplemented by the initial condition

ϕ(x, 0, ξ) = ϕin(x, ξ), (6)

which, in accordance with Eq. (1), takes the linearized form of
deviation from the equilibrium distribution,

ϕin(x, ξ) = ρin(x) + Tin(x)(ξ2
− 3/2). (7)

The probability perturbation function is additionally subject to a
far-field decay condition and a boundary condition imposed at the
solid wall. For the case of a fully diffuse (adiabatic or isothermal)
boundary, the latter takes the linearized half-range form

ϕ(0, t, ξ ⋅ x̂ > 0) = ρw(t) + Tw(t)(ξ2
− 3/2), (8)

where x̂ is a unit vector directed in the positive x-direction (normal
to the wall) and Tw(t) marks the time perturbation of the wall tem-
perature. For an isothermal wall, T(iso)

w (t) ≡ 0 and ρ(iso)
w (t) is treated

unknown. For an adiabatic wall, both T(ad)
w (t) and ρ(ad)

w (t) should
be determined. Considering a specular-wall setup, the probability
perturbation function satisfies the symmetry condition

ϕ(0, t, ξx > 0, ξy, ξz) = ϕ(0, t,−ξx, ξy, ξz). (9)

The diffuse (adiabatic or isothermal) and specular wall setups are
subsequently analyzed in Secs. III A and III B, respectively.

A. Diffuse wall
Considering a fully diffuse adiabatic wall, the solution for

Eq. (5) subject to the initial condition (6) and boundary condition
(8) is

ϕ(ad)
(x, t, ξ)=

⎧⎪⎪
⎨
⎪⎪⎩

ρin(x − ξxt) + Tin(x − ξxt)(ξ2
− 3/2), ξx ≤ x/t,

ρ(ad)
w (t − x/ξx) + T(ad)

w (t − x/ξx)(ξ2
− 3/2), ξx > x/t,

(10)

separating, at location x and time t, between particles that have
(ξx > x/t) and have not (ξx ≤ x/t) hit the wall since the initial t = 0
time. Here, the time-dependent wall functions ρ(ad)

w (t) and T(ad)
w (t)

should be determined. To this end, we apply Eq. (4) and impose the
linearized forms of the impermeability,

u(ad)
(0, t) =

1
π3/2 ∫

∞

−∞

ξxϕ(ad)
(0, t, ξ) exp[−ξ2

]dξ = 0, (11)

and zero-heat-flux,

q(ad)
(0, t) =

1
2π3/2 ∫

ξxξ2ϕ(ad)
(0, t, ξ) exp[−ξ2

]dξ = 0, (12)

conditions at the boundary. Substituting Eq. (10) into Eqs. (11) and
(12), carrying out the ξy, ξz integrations, and making the change in
variables s = −ξxt yield the closed-form expressions for ρ(ad)

w (t) and
T(ad)

w (t),

ρ(ad)
w (t) = −

1
2t2 ∫

∞

0
s[(

s2

t2 − 5)ρin(s) + (
s4

t4 −
11s2

2t2 +
7
2
)Tin(s)]

× exp[−
s2

t2 ]ds

and

T(ad)
w (t) =

1
t2 ∫

∞

0
s[(

s2

t2 − 1)ρin(s) + (
s4

t4 −
3s2

2t2 +
3
2
)Tin(s)]

× exp[−
s2

t2 ]ds, (13)

specifying their dependencies on the gas prescribed initial dis-
turbances. Having fixed the solution for ϕ(x, t, ξ), appropri-
ate quadratures over the velocity space yield expressions for
the O(ε) density ρ(ad)(x, t), normal velocity u(ad)(x, t), pressure
p(ad)(x, t), and temperature T(ad)(x, t) perturbations, as detailed in
Appendix A 1.

Traversing to the case of a fully diffuse isothermal wall, the
above formulation simplifies as T(iso)

w (t) ≡ 0. The solution for Eq. (5)
subject to the initial condition (6) and boundary condition (8) is then

ϕ(iso)
(x, t, ξ) = { ρin(x − ξxt) + Tin(x − ξxt)(ξ2

− 3/2), ξx ≤ x/t,
ρ(iso)

w (t − x/ξx), ξx > x/t.
(14)

Prescribing the impermeability condition and omitting the adiabatic
constraint at the surface, we obtain

ρ(iso)
w (t) =

2
t2 ∫

∞

0
s[ρin(s) + Tin(s)(

s2

t2 −
1
2
)] exp[−

s2

t2 ]ds. (15)

The expressions for the O(ε) hydrodynamic perturbations then fol-
low by replacing ρ(ad)

w (t) and T(ad)
w (t) in Eqs. (A1)–(A4) by ρ(iso)

w (t)
and T(iso)

w (t) ≡ 0, respectively.
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B. Specular wall
The specular wall setup may be analyzed by superposing the

gas response to initial disturbances in the absence of a boundary
[x ∈ (−∞,∞)] with its symmetrical image about the surface location
such that the boundary condition (9) is identically satisfied. Mak-
ing use of the linearized free-molecular solution in an unbounded
domain [see Eqs. (5) and (6)],

ϕ(no-wall)
(x, t, ξ) = ϕin(x − ξxt, ξ), (16)

the probability perturbation function in the case of a specular wall
configuration [x ∈ [0,∞)] is given by

ϕ(spec)
(x, t, ξx, ξy, ξz) = {

ϕin(x − ξxt, ξx, ξy, ξz), ξx ≤ x/t,
ϕin(−x + ξxt,−ξx, ξy, ξz), ξx > x/t.

(17)

Substituting Eq. (17) into Eq. (4), the expressions for the hydro-
dynamic fields follow by appropriate quadratures over the velocity
space, as documented in Appendix A 2.

Observing the differences between the diffuse and specular wall
descriptions [cf. Eqs. (10), (14), and (17)], it is expected that the
change in wall conditions affects the propagation of initial distur-
bances in the gas. The significance of these differences and their
comparison with the propagation of flow non-uniformities in an
infinite domain are discussed in Sec. VI.

IV. NEAR-CONTINUUM CONDITIONS
The problem at small Knudsen numbers or relatively long times

(i.e., t/Kn≫ 1) is next analyzed using a “slip-flow” continuum-limit
model in Sec. IV A, consisting of the continuum NSF balance equa-
tions and respective wall conditions. The regularized 13 moment
(R13) scheme is applied in Sec. IV B in an effort to capture the system
behavior at conditions that further depart from continuum. The NSF
and R13 problems for a fully diffuse wall are formulated in Secs. IV A
and IV B, respectively, and the case of a specular surface is analyzed
in Sec. IV C.

