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Acoustic wave propagation at nonadiabatic conditions:
The continuum limit of a thin acoustic layer
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Existing works on sound propagation in rarefied gases have focused on wave trans-
mission at adiabatic conditions, where a reference uniform equilibrium state prevails. To
extend these studies, we analyze the propagation of acoustic waves in a slightly rarefied
gas at nonadiabatic conditions, where arbitrarily large reference temperature and density
gradients are imposed. Considering a planar slab configuration, constant wall heating
is applied at the confining walls to maintain the nonuniform reference thermodynamic
distributions. Acoustic excitation is then enforced via small-amplitude harmonic wall
oscillations and normal heat-flux perturbations. Focusing on continuum-limit conditions
of small Knudsen numbers and high actuation frequencies (yet small compared with the
mean collision frequency), the gas domain affected by wall excitation is confined to a thin
layer (termed “acoustic layer”) in the vicinity of the excited boundary, and an approximate
solution is derived based on asymptotic expansion of the acoustic fields. The application
of thermoacoustic wall excitation necessitates the formation of an ever thinner “thermal
layer” that governs the transmission of the wall’s unsteady heat flux into sound waves. The
results of the approximate analysis, supported by continuum-model finite differences and
direct simulation Monte Carlo calculations, clarify the impacts of system nonadiabaticity
and the gas kinetic model of interaction on sound propagation. Primarily, reference wall
heating results in an extension of the acoustic layer and consequent sound-wave radiation
over larger distances from the wall source. Considering the entire range of inverse power
law (repulsion point center) interactions, it is also found that wave attenuation is affected
by the kinetic model of gas collisions, yielding stronger decay rates in gases with softer
molecular interactions. The results are used to generalize the counterpart adiabatic-system
findings for the amount of boundary heat flux required for the silencing of vibroacoustic
sound at nonadiabatic reference conditions.

DOI: 10.1103/PhysRevFluids.5.033401

I. INTRODUCTION

Prevailing analyses of sound wave propagation in fluids commonly consider an adiabatic
reference state of the medium, where the acoustic field perturbs the system’s initial conditions of
uniform temperature and density [1,2]. Yet, in various realistic setups, the propagation of acoustic
waves should be affected by nonuniformities in the reference temperature and density fields, leading
to variations in the gas acoustic wave speeds and attenuation rates compared with their adiabatic
counterparts. Within the context of continuum gas dynamics, several works have been carried out to
investigate the passage of acoustic waves through nonisothermal atmospheres (see, e.g., Refs. [3–5],
and works cited therein). While incorporating the effect of gravity force on sound propagation, most
of these works have not considered the dissipative impacts of gas viscosity and heat conductivity,

*Corresponding author: amanela@technion.ac.il

2469-990X/2020/5(3)/033401(20) 033401-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9080-3071
https://orcid.org/0000-0002-3657-4837
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.033401&domain=pdf&date_stamp=2020-03-04
https://doi.org/10.1103/PhysRevFluids.5.033401


Y. BEN-AMI AND A. MANELA

which are small at atmospheric length scales. In a single work, Campos [6] mentioned the presumed
influence of viscous dissipation in his problem formulation, yet a solution where this effect was
quantified was not derived.

The propagation of sound waves in systems characterized by small length scales (of the order of
the molecular mean free path) or short time scales (similar to the kinetic mean free time) inevitably
couples compressibility and viscous effects. At such conditions, the continuum description breaks
down, and gas rarefaction must be taken into account in the framework of gas kinetic theory.
Focusing on such setups, acoustic wave generation has been studied in a considerable number of
works, investigating vibroacoustic (see Refs. [7–11] and papers cited therein) and thermoacoustic
[12–17] sound transmission in rarefied gases, driven by mechanical and thermal boundary excita-
tions, respectively. While covering the entire spectrum of gas rarefaction regimes, these works have
commonly assumed wave propagation through adiabatic gas layers, where a reference uniform
equilibrium state prevails. A study on the counterpart effect of reference state nonuniformities
is therefore lacking, and provides the topic for the present work. Focusing on near-continuum
conditions, this constitutes a significant extension over existing analyses, since the reference-
state nonhomogeneities, coupled in the governing acoustic equations, considerably affect the
mathematical formulation and consequent characteristics of sound propagation, as described herein.

Apart from the fundamental interest in investigating the above problem, the consideration
of the effects of reference temperature and density variations on sound transmission appear
relevant in a sequence of applications. Within the context of noncontinuum flows, nonuniform
reference states are encountered in high-frequency microscale cooling devices [18,19], RF-MEMS
attenuators [20,21], and optoacoustic transducers, where both mechanical and thermal film
vibrations are excited through laser pulsations [22,23]. Other setups include thermoacoustic
engines and refrigerators [24,25], induction motors [26], synthetic jet cooling machines [27,28],
and thermophone devices [29–31]. Specifically for the thermophone apparatus, existing theoretical
studies have been carried out under the assumption that the gas is initially set at a uniform
equilibrium state (see, e.g., Refs. [32–34], and cited works). Such conditions are nevertheless
difficult to realize in practice due to the difficulty in withdrawing heat from the system during the
cooling half-cycle. In effect, the boundary heat flux oscillates around a certain nonzero mean value,
resulting in a steady temperature gradient of the gas. It is therefore of practical interest to reassess
the thermoacoustic gas response in the presence of thermally nonuniform steady conditions, which
are expected to affect the amount of boundary heat flux required for achieving vibroacoustic sound
cancellation [17]. While the general approach of achieving vibroacoustic sound reduction through
unsteady heating has been recently tested in an experiment [31], it could not verify the ratio of heat
flux to mechanical work needed to perform noise silencing. Reassessing this ratio, in addition to
performing a general investigation on the effect of system nonadiabaticity on sound transmission in
a gas, constitute the main goals of the present work.

Adopting a simple model setup, we consider a planar slab configuration, where a gas layer is
confined between two nonadiabatic walls conducting fixed and equal normal heat fluxes. Acoustic
excitation is then imposed through added harmonic (mechanical or thermal) actuation at one of
the walls. Although simple to formulate, the problem is not amenable to an exact solution, even
in the linearized regime of small-amplitude excitation. Focusing on continuum-limit conditions,
we subsequently derive an approximate solution based on asymptotic expansion of the acoustic
fields. The limit of high-frequency actuations (yet small compared with the kinetic mean collision
frequency) and slab sizes much larger than the molecular mean free path (yet vanishingly small
compared to atmospheric scales, thus rendering the effect of gravity negligible) is considered. At
these conditions, we find that the acoustic response is confined to a gas layer much thinner than the
slab width. While a narrow layer response was also reported in previous high-frequency analyses
of the adiabatic problem [9,15], the present results differ in describing the leading-order effects of
system nonadiabaticity on sound propagation, which considerably modify both wave attenuation
and phase speed. Applying the direct simulation Monte Carlo (DSMC) method for validation, it is
shown that for small enough Knudsen numbers [Kn � O(10−3) ] there exists a range of frequencies,
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expanding with declining Kn, where the asymptotic limit of a thin acoustic layer holds. In cases
in which thermoacoustic wall excitation is applied, an ever thinner thermal layer is formed and
analyzed, to describe the process of wall heat transfer into sound-wave propagation.

