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a b s t r a c t

We consider the acoustic field of a thin flexible filament subject to uniform mean flow and

a ‘hanging chain’ tension force parallel to its unperturbed state. The filament is actuated via

harmonic heaving motion at its upstream edge with prescribed frequency and small ampli-

tude. To investigate the effect of filament flexural rigidity, we analyze the system acoustic

radiation in the entire range of body structural stiffnesses. Assuming two-dimensional high

Reynolds and low Mach number flow, we apply a near-field description based on potential

thin airfoil theory. The near-field model is then used to formulate the source term in the

Powell-Howe acoustic analogy. The far field sound is calculated applying a compact Green’s

function approach, yielding the leading order acoustic dipole field. In the limit of small flex-

ural stiffness, we find that the acoustic field of a highly-elastic filament converges to the far

field of a hanging membrane, dominated by the wake dipole sound. The wake sound compo-

nent also dominates the system radiation in the limit of small actuation frequencies, where

the filament deflects as a rigid body regardless of its structural stiffness. Sufficient increase in

heaving frequency intensifies the relative contribution of filament motion dipole, resulting in

significant differences between systems with different rigidities. Reflecting the impact of fil-

ament elasticity, these differences manifest the system’s natural frequency response, leading

to increased levels of sound for actuations at the system’s eigenstates. In cases where the trail-

ing edge wake and motion dipoles acquire similar amplitudes and opposite phases, significant

sound reduction is found.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The acoustics of fluid-structure interactions, coupling the near-field fluid-structure dynamics of a body with its far acoustic

signature, is a topic of extensive studies owing to its relevance in a large variety of engineering and natural applications [1].

These include, among others, the modeling of palatal snoring and its control [2]; the production of “insect songs” and its social

role in various species of flies [3,4]; the analysis and biomimicry of silent flight in birds [5,6]; and the study of turbomachinery

aerodynamic noise, a key component in aviation sound pollution [7,8]. All of these have motivated ongoing progress in the field

of vibroacoustics, where the far-field noise generated by mechanically- and flow-induced body motions is considered. Existing

studies are typically based on an acoustic analogy technique, where the near-field calculation serves as an effective source

term, and an appropriate analogy is applied to predict the far acoustic pressure. Such a scheme appears superior over a direct

numerical calculation of the entire flow field, as the far radiated signal turns prohibitively small (and, at some point, of the order
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of the numerical error of the pertinent computational solver) far enough from the source. A first step into application of this

approach is therefore the determination of the near-field fluid-structure dynamics of the configuration of interest.

Focusing on the near-field interaction between elastic bodies and a surrounding flow field, a large number of recent works

have considered the model “flapping flag” problem, where a thin filament is immersed in uniform flow and exhibits either

flow-induced or mechanically-imposed motions [9,10]. The associated setup has been shown relevant in a variety of applica-

tions, including the development of energy harvesting methodologies [11] and the optimization of propulsion efficiencies in

single- and multi-body environments [12,13]. In the context of aeroacoustics, the flag model has been applied to evaluate the

aerodynamic sound radiated during flapping flight [14,15].

In common to the above near- and far-field investigations, structural elasticity, modeled as a flexural stiffness term in the

filament equation of motion, has a key effect in determining the system dynamics, in terms of both body motions and associated

body-flow interactions. Yet, a detailed investigation of the gradual impact of rigidity on the system aeroacoustic properties is

lacking. Such a study should rationalize the effect of body flexibility, at different magnitudes, on the system acoustic signature.

In particular, the results may indicate on optimal conditions where the noise may be minimized, as a possible means for sound

monitoring.

The present work aims at studying the effect of body flexural stiffness, varying between vanishingly small (membrane) and

exceedingly large (rigid body) values, on its far-field signature. In the small-stiffness limit, large body deformations develop

unless the dampening effect of filament tension is taken into account. Indeed, inasmuch as bending rigidity exists for all elas-

tic structures, tension forces always prevail to some extent. Such forces may originate from either structure-induced effects,

viscous boundary layer loading, or other forms of external forcing acting parallel to the unperturbed body state. In the small-

amplitude motion regime, it was shown that the effect of structure-induced tension is of higher order and may be neglected

[16]. Additionally, the relatively small magnitude of drag-induced tension at high Reynolds numbers makes its impact relatively

minor [17]. Small-amplitude motion at small stiffness rates may consequently occur in the presence of stronger tension forces.