A. The continuum limit
To consider the problem under continuum-limit conditions,

we make use of the NSF equations supplemented by a set of ini-
tial and wall impermeability and thermal conditions. Adopting the
scaling introduced in Sec. II, the model consists of the unsteady
one-dimensional linearized equations of continuity,

∂ρ
∂t

+
∂u
∂x
= 0, (18)

x-momentum,

∂u
∂t
= −

1
2
(
∂ρ
∂x

+
∂T
∂x
) +

4
3

K̃n
∂2u
∂x2 , (19)

and energy,

∂T
∂t
= −

γK̃n
Pr

∂2T
∂x2 − (γ − 1)

∂u
∂x

, (20)

where the linearized form of the equation of state in an ideal gas, p
= ρ + T, has been applied. In Eqs. (19) and (20),

K̃n =
ν∗0

U∗thl∗
Kn (21)

is the viscosity-based Knudsen number, where ν∗0 denotes the gas
kinematic viscosity at the reference temperature T∗0 . Considering the
gas kinetic model of Maxwell molecules we set l∗ = ν∗0 /U

∗

th, where
ν∗0 is linearly proportional to the reference gas temperature T∗0 .29

Consequently,

K̃n = Kn = ν∗0 /(U
∗

thL∗).

Also appearing in Eq. (20) are the gas Prandtl number Pr and the
ratio of specific heats γ, which equal, for an ideal monatomic gas,
2/3 and 5/3, respectively. In line with the statement of the problem,
the equations are supplemented by the initial conditions [cf. Eq. (1)]

ρ(x, 0) = ρin(x), u(x, 0) = 0, and T(x, 0) = Tin(x), (22)

together with the impermeability,

u(0, t) = 0, (23)

and a thermal condition at the wall. For an adiabatic surface, this
condition is given by

∂T
∂x
∣
(0,t)
= 0, (24)

in accordance with the linearized form of the Fourier law of heat
conduction. For an isothermal wall, a first-order temperature jump
condition,

T(0, t) = −
√
πτqq(0, t) −

1
2
τσσ(0, t), (25)

is applied, where

q(0, t) = −
15
8

Kn
∂T
∂x
∣
(0,t)

and σ(0, t) = −
4
3

Kn
∂u
∂x
∣
(0,t)

are the NSF normal heat-flux and deviatoric stress (with the latter
scaled by ρ∗0 U∗2

th ) on the wall, respectively. The jump coefficients
τq and τσ generally depend on the type of molecular interaction
(with their values derived in Ref. 31 for hard-sphere and BGK mod-
els) yet were set here to unity to comply with the higher-order
jump conditions applied in Eq. (32) for Maxwell molecules.32 Far-
field (x → ∞) decay conditions are additionally imposed on all
perturbations.

B. Regularized moment equations
While the continuum-limit model is expected to hold at suf-

ficiently large values of t/Kn, it is desirable to apply a higher-
order scheme to capture the gas state at somewhat shorter times.
Toward this end, we make use of the R13 scheme,33,34 which has
been previously applied to analyze steady35 and unsteady (e.g., Refs.
13 and 36) flow problems. The scheme has been derived primar-
ily for a Maxwell-type model of molecular interaction, where the
three-dimensional formulation consists of balances for the gas scalar
density and temperature, the vectors of velocity and heat-flux, and
the stress tensor. Higher order moments are coupled to the sys-
tem through a Chapman–Enskog-type expansion of the probabil-
ity density function in the kinetic Boltzmann equation. Assuming,
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as above, a linearized unsteady one-dimensional setup, the govern-
ing equations consist of the continuity Eq. (18), together with the
hydrodynamic balances of x-momentum,

∂u
∂t
= −

1
2
(
∂ρ
∂x

+
∂T
∂x
) −

∂σ
∂x

, (26)

and energy,

∂T
∂t
= −

4
3
∂q
∂x
−

2
3
∂u
∂x

, (27)

equations. The normal stress σ(x, t) and heat-flux q(x, t) appearing
in Eqs. (26) and (27) satisfy the closure relations

∂σ
∂t
= −

8
15

∂q
∂x
−

2
3
∂u
∂x

+
6
5

Kn
∂2σ
∂x2 −

1
2Kn

σ (28)

and

∂q
∂t
= −

5
8
∂T
∂x
−

1
2
∂σ
∂x

+
18
5

Kn
∂2q
∂x2 −

1
3Kn

q, (29)

obtained with γ = 5/3 and Pr = 2/3. In accordance with the prob-
lem statement, the system of equations is subject to the set of initial
conditions

ρ(x, 0) = ρin(x), u(x, 0) = 0, T(x, 0) = Tin(x),
σ(x, 0) = 0, q(x, 0) = 0,

(30)

together with respective wall-surface and far-field decay condi-
tions. The former includes the impermeability condition (23) com-
bined with thermal and high-order moment balances at x = 0. The
conditions differ between an adiabatic wall,

q(0, t) = 0 and [
15
2
σ − 6Kn(

√
π
∂σ
∂x

+
4
7
∂q
∂x
)]
(0,t)
= 0, (31)

and an isothermal wall,

[T +
1
2
σ +
√
πq −

96
35

Kn
∂q
∂x
]
(0,t)
= 0

and

[T − 7σ + 6Kn(
√
π
∂σ
∂x

+
4

35
∂q
∂x
)]
(0,t)
= 0. (32)

In Eq. (32), the first of the two relations represents a temperature-
jump wall condition. This condition degenerates into Eq. (25) for
Kn≪ 1 [omitting O(Kn2) terms]. The second relation is a linearized
reduction of the high-order moment condition obtained by Gu and
Emerson32 and applied by Struchtrup13 in a one-dimensional setup.
As expected, a temperature jump condition is missing from the
adiabatic-wall balances in Eq. (31) and is replaced by a vanishing
heat-flux condition. The right-hand side balance is derived by elim-
inating the unknown wall temperature perturbation from Eqs. (30)
and (31) in the work of Gu and Emerson32 or, equivalently, from
Eq. (9) in Ref. 13.

C. Analysis
1. Diffuse wall

Different from the free-molecular regime considered in Sec. III,
the near-continuum problems for a fully diffuse wall formulated in

Secs. IV A and IV B are not amenable to a closed-form solution.
Hence, a finite difference scheme was applied. To evaluate the x-
derivatives at each time step, the problems were discretized in the
x-direction based on a central-difference second-order approxima-
tion. A far-field decay condition was imposed at a finite, yet suf-
ficiently far location such that the signal does not reach the outer
boundary within the simulated time period. Time integration was
followed using a Matlab ODE solver. While requiring some minimal
computation effort, these calculations were far less demanding than
their counterpart Monte Carlo simulations (see Sec. V), particularly
at increasingly small Knudsen numbers, where DSMC computations
become prohibitively expensive.