In view of the above, the novelty of the present contribution is in analyzing the propagation
of sound in cases in which the gas maintains arbitrarily large temperature and density gradients
at its reference steady state. We quantify the effect of reference state nonuniformities on high-
frequency sound propagation at near-continuum conditions by obtaining closed-form expressions
for the affected wave attenuation and phase speed, and demonstrating their marked differences from
counterpart results at uniform reference conditions. Additionally, we analyze the particular impact
of gas molecular (repulsion point center) interaction law on sound characteristics. This effect is
found trivial at adiabatic reference conditions, and was therefore not considered previously.

The outline of the work is as follows. In the next section, the model problem is formulated for
both vibroacoustic and thermoacoustic wall excitations. The asymptotic expansion in the limit of a
thin acoustic layer is introduced and analyzed in Sec. III, followed by a description of the numerical
DSMC scheme in Sec. IV. The results, highlighting the effects of problem parameters and the gas
kinetic model of interaction on sound propagation, are presented in Sec. V. Concluding comments
are given in Sec. VI.

II. PROBLEM STATEMENT

Consider a layer of a monatomic ideal gas of mean density ρ∗
m confined between parallel infinitely

long heat-conducting walls placed at x∗ = 0 and x∗ = L∗ (hereafter asterisks denote dimensional
quantities). The gas is heated with a constant normal heat flux at the solid surfaces,

Q∗(0)
w (0) = Q∗(0)

w (L∗) = Q∗(0)
w x̂, (1)

where x̂ marks a unit vector in the positive x-direction. Consequently, fixed nominal hot- (T ∗
h )

and cold- (T ∗
c ) wall temperatures are maintained, and steady temperature and density distributions,

T ∗(0)(x∗) and ρ∗(0)(x∗), respectively, prevail. Starting at time t∗ = 0, harmonic normal velocity and
heat-flux excitations are imposed at the x∗ = 0 boundary,

U∗
w(0, t∗ � 0) = εU

∗(1)
w cos(ω∗t∗)x̂ and Q∗

w(0, t∗ � 0) = [
Q∗(0)

w + εQ
∗(1)
w cos(ω∗t∗)

]
x̂, (2)

respectively, whereas the x∗ = L∗ surface is maintained unperturbed. In Eq. (2), ε � 1, so that the
system description may be linearized about its initial state. We consider cases in which Q(0)∗

w > 0 or
Q(0)∗

w < 0, for which the actuated x∗ = 0 boundary is either the hot or cold wall, respectively, and
we study the system’s long-time periodic response.

A nondimensional formulation of the problem is obtained by normalizing the density by the
mean density ρ∗

m, and the temperature by the nominal cold-wall temperature T ∗
c . The position and

velocity are scaled by L∗ and U ∗
th = √

2R∗T ∗
c (marking the most probable thermal speed of the gas

molecules at the cold-wall temperature, withR∗ denoting the specific gas constant), respectively, and
the time is normalized by the consequent acoustic time scale, L∗/U ∗

th. The gas pressure and stresses
are nondimensionalized by ρ∗

mU ∗2
th , and the normal heat flux is scaled by ρ∗

mU ∗3
th . The problem is

then governed by the nondimensional parameters

Kn = l∗
c /L∗, ω = ω∗L∗/U ∗

th, and RT = T ∗
h /T ∗

c , (3)

marking the gas Knudsen number, the scaled excitation frequency, and the walls’ nominal tem-
peratures ratio, respectively. For convenience, the introduction of the walls’ temperatures ratio RT

replaces Q(0)
w = Q(0)∗

w /ρ∗
mU ∗3

th as a governing parameter, and the equivalence of the two is clarified
below [see Eq. (10) et seq.]. In the definition of the Knudsen number, l∗

c denotes the molecular mean
free path at the cold-wall temperature, specified after Eq. (4).

Focusing on the continuum limit of slight rarefaction effects, we consider the problem for
Kn � 1 and ωKn � 1, for which the system length scale L∗ and time scale 1/ω∗ are large
compared with the gas mean free path l∗

c and mean free time l∗
c /U ∗

th, respectively. Adopting the
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Navier-Stokes-Fourier model for a monatomic gas, the nominal gas state then satisfies the heat
conduction equation

dq(0)

dx
= −15

8
Kn

d

dx

(
μ(0) dT (0)

dx

)
= 0, (4)

where q(0)(x) and μ(0)(x) denote the reference distributions of gas normal heat flux and dynamic
viscosity, respectively. The Knudsen number here takes the form

Kn = μ∗
c

ρ∗
mU ∗

thL∗ ,

where μ∗
c denotes the gas viscosity at the cold-wall temperature. Combining with the definition in

Eq. (3), this yields

l∗
c = μ∗

c/ρ
∗
mU ∗

th

for the viscosity-based molecular mean free path at the cold-wall temperature. We consider an
inverse power law (repulsion point center) model of molecular interaction [35], for which

μ(0) = (T (0) )(n+1)/2, (5)

where the n = 0 and n = 1 limit cases correspond to hard-sphere and Maxwell types of interaction,
respectively. Applying Eq. (1) in its scaled form into Eq. (4), we find

q(0) = const = Q(0)
w . (6)

Assigning Eq. (5) into Eq. (4), we obtain

d2[(T (0) )(n+3)/2]

dx2
= 0, (7)

yielding

T (0)(x) = (Ax + B)2/(n+3), (8)

previously derived in Ref. [36] for a hard-sphere gas, and in Refs. [37,38] for a general power-law
model of interaction. The constants A and B in Eq. (8) are determined via the imposition of the
walls’ temperature-jump conditions, with the temperature-jump coefficient generally depending on
the type of molecular interaction [35]. Focusing on the limit of vanishingly small Knudsen numbers,
we neglect this effect, and apply continuum no-jump conditions. For a setup where the hot wall is
located at x = 0 [T (0) = RT , Q(0)

w > 0], we find

A = 1 − R(n+3)/2
T and B = R(n+3)/2

T , (9)

whereas for an actuated cold-wall configuration [T (0) = 1, Q(0)
w < 0]

A = R(n+3)/2
T − 1 and B = 1. (10)

The values of A and B could be equivalently expressed in terms of the walls’ reference heat flux Q(0)
w

and the total amount of energy conserved within the system, yet the present formulation is preferred
for convenience. The validity of the no-jump approximation made will be tested in Sec. V, where a
comparison with numerical DSMC calculations is carried out. For generality, all subsequent results
are expressed in terms of A and B, without substituting their specific values in Eqs. (9) or (10), which
could be easily amended to account for the (presently negligible) effect of the walls’ temperature
jump.