To consider the effect of externally-induced tension at low-rigidity conditions, several works have examined the “hanging-

filament” setup. Among others, Datta and Gottenberg [18] have studied the free vibrations developed in an infinitely long elastic

strip hanging vertically in a downward stream, by using a simplified model for the fluid pressure loading. Lemaitre et al. [19]

have applied a similar theoretical approach to analyze the flutter instability of a long ribbon hanging in axial flow, and validated

their results experimentally. Several workers have later on suggested the hanging-filament setup as an efficient means for

energy harvesting purposes [20–22]. The specific efficiency of a piezoelectric membrane hanging in axial flow was analyzed in

detail [22,23]. In a recent contribution, the singular limit of small stiffness ratio has been examined for a “hanging flag” setup

[24]. The convergence of a beam-type (having arbitrarily small rigidity) to a membrane-type description has been discussed,

and the inevitable effect of body stiffness on the structure dynamics near its end points has been analyzed.

In view of the above investigations on the effect of small stiffness ratio on the motion of hanging elastic bodies, a study on

their far-field properties is of interest. Apart from the fundamental significance of such a study, it may be useful for analyzing the

acoustic field of the associated energy harvesting systems, generally known as a major concern in the design of industrial wind

farms [25]. In common with Ref. [24], we consider a “hanging flag” setup. This permits investigation of the system far field sound

in the entire range of body flexural rigidities, while maintaining the assumption of small-amplitude structural deflections even

in the limit of vanishing rigidity. The two-dimensional configuration consists of a thin filament subject to leading-edge heaving

actuation and a gravity force acting in parallel to the structure unperturbed state. Small body deflections are considered, so that

the filament equation of motion may be linearized about its non-deflected state. Low-Mach and high-Reynolds number flow

conditions are assumed, enabling application of a compact-body acoustic analogy for the prediction of the far field sound. In the

subsequent section, the near- and far-field problems are formulated. Our results, analyzing the system response to harmonic

actuation, are presented in Section 3, and concluding comments are given in Section 4.

2. Problem formulation

Schematic of the problem is shown in Fig. 1. Consider a two-dimensional setup of a thin elastic filament of chord 2a immersed

in uniform flow of speed U in the x1-direction. The filament is subject to a ‘hanging-chain’ gravity-induced tensile force [26]

T(x1) = 𝜌sg(a − x1), (1)

where 𝜌s marks the structure mass per unit area, and g is the constant of gravitational acceleration. Mechanical loading is applied

to the body, in the form of harmonic leading-edge heaving actuation

𝜉(−a, t) = 𝜀ha sin
(
𝜔ht

)
. (2)

In Eq. (2), 𝜉(x1, t) denotes the filament displacement in the x2-direction, 𝜀h ≪ 1 is the scaled heaving amplitude (with an overbar

marking a non-dimensional quantity), and 𝜔h is the prescribed heaving frequency. In what follows, we investigate the acoustic

far field generated by the fluid-structure interaction of the vibrating body with the flow. In a practical setup, the physical appa-

ratus driving the filament actuation (2) should also contribute to the near- and far-field behaviors of the system. While such

consideration is particularly important when conducting experimental measurements (see, e.g. Purohit et al. [27]), we regard

this mechanism as “ideal” hereafter, so that its impact on the filament signature is not analyzed. High Reynolds and low Mach

number conditions are assumed, thus considering the near field to be inviscid and incompressible. Compressibility effects are
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Fig. 1. Schematic of the hanging-filament setup.

taken into account when analyzing the far-field sound, focusing on the low-frequency limit of an acoustically compact configu-

ration.

2.1. Recapitulation of the near-field model

We make use of the near-field description formulated in Ref. [24] to examine the effect of body flexural rigidity on the system

acoustic signature in the entire range of stiffness values. For later convenience, the near-field model is recapitulated.