2. Specular wall
Similar to Sec. III B, the near-continuum gas response for a

perfectly specular wall may be obtained by superposing the gas evo-
lution in the absence of a boundary with its symmetrical image about
the surface location. In terms of the hydrodynamic problem for-
mulation, this is equivalent to imposing the vanishing of all odd
moments of the probability density function (including the normal
velocity, normal heat-flux, and higher-order non-even moments)
at the wall, whereas all even moments are symmetric about x = 0.
Notably, these conditions are identical to the adiabatic-wall condi-
tions in the continuum NSF description [cf. Eqs. (23) and (24)],
and it is therefore expected that the gas behavior in both sys-
tems is indistinguishable at t/Kn ≫ 1. Discrepancies between the
specular- and isothermal-wall responses are expected in all near-
continuum flow regimes and should additionally become observable
with decreasing t/Kn (either by decreasing t or increasing gas rar-
efaction) between specular- and adiabatic-wall setups. This is man-
ifested through the non-symmetrical form of the high-order wall
condition in Eq. (31), which, in a formulation of the counterpart
R13 specular-wall-containing problem, should be replaced by the
condition [∂σ/∂x](0,t ) = 0. The deviations between the specular and
diffuse-adiabatic systems response become larger with increasing
rarefaction due to the increasing effects of high-order moments and
maximize at free-molecular conditions, as demonstrated in Sec. VI
(see Figs. 2 and 7).

To derive the specular-wall system response, we start by ana-
lyzing the gas evolution in the non-confined setup and focus initially
on the continuum NSF limit. Referring to the scheme presented in
Sec. IV A, the problem consists of Eqs. (18)–(20) combined with the
initial conditions (22) and far-field decay conditions. In the present
infinite x-domain, it is convenient to apply the Fourier x-transform

G(λ, t) = ∫
∞

−∞

G(no-wall)
(x, t) exp[−iλx]dx, (33)

where G = {ρ, u, T} to the problem. This yields the system of
transformed ordinary equations

ρ′ + iλu = 0, u′ = −
iλ
2
(ρ + T) −

4Kn
3

λ2u,

and

T
′

= −
γKn
Pr

λ2T − iλ(γ − 1)u, (34)

where primes denote time differentiations and the Maxwell-
molecules substitution K̃n = Kn has been made. The system is
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accompanied by the transformed initial conditions

ρ(λ, 0) = ρin(λ), u(λ, 0) = 0, and T(λ, 0) = Tin(λ) (35)

in the (λ, t) plane. Substituting the above-stated γ = 5/3 and Pr = 2/3
values and eliminating u and ρ through

u =
3i
2λ
(T
′

+
5
2
λ2KnT)

and

ρ = −
1
λ2 [3T

′′

+
23
2
λ2KnT

′

+ λ2
(1 + 10λ2Kn2

)T], (36)

we obtain a single equation for T,

T
′′′

+
23
6

Knλ2T
′′

+
5
6
λ2
(1 + 4λ2Kn2

)T
′

+
5
4
λ4KnT = 0. (37)

The general solution for the transformed temperature perturbation
is then

T(t, λ) = A0(λ)er0(λ)t + A+(λ)er+(λ)t + A−(λ)er−(λ)t , (38)

where r0(λ) and r±(λ) are the roots of the characteristic polynomial
of Eq. (37). Evaluating these roots in the limit Kn≪ 1 and omitting
O(Kn2) terms, we obtain

r0(λ) ≈ −
3
2
λ2Kn and r±(λ) ≈ ±

√
5
6

iλ −
7
6
λ2Kn. (39)

The values of the coefficients A0(λ) and A±(λ) in the particular solu-
tion are fixed by substituting Eq. (38) together with Eq. (36) into
Eq. (35). Having determined T(λ, t), ρ(λ, t) and u(λ, t), the system
response in the physical (x, t) plane is evaluated by taking the inverse
transform

G(no-wall)
(x, t) =

1
2π ∫

∞

−∞

G(x, t) exp[iλx]dλ. (40)

A similar procedure, not detailed here for brevity, is followed
to calculate the counterpart specular-wall R13 gas description. Here,
based on the analysis in Sec. IV B, a fifth-order system of equations
is obtained. Since the roots of the characteristic polynomial cannot
be estimated analytically, numerical evaluation is carried out. The
solution is then given by

G(λ, t) =
5

∑
n=1

AGn(λ)e
rn(λ)t , (41)

where G = {ρ, u, T, σ, q}, rn(λ) mark the roots of the characteris-
tic polynomial, and AGn(λ) are determined via imposition of the
initial conditions [transformed form of Eq. (30)]. Numerical inves-
tigation of rn(λ) indicates that r1,2,3(λ) converge to their NSF r0
and r± counterparts at Kn ≪ 1 [see Eq. (39)]. The remaining
Fourier-transformed modes are governed by the roots

r4 ≈ −
1

2Kn
and r5 ≈ −

1
3Kn

, (42)

which are independent of λ. At Kn≪ 1, these modes should approx-
imate the initial Knudsen-layer behavior of the gas, inevitably miss-
ing in the NSF description. As in the NSF approximation, once
the transformed G(λ, t) fields are determined, the solution is trans-
formed back to the (x, t) plane using Eq. (40).

Having obtained the unbounded gas response, the procedure
for calculating the specular-wall system solution G(spec)(x, t) is car-
ried out by superposing G(no-wall)(x, t) with its symmetrical image
about x = 0. This ensures the vanishing of all odd hydrodynamic
moments at x = 0, as required by the specular boundary condition.
Notably, the above derivation tacitly assumes that the initial system
perturbation (1) is localized about x = 1 (or x∗ = L∗ in dimen-
sional notation) so that its superposition with its x < 0 image at time
t = 0 agrees with the physical initial conditions within x ≥ 0. This
restriction is satisfied in our specific choice for the initial system
state [see Eq. (47)], where we focus on the gas response to an ini-
tially space-confined (localized) excitation. For later reference, we
note that, while the NSF and R13 schemes expectedly yield identical
results at late times (t/Kn≫ 1), the latter should better approximate
the system behavior at earlier times. This will be illustrated in Sec. VI
(see Fig. 6).

V. NUMERICAL SCHEME: DSMC METHOD
The DSMC method, initially proposed by Bird,37 is a stochas-

tic particle method commonly applied to the analysis of gas flows at
non-continuum conditions. In the present work, we make use of the
DSMC scheme to validate the analytical ballistic- and continuum-
limit solutions presented in Secs. III and IV. We accordingly adopt
Bird’s algorithm, together with the Variable Hard Sphere (VHS)
model of molecular interaction,37 to simulate the gas state. To
enable comparison between the DSMC and continuum solutions for
Maxwell molecules, the molecular collision cross section is defined,
as detailed in Ref. 36 (see Sec. 5 therein). In line with the problem
formulation, the wall surface is assumed either specular or fully dif-
fuse, with prescribed temperature or heat-flux. To apply the latter,
the boundary temperature is treated as unknown, and a modification
of the conventional numerical scheme is required. This is carried
out based on recent contributions by the authors,36,38–41 where a
non-iterative algorithm for the imposition of a heat-flux condition
has been suggested and tested. For completeness, the algorithm is
repeated here.