Making use of the equilibrium momentum balance in the x-direction,

d p(0)/dx = 0,
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it is seen that the reference pressure p0) is constant across the slab, with its value fixed by the scaled
form of the gas equation of state,

ρ (0)(x) = 2p(0)/T (0)(x), (11)

and a mass normalization condition, ∫ 1

0
ρ (0)dx = 1. (12)

Substitution of Eq. (11) together with Eq. (8) into Eq. (12) yields

p(0) = A(n + 1)

2(n + 3)
[
(A + B)(n+1)/(n+3) − B(n+1)/(n+3)

] , (13)

which degenerates into the p(0)
iso = 1/2 value at adiabatic (A = 0, B = 1) conditions. Having deter-

mined the gas reference state, we turn in the next section to analyze the acoustic field generated by
the mechanical and thermal excitations imposed in Eq. (2) at the x = 0 wall.

III. ANALYSIS

Assuming continuum-limit conditions, the acoustic ε-order problem is governed by the one-
dimensional (x-dependent) linearized Navier-Stokes-Fourier equations for a perfect monatomic gas.
Focusing on the case of sinusoidal excitations specified in Eq. (2), we assume a harmonic time
dependence of all hydrodynamic perturbations,

�(1)(x, t ) = Re
{
�

(1)
(x) exp(iωt )

}
, (14)

where �(1) = {ρ (1), u(1), p(1), T (1)}. The O(ε) balances of continuity, x-momentum, and energy are
then given by

iωρ (1) + d

dx
(ρ (0)u(1) ) = 0, (15)

iωρ (0)u(1) = −d p(1)

dx
+ 4

3
Kn

d

dx

[
(T (0) )(n+1)/2 du(1)

dx

]
, (16)

and

iωρ (0)T
(1) + ρ (0) dT (0)

dx
u(1) = −4p(0)

3

du(1)

dx
+ 5

2
Kn

d

dx

[
(T (0) )(n+1)/2 dT

(1)

dx

]
, (17)

respectively, and they are supplemented by the linearized form of the gas equation of state,

p(1) = 1

2
(T (0)ρ (1) + ρ (0)T

(1)
). (18)

The system of equations is subject to a set of wall impermeability,

u(1)(0) = U
(1)
w , u(1)(1) = 0, (19)

and heat flux,

q(1)(0) = Q
(1)
w , q(1)(1) = 0, (20)

boundary conditions, where, in accordance with the Fourier law,

q(1)(x) = −15

8
Kn

(
μ(0) dT

(1)

dx
+ μ(1) dT (0)

dx

)
, (21)
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and μ(1) = (n + 1)(T (0) )
n−1

2 T
(1)

/2. Notably, by applying the viscosity-based definition of the gas
mean free path [see Eq. (4) et seq.], the Knudsen number introduced in Eq. (3) becomes identical for
all types of molecular interactions considered, and the continuum-limit formulation of the acoustic
problem becomes unaffected at adiabatic reference conditions [see the above Eqs. (15)–(21) with
ρ (0) = T (0) = 1]. Hence, the impact of the gas kinetic model of interaction on sound propagation in
the adiabatic reference setup is found trivial. In marked difference, it is only when considering sound
propagation through nonuniform reference states that the kinetic model of interaction affects the
near-continuum description nontrivially, as manifested through the interaction power n [see Eq. (5)]
appearing in the above O(ε) balances, both explicitly and implicitly in expressions (8), (11), and
(13) for T (0), ρ (0), and p(0), respectively. As demonstrated in the analysis below and illustrated in
Sec. V, this affects the outcome attenuation rate of the acoustic signal.

While not amenable to a closed-form solution, the above problem may be solved numerically by
applying finite-difference (Chebyshev-based) evaluations to the field derivatives. Such a calculation
was carried out to validate the asymptotic analysis below, in addition to DSMC computations.
Different from the asymptotic scheme, the formulation (15)–(21) should be valid in any case
in which the continuum-limit assumptions (Kn � 1, ωKn � 1) are met, including parameter
combinations where acoustic wave reflections from the unperturbed x = 1 wall are significant.
These scenarios are, however, outside the scope of the present investigation, which focuses on
the propagation of sound in the presence of a reference temperature gradient, yet in an effective
“semi-infinite” domain.

A. Acoustic layer

Previous continuum-limit analyses of sound-wave propagation across uniform (initially isother-
mal) gas layers have indicated an exponential decay of the acoustic fields in the form [8,9,11,39–
41]

�
(1)AL
iso ∼ exp

[
−

√
6

5

(
iω + 7

5
ω2Kn

)
x

]
, (22)

showing that the acoustic disturbance is effectively confined to an acoustic layer (AL) of width
∼O(ω2Kn)−1. To avoid the effect of back reflections from the unperturbed boundary, we therefore
focus on a case in which ω2Kn � 1, i.e., ω � Kn−1/2, for which an inner asymptotic layer
expansion may be carried out. Combining with the continuum-limit restrictions on the system length
scale (Kn � 1) and time scale (ωKn � 1), this confines the interval of frequencies,

Kn−1/2 � ω � Kn−1, (23)

to be considered hereafter. With decreasing Kn � 1, the extent of this interval increases, and the
analysis applies to a wider range of higher ω values.

Recalling previous analyses on high-frequency sound propagation at adiabatic reference condi-
tions [17,40,41], the choice of the walls’ separation distance L∗ as the governing length scale [see
Eq. (3)] may seem inappropriate, as the signal is effectively confined to a thin layer in the vicinity of
the source boundary. Indeed, the relevant length scale governing the adiabatic-state problem, apart
from the gas mean free path l∗

c , would be the acoustic wavelength λ∗ = U ∗
th/ω

∗. Using these scales,
the acoustic field in Eq. (22) may be rewritten as

�
(1)AL
iso ∼ exp

[
−

√
6

5

(
i + 7

5

l∗
c

λ∗

)
x∗

λ∗

]
,

revealing the wavelength-based Knudsen number l∗
c /λ∗ as the single nondimensional parameter

governing the propagation of sound at adiabatic reference conditions. Having noted that, and
in marked contrast, the walls’ distance L∗ does become relevant in the nonadiabatic problem,
measuring the characteristic length over which the steady reference fields vary. In this case, the

033401-6



ACOUSTIC WAVE PROPAGATION AT NONADIABATIC …

source-induced perturbations, even if confined to a thin layer, are propagating through an effective
semi-infinite domain characterized by O(1/L∗) gradients of the hydrodynamic quantities T ∗(0)(x∗)
and ρ∗(0)(x∗). The separation distance L∗ in the nonadiabatic reference case then directly affects the
sound propagation and attenuation rate, and its preference over λ∗ as the normalizing length scale is
most suitable for analysis consistency and illustration of the differences between the adiabatic and
nonadiabatic problems.