Assuming small-amplitude motion, the filament displacement 𝜉(x1, t) is governed by the linearized equation of motion

𝜌s
𝜕2𝜉
𝜕t2

+ EI
𝜕4𝜉

𝜕x4
1

− 𝜌sg
𝜕
𝜕x1

((
a − x1

) 𝜕𝜉
𝜕x1

)
= Δp(x1, t), (3)

balancing structural inertia, bending stiffness, tensile force, and fluid loading terms. On the right-hand side, Δp = p− − p+
marks fluid pressure jump between the filament lower (p−) and upper (p+) surfaces. Applying thin-airfoil theory, Δp(x1, t) is

determined by the unsteady Bernoulli’s equation,

Δp(x1, t) = 𝜌0U𝛾
(

x1, t
)
+ 𝜌0

𝜕
𝜕t ∫

x1

−a

𝛾 (s, t)ds, (4)

where 𝜌0 denotes the fluid mean density, and 𝛾
(

x1, t
)

marks the distribution of filament circulation per unit length along the

chord. Eqs. (3) and (4) are supplemented by the unsteady Kutta condition,

𝛾(a, t) = 0, (5)
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imposing regularization of the flow at the structure downstream end, together with a set of actuated-free end conditions (see

Eq. (2)),

𝜉(−a, t) = 𝜀ha sin(𝜔ht) ,
(
𝜕𝜉
𝜕x1

)
(−a,t)

= 0 ,

(
𝜕2𝜉

𝜕x2
1

)
(a,t)

= 0 ,

(
𝜕3𝜉

𝜕x3
1

)
(a,t)

= 0. (6)

Necessitated by the unsteady flow conditions and the Kelvin theorem, continuous vortex shedding occurs at the structure

surface. At the small angles of attack assumed, the flow at the filament upstream end and along its chord is regarded attached,

and release of vorticity is allowed only at the structure downstream edge. To describe the time evolution of filament wake, we

make use of a discrete-vortex model [24,28], where, at each time step, a concentrated line vortex is released to the flow, with its

strength Γk fixed by the Kelvin theorem and the instantaneous time change in filament circulation (see Fig. 1). At each time step

Δt, the nascent point vortex is placed at a distance UΔt in the mean-flow direction from the instantaneous position of the trailing

edge. Once released, the trajectory of each wake vortex follows from a potential-flow calculation, as formulated below (see Eq.

(10)). Applying complex notation and denoting the conjugate velocity of the potential flow-field by W (z), the impermeability

condition takes the form

𝜕𝜉
𝜕t

+ U
𝜕𝜉
𝜕x1

= − Im{W(z)|−a≤x1≤a}, (7)

where

W(z) = U − i

2𝜋

(
N∑

k=1

Γk

z − zΓk

+ ∫
a

−a

𝛾 (s, t)ds

z − s

)
. (8)

At the filament surface

W(z)|−a≤x1≤a = U − i

2𝜋

(
N∑

k=1

Γk

x1 − zΓk

+ ⨏
a

−a

𝛾 (s, t) ds

x1 − s

)
, (9)

where the barred integral sign denotes a Cauchy principal value integral. In Eqs. (7)–(9), z = x1 + ix2 marks the complex

representation of a point in the plane of motion, and zΓk
= zΓk

(t) denotes the instantaneous location of the k-th trailing edge

vortex. Applying potential-flow theory, the motion of each of the wake vortices is governed by

dzΓk

dt
= W∗

Γk
(k = 1, 2,… ,N), (10)

where W∗
Γk

marks the complex conjugate of the conjugate velocity induced at the instantaneous location of the k-th wake vortex

after removing its self-singularity,

WΓk
= U − i

2𝜋

⎛⎜⎜⎜⎝
N∑

m=1
m≠k

Γm

zΓk
− zΓm

+ ∫
a

−a

𝛾
(

x1, t
)

dx1

zΓk
− x1

⎞⎟⎟⎟⎠ . (11)

The total system circulation is conserved by applying the Kelvin’s theorem,

ΓN = −

(
N−1∑
k=1

Γk + ∫
a

−a

𝛾(x1, t)dx1

)
, (12)

which fixes the strength of the nascent vortex ΓN. We formulate an initial-value problem, and assume that release of the first

trailing edge vortex occurs at t = 0, where the filament initial deflection vanishes. At the same time, leading-edge actuation

commences, and the system evolution follows through its final periodic state. Details regarding the numerical procedure are

given in Section 2.3.