We consider the distribution of the (dimensional) normal and
tangential velocity components for the wall-reflected molecules at
the ith time step,

v∗
i

� =
1
β∗i

w

√
− ln(RU) and v∗

i

∥
=

1
√

2 β∗i
w

RG, (43)

respectively. In Eq. (43), RU ∈ [0, 1] and RG ∈ (−∞,∞) are uniformly
and Gaussian-distributed random numbers, and β∗

i

w =
√

1/2R∗T∗i
w .

When assigning a heat-flux condition, the value of βi
w is a priori

unknown and should be determined at every time step. Assuming
a fully diffuse boundary, the total mass and thermal energy fluxes of
the molecules reflected at the surface are given by

M∗
i

out =
ρ∗

i

w

2β∗i
w
√
π

and H∗
i

out =
ρ∗

i

w

2(β∗i
w )

3
√
π

, (44)

respectively. Applying the conservations of mass, M∗
i

out =M∗
i

in , and
thermal energy, H∗

i

out = H∗
i

in , at the aforementioned adiabatic wall,
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we obtain

β∗
i

w =

¿
Á
ÁÀM∗i

in

H∗i

in
, (45)

where M∗
i

in and H∗
i

in are computed at each time step via

M∗
i

in =
N
Δt∗

and H∗
i

in =
1

2Δt∗
N

∑
j=1
[(ξ∗

i,j

x )
2

+ (ξ∗
i,j

y )
2

+ (ξ∗
i,j

z )
2
].

(46)

In Eq. (46), summation is carried over all j = 1, . . ., N parti-
cles that have collided with the boundary during the Δt∗ time
interval. Having determined M∗

i

in and H∗
i

in , β∗
i

w is obtained using
Eq. (45). Each of the reflected particles is then assigned a velocity
according to Eq. (43), and the simulation is followed to the next
time step.

The computation was followed in time, starting at t∗ = 0 and
terminating at t∗sim = 4L∗/U∗th (which proved sufficient for the inves-
tigation of the effect of wall reflection on system relaxation). At these
times, the size of the computational domain was set such that the
signal does not reach (and is therefore not affected by) a virtual
outer boundary placed at x∗sim ≈ (10 − 15)L∗. The [0, x∗sim] x∗-
domain was divided into 100–200 cells, and an additional division
of each cell into collisional subcells was carried to comply with
the mean-free-path limitations. Specifically, the width of the sub-
cells was set to l∗/4, and the magnitude of time increment was set
to 1/4 × l∗/U∗th. A typical run consisted of ≈107 particles, where
≈1500 realizations were carried out to sufficiently reduce the numer-
ical noise. Each simulation lasted several hours using a ten core
Intel i7-6950 machine. In line with the linearized problem formu-
lation, a value of ε = 0.05 was taken, for which non-linear effects are
negligible.

VI. RESULTS
Applying the above analysis, our results may be presented for

arbitrary choices of the gas initial density and temperature per-
turbations, ρin(x) and Tin(x). Yet, in the following, we limit our
discussion to setups where only local fluid heating is imposed
to analyze the gas and wall responses to space-confined thermo-
dynamic disturbances. This may resemble processes of acoustic
propagation encountered in micro-scale heat transfer applications,

mentioned in the Introduction.21,22 Specifically, we consider the
initial distributions

ρin(x) = 0 and Tin(x) = exp[−α(x − 1)2
] (47)

marking a Gaussian temperature disturbance peaked at x = 1. A
value of α = 20 (≫1) is taken to mimic a localized initial pertur-
bation that decays sharply about x = 1. This enables the inspec-
tion of the entire wall effect (vs the non-confined configuration),
which does not impact the system evolution at t → 0, and becomes
dominant with increasing time. The Knudsen number (Kn = l∗/L∗)
is subsequently interpreted as the inverse of the distance between
the peak source location and the wall in mean-free-path units,
thus characterizing the flow regime (free-molecular, intermediate, or
near-continuum) expected at times t ∼ O(1) of intense gas–wall
interaction. In Secs. VI A and VI B, the free-molecular (t/Kn ≪ 1)
and near-continuum (t/Kn ≫ 1) gas responses are described. The
effect of the solid boundary is discussed, and the occurrence of
intermediate-flow conditions [at t/Kn ∼ O(1)] is characterized
through comparisons with DSMC predictions. Section VI C analyses
the unsteady force exerted on the wall through flow–surface interac-
tions and further quantitates the impact of boundary conditions on
the intensity of acoustic reflection.

A. Free-molecular limit
For the initial distributions specified in Eq. (47), the free-

molecular analysis in Sec. III may be followed slightly further by
obtaining closed-form formulae for the wall functions ρ(ad)

w (t) and
T(ad)

w (t) in the adiabatic-wall system, as well as for ρ(iso)
w (t) in the

isothermal-boundary setup. Substituting Eq. (47) into Eqs. (13) and
(14) and carrying out the required integrations, the expressions
obtained are specified in Appendix B. Apart from simplifying the
evaluation of the hydrodynamic fields in Appendix A 1, these expres-
sions turn useful in the discussion of the unsteady force exerted on
the boundary in Sec. VI C.

To illustrate the free-molecular flow field, Fig. 1 shows time
snapshots of the normal velocity and acoustic pressure for an
isothermal-wall setup at Kn →∞ (t/Kn → 0) based on the solution
derived in Sec. III. The results are compared with DSMC predictions
at Kn = 5, which, at the indicated times t = 0.5, 1, and 2, correspond
to t/Kn = 0.125, 0.2, and 0.4, respectively. The agreement between
the results is very good in all cases, supporting the validity of the
free-molecular description at short times.

FIG. 1. Time snapshots (at the indi-
cated times t = 0.5, 1, and 2) of the (a)
normal velocity and (b) acoustic pres-
sure for an isothermal-wall setup at free-
molecular (solid curves) and Kn = 5
(symbols, DSMC predictions) conditions.
The thin dashed lines show counterpart
free-molecular results in a non-confined
setup. The thin solid curves depict the
initial (t = 0) distributions of the veloc-
ity and acoustic pressure, with the latter
shown only in part, for better clarity of the
results at later times.
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Inspecting the velocity and pressure signals at t = 0.5, we
observe that they are nearly identical with their non-confined setup
counterparts, marked by the dashed curves. Indeed, at this early
time, the symmetry-breaking effect of the wall is minor (observed
only in its very vicinity), and the disturbances propagate nearly sym-
metrically (for the even moments), or anti-symmetrically (for the
odd moments), about x = 1, the location of maximum initial per-
turbation. With increasing time, the wall impact forms as a reflected
wave propagating away from the surface. The extent of the x-interval
affected by the wall, shown by the x-interval where the confined and
non-confined responses differ, increases with t, covering 0 < x ≲ 3.5
at the latest time t = 2 presented.