Considering the nonisothermal reference state in our problem, and taking into account the
adiabatic-limit result in Eq. (22), we assume a general form for the acoustic layer solution

�
(1)AL
noniso = [

�̃1(x) + iωKn�̃2(x) + (ωKn)2�̃3(x) + · · · ] exp
[
iω

(
θ�,1(x) + (ωKn)2θ�,2(x) · · · )],

(24)
where �̃ j (x) and θ�, j (x) are O(1) real functions describing the wave decay rate and phase,
respectively. We seek an inner acoustic-layer solution for the attenuation functions

�̃ j (x) = �̂ j (ξ ), (25)

where

ξ = (ω2Kn)x (26)

denotes the inner-layer coordinate. Assigning Eq. (24) together with Eq. (26) into Eq. (15) and
differentiating yield the leading-order expression for dρ (1)AL/dx,

dρ (1)AL

dx
= −iωρ (0)û1

(
dθu,1

dx

)2

. (27)

A similar substitution into Eq. (17) and x-differentiation yield the leading-order balance for
dT

(1)AL
/dx,

dT
(1)AL

dx
= −2i

3
ωT (0)û1

(
dθu,1

dx

)2

. (28)

Substituting Eqs. (27) and (28) into Eq. (16) in conjunction with Eqs. (11) and (18), the leading
O(ω) x-momentum balance takes the form

dθu,1

dx
= ±

√
6

5T (0)
. (29)

Retaining only the negative root sign, which corresponds to a causal wave traveling in the positive
x-direction, Eq. (29) is integrated. Making use of Eq. (8), and imposing a zero phase boundary
condition at the wall [stemming from the impermeability condition; see Eq. (2)],

θu,1(0) = 0,

we obtain

θu,1(x) = −
√

6

5

(n + 3)

A(n + 2)

[
(Ax + B)(n+2)/(n+3) − B(n+2)/(n+3)]. (30)

In accordance with Eq. (29), the local wave speed is

c(0)(x) =
∣∣∣∣∣
(

dθu,1

dx

)−1
∣∣∣∣∣ =

√
5T (0)

6
, (31)

which, in the isothermal T (0) = 1 case, degenerates into the scaled uniform speed of sound for a
monatomic gas, c(0) = √

5/6. Reverting to the O(ω) balance of the energy equation (17),

T̂1 = −2

3
T (0) dθu,1

dx
û1, (32)
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and combining with Eq. (28), we obtain

dθT,1

dx
= dθu,1

dx
≡ dθ1

dx
, (33)

indicating the same leading-order phase variation of the velocity and temperature perturbations.
The attenuation functions �̃1(x) = �̂ j (ξ ) can now be evaluated using the next-order perturbation

equations. Assigning Eq. (33) into Eq. (16), the O(ω2Kn) momentum balance reads

10

3
p(0)

(
dθ1

dx

)
dû1

dξ
− 4

3
T (0)

(
dθ1

dx

)2

û1 + 5

4
T (0)

(
dθ1

dx

)3

T̂1 + ρ (0)

[
1 − 5

6
T (0)

(
dθ1

dx

)2
]

û2 = 0.

(34)
Substituting Eqs. (32), (33), and (29) into Eq. (34), we arrive at the simplified form

dû1

dξ
+ 7

10p(0)

√
6
(
T (0)

)n

5
û1 = 0. (35)

Observing Eq. (35), the effect of gas nonuniform reference conditions on the attenuation rate may
be quantitated by considering the relative decay ratio

D = (dû1/û1)noniso

(dû1/û1)iso
=

√
5

24

μ(0)(x)

c(0)(x)p(0)
(36)

between the relative velocity variations in the nonisothermal and isothermal configurations. Viewing
Eq. (36), it is inferred that the differences in exponential attenuations between the two setups
may originate from x-variations of the gas viscosity and speed of sound in the nonisothermal
configuration, as well as deviations of the constant ambient pressure p(0) = p(0)(RT , n) from
its isothermal p(0)

iso = 1/2 counterpart. Notably, for a hard-sphere gas [n = 0 in Eq. (5)], the
common square-root temperature dependencies of gas viscosity and speed of sound cancel out,
and the difference in attenuation is attributed only to the change in the ambient pressure. As
p(0)(RT , n = 0) increases monotonically with RT [see Eq. (13) and Fig. 2(d)], sound attenuation
weakens monotonically. At a given RT , this turns out to be the weakest attenuation rate among
all other (0 � n � 1) point-repulsion models of interaction, as the competing effects of temperature
nonuniformity on gas pressure and viscosity in non-hard-sphere gases result in stronger wave decay.

Assigning dξ = ω2Kndx together with Eq. (8) into Eq. (35), we obtain

dũ1

ũ1
= − 7

10p(0)

√
6

5
(Ax + B)n/(n+3)ω2Kndx. (37)

Integrating Eq. (37) and applying the impermeability condition in Eq. (19), we find

ũ1 = U
(1)
w exp

[
− 7

10

√
6

5

(n + 3)

(2n + 3)

ω2Kn

p(0)A

(
(Ax + B)(2n+3)/(n+3) − B(2n+3)/(n+3)

)]
. (38)

Substituting Eqs. (30) and (38) for the wave phase and attenuation into Eq. (24), the leading order
of the velocity field in the acoustic layer is obtained,

u(1)AL
noniso(x) ≈ ũ1(x) exp[iωθu,1(x)]

=U
(1)
w exp

[
−

√
6

5
iω

(n + 3)

(n + 2)A

[
(Ax + B)(n+2)/(n+3) − B(n+2)/(n+3)

]
− 7

10

√
6

5

(n + 3)

(2n + 3)

ω2Kn

p(0)A

(
(Ax + B)(2n+3)/(n+3) − B(2n+3)/(n+3)

)]
. (39)
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The above expression generalizes the previously obtained phase speed and attenuation rate in the
counterpart adiabatic reference problem [see Eq. (22)] to the case of a nonadiabatic setup. In
line with the discussion after Eq. (23), the deviation of the nonadiabatic result from its adiabatic
counterpart is characterized by functions varying over the walls’ separation distance scale L∗
[∼ O(1) in our nondimensional formulation]. Thus, different from the adiabatic problem, the choice
of L∗ as the characteristic length scale here is required, and it illustrates the dissimilarities between
the adiabatic and nonadiabatic system behaviors. Making use of the O(ω) energy balance in Eq. (32),
the counterpart continuity equation, and the equation of state (18), the leading order for the acoustic
pressure is given by

p(1)AL
noniso(x) ≈ 5

3
p(0)

√
6

5T (0)
u(1)AL

noniso(x), (40)

indicating an equal phase yet a different attenuation rate between the velocity and pressure
perturbations. Specifically, the pressure and velocity exponential attenuation is similar, but the
former is further multiplied by the inverse speed of sound, which may be either an increasing
(Q(0)

w > 0) or a decreasing (Q(0)
w < 0) function of x [see Eqs. (8)–(10)].