2.2. Acoustic-field description

We now turn to analyze the far-field radiation of the system, where the near-field description serves as an effective “source

term”. Considering the present low-Mach and high-Reynolds number setup, the acoustic field is governed by the equation of

vortex sound [29],(
1

c2
0

𝜕2

𝜕t2
− ∇2

)
B = div (𝛀 × 𝐯) , (13)
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where c0 marks the mean speed of sound, B = ∫ dp∕𝜌 + v2∕2 denotes fluid total enthalpy for homentropic flow (with p, 𝜌 and

v marking the fluid acoustic pressure, density and velocity magnitude, respectively), v is the fluid velocity, and 𝛀 is the vorticity

vector. The latter is composed of the discrete contributions of wake vortices,

𝛀 =
N∑

k=1

𝛀Γk
= �̂�3

N∑
k=1

Γk𝛿
(
𝐱 − 𝐱𝚪𝐤(t)

)
, (14)

and 𝛿 denotes the Dirac delta function. In the far-field (|𝐱| → ∞)

B (𝐱, t) ≈ p (𝐱, t) ∕𝜌0, (15)

and we focus on evaluating the distant |𝐱| → ∞ approximation for p(x, t). Applying a Green’s function approach, we formulate

the problem satisfied by the Green’s function G [29],(
1

c2
0

𝜕2

𝜕t2
− 𝛁2

)
G
(
𝐱, 𝐲|t − t0

)
= 𝛿 (𝐱 − 𝐲) 𝛿

(
t − t0

)
, (16)

where x and y denote observer and point-source vector locations, respectively, and t0 marks the time instant of source action.

Imposing a Neumann-type boundary condition of a vanishing normal derivative of G over the filament surface, (𝜕G∕𝜕yn)filament =
0, and making use of Eq. (15), we arrive at an expression for the far-field acoustic pressure,

p (𝐱, t) ≈ −∫
∞

−∞
d𝜏 ∫

∞

−∞
𝜌0 (𝛀 × 𝐯) ∇Gd3𝐲 + ∫

∞

−∞
d𝜏 ∮filament

𝜌0G
𝜕vn

𝜕𝜏
dS (𝐲) , |𝐱| → ∞, (17)

where vn marks the component of fluid velocity normal to the filament.

We consider a case where the airfoil is acoustically compact, in which the characteristic size of the source (being the fil-

ament length) is much smaller than the acoustic wavelength. Assuming an acoustic wave with frequency 𝜔0 and associated

wavelength 𝜆0 = 2𝜋c0∕𝜔0, this is equivalent to requiring that a∕𝜆0 = M(𝜔0a∕2𝜋U) ≪ 1, where M = U∕c0 is the mean-

flow Mach number. At the low-Mach flow conditions considered, source compactness is therefore ensured when sufficiently

low wave frequencies (in convective U∕a units) are taken. The two-dimensional compact Green’s function applied is [29].

G(𝐱, 𝐲, t − 𝜏) ≈ 𝐱 ·𝐘
2𝜋
√

2c0|𝐱|3∕2

𝜕
𝜕t

{
H(tr − 𝜏)√

tr − 𝜏

}
, |𝐱| → ∞, (18)

where tr = t − |𝐱| ∕c0 denotes the acoustic retarded time, H is the unit step function, and Y(y) marks the Kirchhoff vector, which

components express flow potentials of unit flow over a thin flat airfoil in the y1- and y2-directions,

𝐘(𝐲) =
(

y1,Re

{
−i

√(
y1 + iy2

)2 − a2

})
, (19)

respectively.