To investigate the effect of surface conditions on sound prop-
agation at large rarefaction rates, Fig. 2 presents a comparison
between the acoustic pressure for specular, adiabatic, and isother-
mal wall systems. Figures 2(a) and 2(b) describe the x-variations in
the acoustic signals at times t = 1 and t = 2, respectively. Figure 2(c)
shows the time-variation in the pressure perturbation at a fixed x
= 0.6 location. The value of the pressure at t = 0 in Fig. 2(c) agrees
with its initially imposed p(0.6, 0) = ρin(0.6) + Tin(0.6) ≈ 0.041 level,
in agreement with Eq. (47) and the linearized equation of state. The
isothermal-wall results in Figs. 2(a) and 2(b) are identical with those
shown in Fig. 1, for reference. Close agreement is noted, as in Fig. 1,
between the Kn = 5 DSMC and free-molecular predictions in the
specular- and adiabatic-wall systems.

Comparing between the signals in the three setups, we
observe that the pressure amplitude in the isothermal-wall case is

consistently lower than in the specular- and adiabatic-wall con-
figurations. Indeed, different from the latter two setups, the
isothermal wall absorbs thermal energy from the impinging wave,
thus emitting an overall weaker acoustic disturbance. This sug-
gests that the imposition of a monitored (time-dependent) heat-
flux boundary condition may be efficient in reducing the wall
reflection. A similar approach has been applied in a differ-
ent context to minimize the vibroacoustic noise of a mechani-
cally actuated surface.36,38,41,42 Ideally, an acoustically cloaked sys-
tem should recapture the pressure signal marked by the dashed
curves in Fig. 2, which deflects from the surface-confined sig-
nals at (x, t) combinations where the boundary-reflected sig-
nal has reached the point of reference. In Fig. 2(c), this
occurs for t ≳ 0.65, after the disturbance, initially propagat-
ing symmetrically about x = 1 in the negative and positive
x-directions, has been reflected from the wall and returned
to x = 0.6.

The breakdown of the free-molecular description is consid-
ered in Fig. 3, where the variation of the acoustic pressure at
time t = 1 is compared between collisionless and DSMC results at
finite Knudsen numbers. The figure shows DSMC predictions at Kn
= 1, 0.5, and 0.2, which correspond to t/Kn = 1, 2, and 5, respec-
tively, at t = 1. Notably, the free-molecular results match well with
simulations up to times t/Kn = 1 and show reasonable agreement
even at t/Kn = 2. The effect of molecular collisions becomes non-
negligible at later times and dominates the near-continuum regime
discussed below.

FIG. 2. Effect of the wall boundary con-
dition on the acoustic pressure at large
rarefaction rates: time snapshots at (a)
t = 1 and (b) t = 2; (c) time variation
at a fixed x = 0.6 location. The solid
curves present the free-molecular solu-
tion and the symbols mark DSMC pre-
dictions at Kn = 5. The black, blue, and
red notations show results for specu-
lar, adiabatic, and isothermal wall con-
figurations, respectively. The thin dashed
lines depict counterpart results in a non-
confined setup.
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FIG. 3. Breakdown of the free-molecular description with increasing t/Kn: x-
variations in the acoustic pressure at t = 1 in the free-molecular limit (solid line)
compared with DSMC results at Kn = 1 (crosses), 0.5 (circles), and 0.2 (triangles)
for a specular wall setup.

B. Near-continuum conditions
Considering the system response at long times (t/Kn≫ 1), we

first note that the NSF solution in the non-confined setup may be
approximated in a closed form for the initial conditions specified in
Eq. (47). To this end, A0(λ), A+(λ), and A−(λ) in Eq. (38) may be
evaluated for Kn≪ 1, and the inverse Fourier transform (40) can be
applied to yield

T(no-wall)
(x, t) ≈

1
5

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3
√

1 + 6αKnt
exp[−

α(x − 1)2

1 + 6αKnt
]

+
1 − αKn[t + 17

3

√
6
5(x − 1)]

(1 + 14
3 αKnt)3/2

× exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
α(x − 1 +

√
5
6 t)

2

1 + 14
3 αKnt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1 − αKn[t − 17

3

√
6
5(x − 1)]

(1 + 14
3 αKnt)3/2

× exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
α(x − 1 −

√
5
6 t)

2

1 + 14
3 αKnt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

(48)

for the temperature perturbation in the absence of a wall. Inspect-
ing Eq. (48), it is observed that the gas response (which is qualita-
tively similar in all other hydrodynamic fields) combines one dif-
fusive mode and two propagating waves spreading symmetrically

about x = 1 in the positive and negative x-directions. The
√

5/6
factor multiplying the time (or its inverse multiplying the position)
stems from the ratio between the wave phase velocity in the contin-
uum (c∗0 =

√
γR∗T∗0 ) and free-molecular (U∗th =

√
2R∗T∗0 ) limits,

indicating a slower propagation speed in the former. The system
response in the case of a specular wall setup is obtained by super-
posing T(no-wall)(x, t) in Eq. (48) with its symmetric image about
x = 0, yielding a signal combined of three propagating modes (omit-
ting the wave initiated at the image location x = −1 and propagating
in the negative x-direction) and two diffusive modes. As noted in
the beginning of Sec. IV C 2, the above specular-wall response in
the NSF limit should be identical with the counterpart adiabatic-wall
system behavior.

Figure 4 presents time snapshots of the normal velocity and
acoustic pressure for an isothermal-wall setup with Kn = 0.02. A
comparison is made between NSF-based and DSMC predictions,
showing a very good agreement at the presented times t = 0.5, 1,
and 2 corresponding to t/Kn = 25, 50, and 100, respectively. The
early time (t = 0.5) signal is fully symmetrical about x = 1 and is
indiscernible from its counterpart non-confined wave, as the effect
of wall reflection is negligible at this time. The continuum-limit solu-
tion at later (after wall reflection) times is characterized by distinct
peaked waves that propagate away from the surface while gradually
decaying. This is qualitatively different from the free-molecular sys-
tem response, where the initial disturbance is quickly spreading and
decaying at a higher rate, forming a weaker signal at a given time [cf.
the pressure amplitudes in Figs. 1(b) and 4(b)]. Indeed, with decreas-
ing Kn → 0, our results indicate a decrease in the signal decay rate.
This is supported by expression (48) for the non-confined signal,
containing two non-decaying traveling wave components at Kn →
0 centered about x = 1±

√
5/6 t and propagating in the positive and

negative x-directions.
Figure 5 examines the effect of wall conditions on the acoustic

pressure under continuum-limit conditions. Maintaining Kn = 0.02
as in Fig. 4, higher pressure amplitudes, compared with their coun-
terparts in the nearly free-molecular regime (cf. Fig. 2), are observed.
Here, the specular- and adiabatic-wall systems exhibit essentially
identical waveforms, as discussed in the beginning of Sec. IV C 2 and
mentioned after Eq. (48). The isothermal-wall condition yields the
weakest wall reflection, similar to the free-molecular result shown
in Fig. 2. Consequently, different from the nearly equal-amplitude
double-peak waveform characterizing the specular and adiabatic
wall systems [see the black and blue curves in Fig. 5(b)], the reflected
wave in the isothermal-wall setup [marked by the left of the two red
peaks in Fig. 5(b)] decays at a higher rate and is therefore transmit-
ted to shorter distances from the boundary. Here, again, the heat-
absorbing boundary condition appears efficient in confining the wall
acoustic reflection to its relative proximity.