While the leading-order solutions for u(1)AL
noniso and p(1)AL

noniso satisfy the impermeability condition,
the heat-flux condition in Eq. (20) should still be considered. Evaluation of the leading-order gas
heat-flux perturbation at the wall yields

q(1)AL
noniso(0) = −15

8
Knμ(0) dT

(1)AL
noniso

dx

∣∣∣∣∣
x=0

∼ O(ωKn),

which, since ωKn � 1, cannot be directly matched with an arbitrary O(1) (ε-scaled) choice of Q
(1)
w

[see Eq. (20)]. The above acoustic layer approximation may therefore agree only with an adiabatic
wall condition, whereas a further correction must be sought to study the thermoacoustic problem.
Indeed, in terms of physical interpretation, the acoustic-layer calculation shows that the heat-flux
magnitude remains O(ωKn) � 1 within the layer regardless of the value of Q

(1)
w , necessitating that

any wall-inserted heat is converted into compressible work and internal gas energy at a short distance
from the wall. This requires the formation of a further inner thermal layer (TL), where, for Q

(1)
w ∼

O(1), the conversion of heat into mechanical work yields an effective matching condition for the
velocity (and hence affects the acoustic pressure) in the acoustic layer.

Reverting to the isothermal reference case, previous works have shown that a thermal layer
of width ∼O(

√
Kn/ω) � (ω2Kn)−1 (as ωKn � 1) forms in response to thermoacoustic wall

excitation [17,40,41]. We hence follow a similar assumption in the present nonisothermal setup.
Integrating the energy equation (17) over the layer and retaining the leading-order terms, we obtain
an effective matching condition to complement Eq. (37),

u(1)AL(x → 0) = u(1)TL(x �
√

Kn/ω) = Q
(1)
w

p(0)
− 3iω

4p(0)

∫ x�√
Kn/ω

0
T

(1)TL
(x)dx. (41)

Assigning T
(1)TL

(x) that was obtained in the isothermal reference case [17],

T
(1)TL
iso (x) = − 8Q

(1)
w

15
√

iωKn
exp

[
−

√
2iω

3Kn
x

]
, (42)

we find

u(1)AL
iso (x → 0) = u(1)TL

iso (x �
√

Kn/ω) = 2Q
(1)
w

5p(0)
iso

= 4Q
(1)
w

5
, (43)
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where the isothermal p(0)
iso = 1/2 value has been assigned. In a setup where both mechanical and

thermal excitations are imposed, the matching condition is given by the superposition

u(1)AL
iso (x → 0) = U

(1)
w + 4Q

(1)
w

5
, (44)

suggesting that a wall heat flux of Qw = −5U w/4 eliminates the vibroacoustic far field [17]. The
next section analyzes the thermoacoustic problem in the nonisothermal reference case, where a
counterpart evaluation for the optimal value of Q

(1)
w required for sound cancellation is obtained.

B. Thermal layer

Recalling the general form of the thermal-layer solution in the isothermal reference case [17,39–
41],

�
(1)TL
iso ∼ exp

[
−

√
2iω

3Kn
x

]
, (45)

we seek an inner-layer representation

�
(1)TL
noniso(x) = �̌(η), (46)

where the inner-layer coordinate

η =
√

ω

Kn
x (47)

is introduced. Considering the leading order of the x = 0 thermal boundary condition in Eq. (20),

−15

8
Kn

[
(T (0) )(n+1)/2 dT

(1)TL
noniso

dx

]
x=0

= Q
(1)
w ∼ O(1), (48)

we derive an asymptotic expansion for the temperature perturbation in the thermal layer,

T
(1)TL
noniso = 1√

ωKn
Ť1 +

√
ωKnŤ2 + O(ωKn)3/2, (49)

whereas the asymptotic scaling for the velocity is obtained from the energy balance as

u(1)TL
noniso = ǔ1 + (ωKn)ǔ2 + O(ωKn)2. (50)

A schematic of the double-layer configuration containing the gas thermal and acoustic layers is
shown in Fig. 1, where the purpose of the following analysis is to obtain an effective matching
condition,

u(1)AL
noniso(x → 0) = u(1)TL

noniso(x �
√

Kn/ω),

which takes into account the wall thermoacoustic excitation Q
(1)
w 
= 0.

Assigning Eqs. (49) and (50) together with Eq. (47) into the continuity, momentum, and energy
equations (15)–(17), respectively, we arrive at the leading-order balances

d2ǔ1

dη2
= 3(T (0) )(n+1)/2

4p(0)

d3Ť1

dη3
(51)

and

dǔ1

dη
= 15(T (0) )(n+1)/2

8p(0)

d2Ť1

dη2
− 3i

2T (0)
Ť1. (52)
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FIG. 1. Schematic of the double-layer configuration containing the gas thermal and acoustic layers. The
parameters Kn � 1 and ω � 1 considered are chosen such that the layers are asymptotically thin compared
with the unity slab width.

Combining Eqs. (51) and (52) together with Eq. (8) and introducing

τ
(1)TL
noniso(x) = Kn

dT
(1)TL
noniso

dx
,

we obtain the relations

d2τ
(1)TL
noniso

dx2
− 4iω

3Kn

p(0)

(Ax + B)
τ

(1)TL
noniso = 0 (53)

and

d2u(1)TL
noniso

dx2
= 3

4p(0)
(Ax + B)(n+1)/(n+3) d2τ

(1)TL
noniso

dx2
. (54)

The decoupled Eq. (53) for τ
(1)TL
noniso, subject to wall heat flux and far-field decay conditions, may be

solved in a closed form. Following the calculation in the Appendix, this yields

τ
(1)TL
noniso(x) = −8Q

(1)
w

15

√
Ax + B

B(3n+5)/2(n+3)

Y1
(

4
A

√
ωp(0)

3iKn (Ax + B)
)

Y1
(

4
A

√
ωp(0)B
3iKn

) , (55)

where Y1(·) is the first-order Bessel function of the second kind. We now substitute Eq. (55) into
Eq. (54) and integrate twice. Evaluating the result at x � √

Kn/ω and retaining the O(1) leading-
order term, we obtain the desired matching condition

u(1)AL
noniso(x → 0) = u(1)TL

noniso(x �
√

Kn/ω) = 2Q
(1)
w

5p(0)
noniso

+ O(
√

Kn/ω). (56)

Comparing between Eqs. (56) and (43), we find that the isothermal and nonisothermal setups
differ by replacing the isothermal p(0)

iso = 1/2 with p(0)
noniso = p(0)

noniso(RT , n), respectively. Considering
a case in which both mechanical and thermal excitations are applied, the combined matching
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condition reads

u(1)AL
iso (x → 0) = U

(1)
w + 2Q

(1)
w

5p(0)
noniso

. (57)

The solution for the acoustic field is consequently obtained through replacing U
(1)
w in Eq. (38) by the

right-hand side in Eq. (57). Optimal far-field vibroacoustic sound cancellation is therefore achieved
by taking

Q
(1)
w = −5

2
p(0)(RT , n)U

(1)
w , (58)

which degenerates into the isothermal-setup result,

Qw = −5U w/4,

for RT = 1 [see Eq. (44) et seq.].