Taking account of the linear property of the far-field problem and the above form of the acoustic Green’s function, the acoustic

pressure may be expressed as a superposition of “filament motion” and “wake” contributions,

p(𝐱, t) = p𝜉(𝐱, t) + pw(𝐱, t), (20)

where

p𝜉(𝐱, t) = 𝜌0 ∫
∞

−∞ ∮filament

G (𝐱, 𝐲, t − 𝜏) 𝜕
2𝜉

𝜕𝜏2
dS(𝐲)d𝜏 (21)

and

pw(𝐱, t) = −𝜌0

N∑
k=1

∫
∞

−∞ ∫
(
𝛀Γk

× 𝐕Γk

)
· 𝜕G

𝜕𝐲 (𝐱, 𝐲, t − 𝜏) dS(𝐲)d𝜏. (22)

In Eqs. (21) and (22),  denotes the fluid volume occupying all vortices, and 𝐕𝚪𝐤 marks the velocity vector of the kth wake

vortex. Substituting Eqs. (14), (18), and (19) into Eqs. (21) and (22) yields

p𝜉(𝐱, t) = 𝜌0 cos𝜃

2𝜋
√

2c0 |𝐱| 𝜕𝜕t ∫
tr

−∞

d𝜏√
tr − 𝜏 ∫

a

−a

√
a2 − y2

1

𝜕2𝜉
𝜕𝜏2

(y1, 𝜏)dy1 (23)

and

pw(𝐱, t) =
N∑

k=1

⎛⎜⎜⎝
𝜌0Γk sin𝜃

2𝜋
√

2c0 |𝐱| 𝜕𝜕t ∫
tr

−∞

V
(2)
Γk

(𝜏)d𝜏√
tr − 𝜏

− 𝜌0Γk cos𝜃

2𝜋
√

2c0 |𝐱| 𝜕𝜕t ∫
tr

−∞

d𝜏√
tr − 𝜏

(
V
(1)
Γk

(𝜏)𝜕Y2

𝜕y2

− V
(2)
Γk

(𝜏)𝜕Y2

𝜕y1

)
𝐱𝚪𝐤 (𝜏)

⎞⎟⎟⎠ . (24)
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In Eq. (24), V
(j)
Γk

marks the velocity component of the kth wake vortex in the xj-direction. The angle 𝜃 indicates the far-field

observer’s directivity, and is measured relative to the x2-axis in the clockwise direction. The cos𝜃 = x2∕ |x| and sin 𝜃 = x1∕ |x|
terms in (23) and (24) therefore correspond to “lift” and “suction” dipole-type radiations. The wake vortex sound includes both

lift and suction dipoles, reflecting vortices displacements in the x1 and x2 directions, respectively. The filament motion dipole

contains only a lift component, and therefore vanishes along the mean-flow (𝜃 = 𝜋∕2) direction. The suction dipole (∝ sin 𝜃)

contained in the wake sound expression reflects the effect of leading edge suction force and consequent contribution to the

release of trailing edge vortices.

Calculation of the far-field pressure components is carried out numerically, based on the near-field solution described in

Section 2.1. In the limit case of a rigid filament, p𝜉 may be expressed in a closed form by substituting

𝜉(x1, t) = 𝜉rigid(x1, t) = 𝜀ha sin
(
𝜔ht

)
(25)

into Eq. (23) and taking the long-time limit. This yields

p𝜉rigid
(𝐱, t) ≈

√
2𝜋𝜌0a3 cos 𝜃

4
√

c0 |𝐱| 𝜀h𝜔
5∕2

h
cos

(
𝜔htr − 𝜋∕4

)
, tr ≫ 𝜔−1

h
, (26)

indicating an O(𝜔5∕2

h
) power increase in filament motion sound with increasing pitching frequency [30].

2.3. Scaling and numerical analysis

To obtain a numerical solution, the dimensional problem formulated in Sections 2.1 and 2.2 is non-dimensionalized using

the aerodynamic scales a, U, a∕U, 𝜌0U2 and 2𝜋aU for the length, velocity, time, pressure and vortices circulations, respectively.

Omitting presentation of the full non-dimensional problem for brevity, the scaled form of the filament equation of motion (3) is

𝜇 𝛼
𝜕2𝜉

𝜕t2
+ R

𝜕4𝜉

𝜕x4
1

− 𝜕
𝜕x1

((
1 − x1

) 𝜕𝜉
𝜕x1

)
= 𝛼Δp, (27)

accompanied by the scaled form of the boundary conditions (6),

𝜉(−1, t) = 𝜀h sin(𝜔ht) ,

(
𝜕𝜉
𝜕x1

)
(−1,t)

= 0 ,

(
𝜕2𝜉

𝜕x2
1

)
(1,t)