Having verified the validity of the NSF model in predicting the
system response at t/Kn ≫ 1, Fig. 6 considers the breakdown of
the continuum-limit description with decreasing time and examines
the capacity of the R13 model to better capture the gas evolution
at shorter times. Taking t = 1, the figure compares between NSF,
R13, and DSMC predictions for an isothermal wall system at Kn
= 0.02, 0.05, and 0.1 corresponding to t/Kn = 50, 20, and 10. Notably,
the R13 scheme predicts the DSMC results better in all cases. This
includes the Kn = 0.02 case [see Fig. 6(a)], where the near-wall
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FIG. 4. Time snapshots (at the indi-
cated times t = 0.5, 1, and 2) of the (a)
normal velocity and (b) acoustic pres-
sure for an isothermal-wall setup with Kn
= 0.02. The solid curves and symbols
compare between NSF and DSMC pre-
dictions, respectively. The thin dashed
lines show counterpart NSF results in a
non-confined setup. The thin solid curves
depict the initial (t = 0) distributions of the
velocity and acoustic pressure, with the
latter shown only in part, for better clarity
of the results at later times.

Knudsen-layer behavior and the slight peak about x ≈ 1 are better
approximated by the dashed blue curve. At Kn = 0.05 [Fig. 6(b)],
the R13 scheme yields distinctly preferable results over NSF pre-
dictions. Increasing Kn further to Kn = 0.1 in Fig. 6(c), the break-
down of the R13 description becomes visible, showing discrepan-
cies from DSMC data. Combining with the results in Fig. 3, it is
concluded that the free-molecular and near-continuum schemes
provide satisfactory descriptions of the system behavior at times
t/Kn ≲ 2 and t/Kn ≳ 20, respectively, whereas the intermediate
2 ≲ t/Kn ≲ 20 time interval may be well captured by DSMC
calculations only.

C. The force exerted on the wall
The interaction between the gas and the solid surface results in

an unsteady force exerted on the boundary. Applying the linearized
x-momentum balance in the fluid, it is found, regardless of the flow
regime, that the x-directed force acting on the wall is given by

Fwall(t) = −
d
dt ∫

∞

0
u(x, t)dx. (49)

In the linearized approximation, the force therefore reflects the
rate of change in the gas total momentum. In this section, we

FIG. 5. Effect of the wall boundary con-
dition on the acoustic pressure: time
snapshots at (a) t = 1 and (b) t = 2;
(c) time variation at a fixed x = 0.6
location. The solid curves and symbols
present NSF and DSMC predictions at
Kn = 0.02, respectively. The black, blue,
and red notations show results for spec-
ular, adiabatic, and isothermal wall con-
figurations, respectively. The thin dashed
lines depict counterpart results in a non-
confined setup.
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FIG. 6. Breakdown of the near-
continuum approximations with decreas-
ing t/Kn: x-variations in the acoustic
pressure at t = 1 in the NSF (solid lines)
and R13 (dashed curves) solutions
compared with DSMC results (crosses)
at (a) Kn = 0.02, (b) Kn = 0.05, and (c)
Kn = 0.1 for an isothermal wall setup.

analyze the effects of gas rarefaction and wall boundary conditions
on Fwall(t).

Figures 7(a) and 7(b) present time-variations in Fwall
under highly rarefied [Fig. 7(a)] and near-continuum [Fig. 7(b)]

conditions. The figures compare between specular, adiabatic, and
isothermal wall systems. In Fig. 7(a), free-molecular and Kn = 5
DSMC results are shown. Figure 7(b) presents DSMC and R13-based
predictions at Kn = 0.02. In common to both figures, Fwall(t) < 0,

FIG. 7. Effects of gas rarefaction and
wall boundary conditions on the nor-
mal force exerted on the boundary:
time-variations in Fwall at (a) Kn = 5
and (b) Kn = 0.02; (c) Kn-variation
in the maximum repelling force, Fmax

wall= max∣Fwall(t)∣. The black, blue, and
red notations mark results for specular,
adiabatic, and isothermal wall setups,
respectively. The symbols denote DSMC
predictions, whereas the solid curves
show free-molecular [in Fig. 7(a) and
Fig. 7(c) at Kn ≫ 1] or R13-based [in
Fig. 7(b) and Fig. 7(c) at Kn≪ 1] results.
The thin dashed line in Fig. 7(c) marks
the asymptote in Eq. (50).
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indicating a repelling force in the negative x-direction. The force
varies non-monotonically in time, reaching a minimum value [max-
imum repelling force, denoted hereafter by Fmax

wall = max∣Fwall(t)∣]
when the waveform peak reaches the surface. The force amplitude
is consistently smallest in the isothermal-wall setup. This is in line
with the results in Figs. 2 and 5, indicating that the thermal energy
exchange with an isothermal wall yields the transmission of a weaker
acoustic disturbance. The specular- and adiabatic-wall forces turn
identical in the continuum limit, while Fmax

wall is largest in the specular-
wall setup under free-molecular conditions. Inspecting the differ-
ences between Figs. 7(a) and 7(b) further, it is noted that Fmax

wall is
larger in the low-Kn case for each of the wall setups. Addition-
ally, Fmax

wall occurs at later times in the continuum limit, shifting from
tmax
wall ≈ 0.61 at Kn→∞ to tmax

wall ≈ 1.01 at Kn = 0.02.
To gain further insight into these trends, Fig. 7(c) presents

the variation in Fmax
wall with Kn for each of the wall-condition

configurations. Free molecular, DSMC and R13-based results are
presented. Since tmax

wall ∼ O(1) in all cases, it is expected and con-
firmed that the free-molecular and R13 approximations hold at
Kn ≫ 1 and Kn ≪ 1, respectively. The intermediate interval of 0.1
≲ Kn ≲ 1 is captured via DSMC calculations. Primarily, the figure
indicates an increase in Fmax

wall with decreasing Kn. This is rationalized
by recalling the rapid decay of the initial perturbation in the free-
molecular limit compared with the near-continuum regime (cf. the
wave amplitudes in Figs. 1 and 4). The interaction between the trans-
mitted perturbation and the surface is then more intense at lower
Kn, leading to the general increase in Fmax

wall .
Applying the closed-form approximations obtained in the NSF

[see Eq. (48) et seq.] and free-molecular (see Appendix B) limits,
some quantitative evaluations for Fmax

wall and tmax
wall may be derived.