IV. NUMERICAL SCHEME: DSMC METHOD

The DSMC method, initially proposed by Bird, is a stochastic particle method commonly applied
for the analysis of gas flows at noncontinuum conditions [42]. In this context, application of the
method to the present problem may seem inefficient, noting the vanishingly small global (slab-
width-based) Knudsen numbers considered (see Sec. V). Yet, the imposition of large excitation
frequencies leads to the formation of thin acoustic layers, where nonsmall rarefaction effects prevail.
At these conditions, the applicability of the continuum description should be validated, for which
the DSMC scheme is used. By doing so, the system acoustic response is calculated independently
to confirm the continuum-limit-based solutions presented in Sec. III.

We therefore adopt Bird’s algorithm, together with the variable hard-sphere (VHS) model of
molecular interaction [42], to simulate the gas state. To enable a comparison between the DSMC
and continuum solutions for Maxwell and hard-sphere molecules, the molecular collision cross
section is defined accordingly, as detailed in Ref. [41]. Complying with the problem formulation,
the boundaries are modeled as fully diffuse and with a prescribed heat flux. To apply the latter, the
boundary temperature is treated as unknown, and a modification of the conventional computational
scheme is required. This is carried out using recent contributions by the authors [40,41,43,44], where
a noniterative algorithm for the imposition of a heat-flux condition has been described and tested.

At the vanishingly small (�10−3) Knudsen numbers considered in this work, DSMC calculations
might become considerably time-consuming, even for the relatively short (∝ω−1) flow time scales
studied. To overcome this difficulty, we capitalized on the thinness of the affected layer to reduce
the computational domain. This was achieved by replacing the actual x = 1 far wall with a “virtual”
closer wall, positioned at a point where the acoustic perturbations effectively vanish. The effective
computational domain was then divided into 200 cells, with an additional division of each cell
into collisional subcells of width l∗

c /4 taken to comply with the mean free path limitations. The
magnitude of the time increment was consequently set to l∗

c /(4U ∗
th ). For the harmonic wall excitation

studied in this work, the computation was followed until the system had reached its final periodic
state. A typical run consisted of ≈ 3 × 107 particles, where 16 realizations were carried out
simultaneously to sufficiently reduce the numerical noise. Each simulation lasted several hours using
a ten-core Intel i7-6950 machine.

V. RESULTS

We now turn to illustrate the effect of system nonadiabaticity on acoustic wave propagation. To
this end, we fix RT = 2 for the nonadiabatic state calculations (apart from Figs. 2 and 4, where the
effect of varying RT is examined), and compare our findings with a reference adiabatic RT = 1 case.
In the nonadiabatic setups, we consider configurations where the hot wall is acoustically perturbed,
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FIG. 2. (a)–(c) Variation with x of the acoustic pressure generated by vibroacoustic (U
(1)
w = 0.02, Q

(1)
w = 0)

wall excitation for (a), (c) hard-sphere (n = 0) and (b) Maxwell-type (n = 1) gas with Kn = 10−4, ω = 700 and
(a,b) RT = 2; (c) RT = 10. The solid blue lines, dashed red curves, and black crosses present finite-difference-
based, asymptotic, and DSMC results, respectively, whereas the dash-dotted green curves depict the reference
adiabatic (RT = 1) signal. All results are presented at period time, t = 2π/ω. (d) Variation with RT of the
relative decay ratioD [see Eq. (36)] for a hard-sphere gas.

thus located at x = 0. In a single case (see Fig. 4), a configuration where the cold wall is actuated
is examined. We choose parameter combinations of Kn and ω that agree with both continuum-limit
(Kn � 1, ωKn � 1) and asymptotic-limit (ω � Kn−1/2) assumptions, and examine the impact
of the gas kinetic law of interaction by comparing between the extremal rigid sphere (n = 0)
and Maxwell (n = 1) molecules setups. The continuum-limit-based results are validated through
comparison with DSMC calculations to support our findings. For convenience, the gas responses to
vibroacoustic and thermoacoustic wall excitations are discussed separately in Secs. V A and V B,
respectively.

A. Vibroacoustic wave propagation

Starting with the case of hot-wall vibroacoustic excitation, we set U
(1)
w = 0.02 and Q

(1)
w = 0 in

Eqs. (19) and (20). Figures 2(a)–2(c) then present respective x-variations of the acoustic pressure
p(1) at period time, comparing between finite-difference-based (solid blue lines), asymptotic (dashed
red curves), and DSMC (crosses) results for Kn = 10−4 and ω = 700. The (Kn, ω) combination
is chosen such that the condition (23) is satisfied, and a comparison is made between the results
for hard-sphere- [Figs. 2(a) and 2(c)] and Maxwell- [Fig. 2(b)] type gases. In Figs. 2(a) and 2(b),
the results are presented for RT = 2, whereas in Fig. 2(c) RT = 10. The agreement between the
solutions is very good in all cases, supporting the accurateness of the analysis. The direct effect
of system nonadiabaticity is illustrated through a comparison with the adiabatic (RT = 1) signal at
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the same (Kn, ω) combination. For easy reference, Fig. 2(d) shows the hard-sphere x-independent
variation of the relative decay ratioD with RT [see Eq. (36) with n = 0], given byD = 1/(2p(0) ).

Focusing on Figs. 2(a) and 2(b) and inspecting the gas layer affected by the wall excitation, we
observe that the acoustic field extends through x � 0.08. This is in order-of-magnitude accordance
with our acoustic-layer estimates, predicting a layer of width ∼ O(ω2Kn)−1. The attenuation rate is
seen to be stronger for a Maxwell gas and weaker for a hard-sphere gas, with both signals extending
further away from the wall compared with the adiabatic wave. This agrees with the discussion in
Sec. III A [see Eq. (36) et seq.], predicting the weakest decay rate (and thus furthest extension)
of the signal in the hard-sphere case. The phases in the nonadiabatic configurations precede the
adiabatic-signal counterpart due to a larger local speed of sound in the vicinity of the x = 0 hot wall
[see Eq. (31)]. No visible phase differences are observed between the two nonadiabatic signals, as
the speed of sound in this limit is a function of the temperature only, being ≈ RT (approximately
n-independent) near the wall [see Eqs. (8) and (9)].

Traversing to Fig. 2(c) and comparing with Fig. 2(a), we first observe the significant effect of
increasing RT (from RT = 2 to 10) on the departure between the nonadiabatic and adiabatic signals,
and the considerable extension of the acoustic layer in the former. Indeed, apart from the O(ω2Kn)−1

asymptotic estimate for the layer size, a closer inspection of the results in Sec. III A reveals the
dependence of the layer width on RT . Focusing on the exponential decay found in Eq. (39) and
taking n = 0 for a hard-sphere gas, we find the estimate

�
(1)AL
noniso ∼ exp

[
−7

5

√
6

5

ω2Kn

2p(0)
x

]
(59)

for the exponentially attenuating part of the nonadiabatic solution. Comparing with the adiabatic
decay rate recalled in Eq. (59), the difference in attenuation between the signals is then attributed
to the D = 1/2p(0) ratio deviation. To clarify its effect, Fig. 2(d) plots the dependence of D
on RT , supporting a monotonic reduction in attenuation with increasing system nonadiabaticity.
Clearly, with the increase in the reference wall heating Q(0)

w , p(0) becomes larger, resulting in the
effective propagation of sound over larger distances. A qualitatively similar conclusion (yet more
cumbersome in detail) arises when considering different non-hard-sphere (0 < n � 1) models of
interaction.

To further assess the validity of the AL solution, Fig. 3 compares between the ω-variations of the
extremal acoustic pressure adjacent to the x = 0 wall, noted p(1)

ext, as predicted by the finite-difference
(solid blue line) and asymptotic (dashed red curve) calculations. A hard-sphere gas with RT = 2 is
considered, the Knudsen number Kn = 10−4 is fixed, and the results are plotted at period t = 2π/ω

time. As a reference, the value of p(1)
ext ≈ −0.014 obtained at ω = 700 matches with the respective

extremal value of p(1) presented in Fig. 2(a) closest to the wall.
In accordance with Eq. (23) and the value of Kn considered, the asymptotic scheme should be

valid for 102 � ω � 104. This is supported by the results in Fig. 3, showing deviations between the
dashed and solid lines for ω � 200 and ω � 103. Notably, the low- and high-frequency breakdowns
of the asymptotic solution are attributed to different mechanisms: for ω ∼ O(Kn−1) = O(104), the
acoustic layer becomes of similar width to that of the Knudsen layer, leading to the breakdown
of the continuum-limit assumption, and to inaccuracies in both asymptotic and finite-difference
continuum-based solutions. In contrast, for ω ∼ O(Kn−1/2) = O(102), only the asymptotic scheme
turns inconsistent, as the estimated layer width [∼(ω2Kn)−1] becomes O(1), and the effect of waves
reflection at the x = 1 wall becomes dominant. Indeed, the backreflection of waves at the far wall
is the cause of the fluctuations observed in the finite-difference solution for ω � 200. This effect
could not be captured by the asymptotic calculation, which assumes wave propagation through an
effectively semi-infinite domain.

To conclude the discussion on vibroacoustic wave propagation, we examine the case of cold-
wall excitation in Fig. 4, where T (0)(x = 0) = 1 and T (0)(x = 1) = RT . For easy reference, the
same parameter values of U

(1)
w = 0.02, ω = 700, and Kn = 10−4 are taken as in Fig. 2, and the
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FIG. 3. Validity of the asymptotic solution for a hard-sphere gas at RT = 2 and Kn = 10−4 subject to
vibroacoustic (U

(1)
w = 0.02, Q

(1)
w = 0) wall excitation: variations with ω of the extremal acoustic pressure

adjacent to the x = 0 wall at time t = 2π/ω, as predicted by the finite-difference (solid blue line) and
asymptotic (dashed red curve) calculations.

x-variations of the acoustic pressure p(1) for Maxwell molecules (n = 1) at period time are
presented. In Figs. 4(a) and 4(b), the results for RT = 2 and 10 are shown, respectively. The
reference adiabatic (RT = 1) signal, appearing as green dashed-dotted lines, is identical with the
one presented in Fig. 2.

Overall, the considerable effect of the reference-state gradient in extending the acoustic wave
penetration depth is observed, in common with the hot-wall excitation response. Nevertheless,
comparing with the results in Fig. 2, some differences are found. At first, in contrast with Fig. 2,
the signals in Fig. 4 occur in phase with the adiabatic signal in the vicinity of the wall, as imposed
by their x = 0 common cold-wall temperature. The phase lead of the nonadiabatic signal is then
achieved with increasing distance from the boundary due to the temperature gradient. Additionally,
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FIG. 4. Variation with x of the acoustic pressure generated by vibroacoustic (U
(1)
w = 0.02, Q

(1)
w = 0) wall

excitation for a Maxwell-type (n = 1) gas with Kn = 10−4, ω = 700, and (a) RT = 2; (b) RT = 10. The solid
blue lines, dashed red curves, and black crosses present finite-difference-based, asymptotic, and DSMC results,
respectively, whereas the dash-dotted green curves depict the reference adiabatic (RT = 1) signal. All results
are presented at period time, t = 2π/ω. Different from Figs. 2 and 3 and the next figures, the heated wall is
located at x = 1, whereas the actuated x = 0 boundary is set at the reference temperature T (0) = 1.
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FIG. 5. Variation with x of the (a) acoustic pressure and (b) velocity perturbation generated by thermoa-
coustic (U

(1)
w = 0, Q

(1)
w = 0.02 × 5p(0)/2) wall excitation for a hard-sphere gas with RT = 2, Kn = 10−4, and

ω = 700. The solid blue lines, dashed red curves, and black crosses present finite-difference-based, asymptotic,
and DSMC results, respectively, whereas the dash-dotted green curves present the reference adiabatic (RT = 1)
signal. All results are presented at period time, t = 2π/ω.

we observe that the pressure wave amplitude is larger in the case of cold-wall excitation [cf.
Figs. 4(a) and 2(b)]. Inspecting the order of magnitude of the acoustic pressure obtained in Eq. (40),

p(1)AL
noniso(x) ∼ p(0)

√
T (0)

U
(1)
w ,

this difference is attributed to the increase in the reference ambient pressure (relative to the adiabatic
case), accompanied by the “local” cold temperature conditions in the vicinity of the actuated wall.
This trend is especially noticeable for RT = 10 [see Fig. 4(b)], where it leads to a slight disagreement
between the asymptotic and numerical (finite-difference and DSMC) solutions. Indeed, at such large
imposed temperature gradients and consequent large pressure fluctuations, the assumption made in
the asymptotic scheme that all the acoustic fields are of the same order [see Eq. (24)] is only partially
satisfied, hence leading to the observed discrepancies.

B. Thermoacoustic wave propagation

Considering the system response to thermoacoustic wall excitation, Fig. 5 presents x-variations
of the acoustic pressure [Fig. 5(a)] and velocity perturbation [Fig. 5(b)] for a hard-sphere gas in
response to boundary actuation at Q

(1)
w = 0.02 × 5p(0)/2 and U

(1)
w = 0 [see Eqs. (19) and (20)]. For

easy reference, the (Kn, ω) = (10−4, 700) combination is chosen as in Fig. 2. Good agreement is
found between the asymptotic, finite-difference, and DSMC solutions, reconfirming the correctness
of the continuum-limit calculations at the relatively high frequency taken. Comparison between
the adiabatic (dashed-dotted green lines) and nonadiabatic signals indicates similar trends to those
observed in Fig. 2, namely the weaker attenuation rate and higher phase speed in the latter,
rationalized in the discussions in Sec. III A after Eqs. (36) and (31), respectively.