Starting with the continuum limit, we apply T(no-wall)(x, t) in Eq. (48)
to obtain T(spec)(x, t) and u(spec)(x, t) and approximate the force on a
specular wall using Eq. (49). Keeping the leading order in αKn≪ 1
and evaluating the force extremal value, we find

Fmax
wall (Kn≪ 1) ≈

1
2
−

7
√

30
αKn, (50)

occurring at time

tmax
wall (Kn≪ 1) ≈

√
6
5
−

23
5

Kn. (51)

The result in Eq. (50) supports the observed trend of a decrease
in Fmax

wall with increasing Kn. Similarly, Eq. (51) agrees with the
shift noted in tmax

wall to earlier times with increasing Kn. This shift
is attributed to the higher wave speed under free-molecular con-
ditions (U∗th) compared with the continuum limit (c∗0 ), maintaining
the ratio U∗th/c

∗

0 =
√

6/5. Consequently, the disturbance wavefront
reaches the boundary at earlier times for larger Kn, resulting in a
decrease in tmax

wall . Note that approximations (50) and (51) hold for
setups where α ≫ 1. Combined with the above αKn ≪ 1 restric-
tion, the applicability of the NSF-based maximum-force evaluation
is limited to particularly small Knudsen numbers, as demonstrated
by the narrow Kn ≪ 1 interval where the dashed and solid lines in
Fig. 7(c) match.

Focusing on the free-molecular limit, the analyses in Sec. III
and Appendix B may be applied to approximate the wall force. To

this end, it may be readily established that the free-molecular force
on an adiabatic wall is given by

F(ad)
wall(t; Kn≫ 1) =

1
4
[ρ(ad)

w (t) + T(ad)
w (t)] +

1
t
√
π ∫

∞

0
Tin(s)

× [(
s
t
)

4
−

1
2
(

s
t
)

2
]ds, (52)

whereas the force on an isothermal wall is obtained by replacing
ρ(ad)

w with ρ(iso)
w and assigning T(ad)

w = 0 in Eq. (52). For the case of
a specular boundary,

F(spec)
wall (t; Kn≫ 1) =

2
t
√
π ∫

∞

0
Tin(s)[(

s
t
)

4
−

1
2
(

s
t
)

2
]ds. (53)

The time tmax
wall (Kn ≫ 1) of maximum force may subsequently be

approximated by differentiation of the respective expressions for
Fwall. Markedly, for α≫ 1, we find that

tmax
wall (Kn≫ 1) ≈ [2(1 −

√
2/3)]

1/2
≈ 0.61, (54)

regardless of the wall boundary condition and α ≫ 1. This result
is supported by the findings in Fig. 7(a), indicating that, different
from the maximum force amplitude, the time of maximal loading is
nearly independent of the wall properties and is considerably shorter
in the free-molecular compared with the near-continuum regime [cf.
Eq. (51)].

While the general trend of decreasing Fmax
wall with increasing Kn

is dominant, closer inspection of the results Fig. 7(c) reveals that
non-monotonic variations in Fmax

wall occur at intermediate Knudsen
numbers. This is particularly visible in the specular-wall setup, yet
also obtained in the adiabatic- and isothermal-boundary configu-
rations. Having described the simultaneous mechanisms of wave
increasing decay rate and higher expansion speed with increas-
ing Kn, it is the combination of the two that results in the non-
monotonic behavior. Specifically, although the perturbation decays
faster at larger Kn, it reaches the boundary at an earlier time—which,
under intermediate flow conditions, equals or overcomes the weak-
ening rate of the disturbance. Although our limit-case analyses could
not capture the intermediate-flow regime accurately, the R13 model
was able to describe this phenomenon qualitatively, as depicted by
the minima obtained in all left-hand side curves in Fig. 7(c). Further
analysis, not followed here, may be carried out using higher order
moment schemes or large-Kn asymptotic corrections to the free-
molecular description to better approximate the system behavior at
intermediate states. This is encouraged by previous investigations
of the (physically different yet topologically similar) Knudsen mini-
mum phenomenon in microchannel flow (recently revisited in Ref.
43), which was successfully captured via application of generalized
hydrodynamic models (e.g., Refs. 44 and 45).

VII. CONCLUSION
We investigated the effect of a rigid boundary on the propaga-

tion of thermodynamic disturbances in a gas under non-continuum
conditions. Considering a semi-infinite setup confined by an infi-
nite planar wall, initial gas disturbances were introduced in the
form of density and temperature inhomogeneities. The problem was
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formulated for arbitrary small-amplitude perturbations and ana-
lyzed in the entire range of gas rarefaction rates. Following the
gas evolution in time and space, the results obtained describe
the system relaxation to equilibrium, with specific emphasis on
the effect of the solid surface. Analytical solutions were derived in
the free-molecular and near-continuum regimes and compared with
direct simulation Monte Carlo predictions. The impact of the solid
wall was highlighted by comparing between the unconfined and
confined gas responses with different surface conditions, includ-
ing fully diffuse (adiabatic or isothermal) and fully specular wall
reflections. Focusing on a case of an initial temperature distur-
bance, the results indicated that the system relaxation time short-
ens with increasing Kn. Among the wall conditions considered,
the isothermal boundary was found to reflect the weakest acoustic
disturbance, as part of the energy carried by the impinging wave
is absorbed by the surface. The specular and adiabatic wall sys-
tems exhibited identical responses in the continuum limit, while
departing with increasing Kn due to higher-order moment effects.
An unsteady normal force exerted by the gas on the surface was
detected and analyzed. It was found that the force maximum ampli-
tude decreases with increasing Kn at near-continuum conditions yet
reaches a minimum value at intermediate-flow states and slightly
increases toward the free-molecular limit. This was rationalized in
terms of the counteracting mechanisms of a faster decay rate and
larger propagation speed occurring with increasing departure from
continuum.