Inspecting the pressure signal in Fig. 5(a) and comparing with Fig. 2(a), we observe nearly
identical forms and amplitudes for x � 0.005, outside the thermal layer [∼O(

√
Kn/ω)] in Fig. 5(a),

and within the acoustic layer. Recalling the chosen wall heat flux amplitude, Q
(1)
w = 0.02 × 5p(0)/2,

this agrees with the result obtained in Eq. (58) for the optimal value of Q
(1)
w required to achieve

vibroacoustic sound cancellation. Further inspection of the velocity signal in Fig. 5(b) reveals large
discrepancies between the asymptotic and finite-difference solutions in the vicinity of the wall, to
the extent that the former does not satisfy the impermeability condition at x = 0. Indeed, while
a no-penetration condition is imposed on the numerical solution in Eqs. (15)–(21), the acoustic
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FIG. 6. Validity of the acoustic and thermal layer approximations in the case of thermoacoustic wall
excitation: variations with x of the velocity (blue lines) and heat-flux (red curves) perturbations for a
hard-sphere gas at RT = 2 and Kn = 10−3 subject to wall excitation with Q

(1)
w = 0.02 × 5p(0)/2, U

(1)
w = 0,

and ω = 100. The solid, dashed, and dash-dotted lines present the finite-difference-based, acoustic layer, and
thermal layer solutions, respectively. The vertical dotted line confines the x = √

Kn/ω characteristic size of
the thermal layer. The results are presented at period time, t = 2π/ω.

layer approximation satisfies only a matching condition at the edge of the thermal layer, and is not
expected to capture the correct gas response within x � O(

√
Kn/ω).

To gain further insight into the effect of the thermal-layer matching condition on the acoustic
layer solution, Fig. 6 presents variations with x of the velocity (blue lines) and heat-flux (red
curves) perturbations for a hard-sphere gas at Kn = 10−3 subject to thermoacoustic wall excitation
with amplitude Q

(1)
w = 0.02 × 5p(0)/2 and frequency ω = 100. The solid, dashed, and dash-dotted

lines present the finite-difference, acoustic layer, and thermal layer solutions at time t = 2π/ω,
respectively, and the dotted vertical line marks the approximate size of the thermal layer, x =√

Kn/ω. In terms of the analysis in Sec. III B, the heat-flux perturbation amplitude inside the thermal
layer is given by

q(1)TL
noniso(x) = −15μ(0)τ

(1)TL
noniso(x)/8.

Examining the approximate TL and numerical finite-difference solutions, it is observed that
q(1)

noniso is approximated well by q(1)TL
noniso within the thermal layer. Then, comparing between the solid

and dashed blue curves outside the layer, we find that u(1)AL
noniso converges to u(1)

noniso at larger distances
from the wall. Indeed, the convergence of u(1)AL

noniso to u(1)
noniso is achieved at locations x � √

Kn/ω,
after passing through an intermediate x ∼ √

Kn/ω region where neither the thermal nor acoustic
layer approximations are valid. Similarly to Fig. 5(b), large deviations are observed between u(1)AL

noniso

and u(1)
noniso inside the thermal layer, reillustrating that the acoustic layer solution does not satisfy

the impermeability wall condition – but, instead, fits to cancel out the counterpart vibroacoustic
U

(1)
w = 0.02 signal satisfying u(1)(x = 0) = 0.02 at the presented period time.

VI. CONCLUSION

We investigated the propagation of acoustic waves in a slightly rarefied gas at nonadiabatic
conditions. Considering a planar slab configuration, constant wall heating was applied at the
confining walls to maintain nonuniform temperature and density reference distributions. Acous-
tic excitation was then imposed via small-amplitude harmonic wall oscillations and normal
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heat-flux perturbations. Focusing on continuum-limit conditions of small Knudsen numbers and
high actuation frequencies (yet small compared with the mean collision frequency), the results
indicated that the gas domain affected by wall excitation is confined to a thin acoustic layer in
the vicinity of the excited boundary, and an approximate solution was derived based on asymptotic
expansion of the acoustic fields. The application of thermoacoustic wall excitation necessitated the
formation of an ever thinner thermal layer that governs the transformation of the wall’s unsteady heat
flux into acoustic waves. The results of the approximate analysis, supported by finite-difference-
based and independent direct simulation Monte Carlo calculations, clarified the impacts of system
nonadiabaticity and the gas kinetic model of interaction on sound propagation. Primarily, reference
wall heating results in an extension of the acoustic layer and consequent sound-wave radiation over
larger distances from the wall source. Considering the entire range of inverse power-law (repulsion
point center) interactions, it was also found that wave attenuation is affected by the kinetic model
of gas collisions, yielding stronger decay rates in gases with softer molecular interactions. This
phenomenon could not be encountered in previous adiabatic reference-state studies of the continuum
limit, where proper scaling of the acoustic perturbation problem yields identical formulation for all
power-law models of interaction. Finally, our analysis was used to generalize the adiabatic-system
findings for the amount of boundary heat flux required for the silencing of vibroacoustic sound at
nonadiabatic reference conditions.

The present work examines the impact of system nonadiabaticity on sound-wave propagation in
a planar setup at continuum-limit conditions. One possible extension of the model may therefore
be the inclusion of surface curvature to study its impact on the results. Different from a planar
configuration, acoustic excitation by finite curved bodies results in characteristic sound-wave
attenuation that conserves the total energy radiated by the source. At continuum-limit conditions,
this is coupled to the thermoviscous decay caused by viscous and heat dissipation effects, which
should further alter the acoustic field compared with previous adiabatic-system analyses [40,41].
Consideration of the problem at noncontinuum-limit (intermediate regime) conditions, not studied
in the present contribution, should incorporate application of higher-order hydrodynamic models
or direct numerical solutions of the Boltzmann equation. Here, based on previous adiabatic-system
investigations (e.g., Ref. [41]), it is expected that both acoustic and thermal layers will have a width
similar to that of the Knudsen layer, which may prohibit similar asymptotic analysis of the problem.
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APPENDIX: SOLUTION FOR τ
(1)TL
noniso(x)

Assuming a solution for Eq. (53) of the form

τ
(1)TL
noniso(x) = √

Ax + B�(x)

and substituting into Eq. (53), we obtain a second-order equation for �(x),

(Ax + B)2 d2�

dx2
+ A(Ax + B)

d�

dx
− A2

4

[
16iωp(0)

3A2Kn
(Ax + B) + 1

]
� = 0. (A1)

Applying the change of variables

z = 4

A

√
ωp(0)

3iKn
(Ax + B) , (A2)
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we arrive at the Bessel equation,

z2 d2�

dz2
+ z

d�

dz2
+ (z2 − 1)� = 0, (A3)

amenable to the general solution

�(z) = cJJ1(z) + cY Y1(z), (A4)

where J1(z) and Y1(z) are the first-order Bessel functions of the first and second kind, respectively.
Assuming far-field decay of the solution, we set cJ = 0. Application of the wall condition

τ
(1)TL
noniso(x = 0) = − 8

15(T (0) )(n+1)/2
Q

(1)
w (A5)

then fixes cY , and specifies the particular solution in Eq. (55).
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