Having analyzed the general effect of wall conditions on acous-
tic reflection in a one-dimensional domain, several extensions may
be followed. At first, the viability of optimizing the wall conditions
to monitor their boundary reflections may be studied. This is moti-
vated by several recent studies,42,46,47 suggesting wall-induced ther-
moacoustic sound as a means for reducing mechanical vibroacoustic
noise. In particular, Ref. 46 has experimentally demonstrated the
efficiency of the thermophone, a sound transducer device based on
the mechanism of Joule heating for monitoring boundary heat flux,
in canceling out vibroacoustic sound in the continuum limit. While
a similar approach is only suggested here as a topic for future study,
it seems possible that prescription of a specific time-varying heat-
ing profile at the boundary may be useful in controlling the surface
back reflection of the acoustic wave viewed in the results. Extension
of the current work to a two-dimensional setup, where the expan-
sion of a local two-dimensional source in the vicinity of a boundary
is considered, is also desirable. These constitute topics for future
investigations.
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APPENDIX A: EXPRESSIONS
FOR THE HYDRODYNAMIC PERTURBATIONS
IN THE FREE-MOLECULAR LIMIT
1. Adiabatic-wall system

Substituting Eq. (10) into Eq. (4) and carrying out appropri-
ate quadratures over the molecular velocity space,29 expressions for
the macroscopic fields follow. Subtracting the O(1) uniform leading
orders and scaling the remnants by ε, the hydrodynamic perturba-
tions in the case of a fully diffuse adiabatic wall system are obtained
for the density,

ρ(ad)
(x, t) =

1
t
√
π ∫

∞

0
[ρin(s) + Tin(s)((

x − s
t
)

2
−

1
2
)]

× exp[−(
x − s

t
)

2
]ds

+
x
√
π ∫

t

0

1
(t − s)2 [ρ

(ad)
w (s) + T(ad)

w (s)((
x

t − s
)

2
−

1
2
)]

× exp[−(
x

t − s
)

2
]ds, (A1)

normal velocity,

u(ad)
(x, t) =

1
t
√
π ∫

∞

0

x − s
t
[ρin(s) + Tin(s)((

x − s
t
)

2
−

1
2
)]

× exp[−(
x − s

t
)

2
]ds

+
x
√
π ∫

t

0

x
(t − s)3 [ρ

(ad)
w (s) + T(ad)

w (s)((
x

t − s
)

2
−

1
2
)]

× exp[−(
x

t − s
)

2
]ds, (A2)

and pressure,

p(ad)
(x, t) =

2
3t3
√
π ∫

∞

0
(x − s)2

[ρin(s) + Tin(s)((
x − s

t
)

2
−

1
2
)] exp[−(

x − s
t
)

2
]ds

+
2

3t
√
π ∫

∞

0
[ρin(s) + Tin(s)((

x − s
t
)

2
+

1
2
)] exp[−(

x − s
t
)

2
]ds

+
2x3

3
√
π ∫

t

0

1
(t − s)4 [ρ

(ad)
w (s) + T(ad)

w (s)((
x

t − s
)

2
−

1
2
)] exp[−(

x
t − s
)

2
]ds

+
2x

3
√
π ∫

t

0

1
(t − s)2 [ρ

(ad)
w (s) + T(ad)

w (s)((
x

t − s
)

2
+

1
2
)] exp[−(

x
t − s
)

2
]ds, (A3)

Phys. Fluids 32, 092002 (2020); doi: 10.1063/5.0020947 32, 092002-13

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

fields. The temperature perturbation is given by the linearized form
of the equation of state,

T(ad)
(x, t) = p(ad)

(x, t) − ρ(ad)
(x, t). (A4)

2. Specular-wall system
Substituting Eq. (16) into Eq. (4) and carrying out the velocity-

space quadratures similar to Appendix A 1, the expressions for the
density, normal velocity, and pressure perturbations are

ρ(spec)
(x, t) =

1
t
√
π ∫

∞

0
[ρin(s) + Tin(s)((

x − s
t
)

2
−

1
2
)]

× exp[−(
x − s

t
)

2
]ds

+
1

t
√
π ∫

∞

0
[ρin(s) + Tin(s)((

x + s
t
)

2
−

1
2
)]

× exp[−(
x + s

t
)

2
]ds, (A5)

u(spec)
(x, t) =

1
t
√
π ∫

∞

0

x − s
t
[ρin(s) + Tin(s)((

x − s
t
)

2
−

1
2
)]

× exp[−(
x − s

t
)

2
]ds

+
1

t
√
π ∫

∞

0

x + s
t
[ρin(s) + Tin(s)((

x + s
t
)

2
−

1
2
)]

× exp[−(
x + s

t
)

2
]ds, (A6)

and

p(spec)
(x, t) =

2
3t
√
π ∫

∞

0
[((

x − s
t
)

2
+ 1)ρin(s) + ((

x − s
t
)

4

+
1
2
(

x − s
t
)

2
+

1
2
)Tin(s)] exp[−(

x − s
t
)

2
]ds

+
2

3t
√
π ∫

∞

0
[((

x + s
t
)

2
+ 1)ρin(s) + ((

x + s
t
)

4

+
1
2
(

x + s
t
)

2
+

1
2
)Tin(s)] exp[−(

x + s
t
)

2
]ds, (A7)

respectively. The temperature perturbation is given by the linearized
form of the equation of state, as in Eq. (A4).

APPENDIX B: EXPRESSIONS FOR THE WALL
FUNCTIONS IN THE FREE-MOLECULAR LIMIT

Substituting Eq. (47) into Eq. (13) and carrying out the specified
integrations, the expressions for the wall functions for an adiabatic-
wall system are

ρ(ad)
w (t) =

1
8(1 + αt2)5 {

√
παt

√
1 + αt2

[1 + erf(
αt

√
1 + αt2

)]

× exp(−
α

1 + αt2 )[−7α4t8 + (11α4
−

23
2
α3
)t6

+ (−2α4 + 12α3
)t4 + (α2 +

13
2
α)t2 + 2]

+ exp(−α)[−7α4t8 + (11α4
− 17α3

)t6

+ (−2α4 + 13α3
− 13α2

)t4 + (2α2
− 3α)t2

]} (B1)

and

T(ad)
w (t) =

1
4(1 + αt2)5 {

√
παt

√
1 + αt2

[1 + erf(
αt

√
1 + αt2

)]

× exp(−
α

1 + αt2 )[3α
4t8 + (−3α4 +

15
2
α3
)t6

+ (2α4 + 4α3 + 12α2
)t4 + (7α2 +

27
2
α)t2 + 6]

+ exp(−α)[3α4t8 + (−3α4 + 9α3
)t6

+ (2α4 + 3α3 + 13α2
)t4 + (6α2 + 11α)t2 + 4]}. (B2)

Similarly, substituting Eq. (47) into Eq. (14), we obtain for the
isothermal-wall setup

ρ(iso)
w (t) =

1
(1 + αt2)3 {

√
παt

√
1 + αt2

[1 + erf(
αt

√
1 + αt2

)]

× exp(−
α

1 + αt2 )[−
1
2
α2t4 + (α2 +

1
2
α)t2 + 1]

+ exp(−α)[−
1
2
α2t4 + α2t2 +

1
2
]}. (B3)
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