= 0 ,

(
𝜕3𝜉

𝜕x3
1

)
(1,t)

= 0. (28)

The near-field problem is then governed by the non-dimensional parameters

𝜇 = 𝜌s

𝜌0a
, 𝛼 = 𝜌0U2

𝜌sg
, R = EI

𝜌sga3
, 𝜀h and 𝜔h = a

U
𝜔h, (29)

denoting the filament to fluid mass ratio, fluid to filament gravity-driven inertia, normalized filament rigidity, and scaled heaving

amplitude and frequency, respectively. To illustrate our findings, we consider a case where small-amplitude heaving is applied,

𝜀h = 0.01, and take a fixed choice of 𝜇 = 5 and 𝛼 = 0.2. We then investigate the impact of the body stiffness parameter R, and

the heaving actuation frequency 𝜔h , on the system acoustic radiation. By varying R between the values R ≪ 1 and R ≫ 1, we

aim at characterizing the differences between the acoustic properties of a highly elastic and a nearly rigid body. The limit cases

of a membrane (R = 0) and a rigid filament (R → ∞) are taken as reference setups, and the above-mentioned choice of𝜇 = 5 and

𝛼 = 0.2 ensures that no large-amplitude filament displacements occur. Our numerical calculations indicate that no qualitative

differences are observed when choosing other subcritical (𝜇, 𝛼) combinations.

Applying the same non-dimensionalization to the acoustic problem, the normalized form of the acoustic pressure becomes

p(𝐱, t) =

√
M

8 ||𝐱||Πtot(tr) =

√
M

8 ||𝐱||
(
Π𝜉(tr) + Πw(tr)

)
, (30)

where

Π𝜉(tr) =
2

𝜋
cos 𝜃

𝜕

𝜕t ∫
tr

−∞

d𝜏√
tr − 𝜏

∫
1

−1

√
1 − y2

1

𝜕2𝜉
𝜕𝜏2

(y1, 𝜏)dy1 (31)

and

Πw(tr) =
N∑

k=1

2Γk

⎛⎜⎜⎜⎜⎜⎝
sin𝜃

𝜕

𝜕t ∫
tr

−∞

V
(2)
Γk

d𝜏√
tr − 𝜏

− cos𝜃
𝜕

𝜕t ∫
tr

−∞
Re

⎧⎪⎪⎨⎪⎪⎩
(

V
(1)
Γk

+ iV
(2)
Γk

)
zΓk

d𝜏√(
tr − 𝜏

)(
z2
Γk

− 1
)
⎫⎪⎪⎬⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠
. (32)
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Late-time evaluation of Π𝜉rigid
(cf. Eq. (26)) yields

Π𝜉rigid
(tr) ≈ −

√
2

𝜋
cos 𝜃 𝜀h 𝜔

5∕2

h
cos

(
𝜔htr − 𝜋∕4

)
, tr ≫ 𝜔−1

h
. (33)

Results for the acoustic field are presented in terms of the acoustic “kernels” Πtot, Π𝜉 and Πw. In addition to the

non-dimensional parameters in Eq. (29), the acoustic pressure is also governed by the observer far-field directivity, 𝜃 =
cos−1(x2∕ |𝐱|). Since the “lift” (𝜃 = 0) dipole is considerably larger than the “suction” (𝜃 = 𝜋∕2) component, we present our

results in terms of the former only. Additionally, while the scheme of solution follows the system evolution since t = 0 (when

heaving actuation commences), we skip the description of the initial transient response, and focus on analyzing the system final

periodic state.

3. Results

We start by examining the system behavior in the low stiffness limit of R ≪ 1. Towards this end, Fig. 2 examines the conver-

gence of the far-field radiation of a highly-elastic filament (R → 0) to a membrane (R = 0) system. Fig. 2a presents the variation

with heaving frequency of the lift dipole amplitude for several values of 0 ≤ R ≤ 10−1. Also presented are the frequency varia-

tions of the maximal structure deflection in Fig. 2b (obtained at the filament free end) and the amplitude of structure circulation

(Fig. 2c), given by

Γs(t) = ∫
1

−1

𝛾(x1, t)dx1. (34)

In common to all figures, the effect of increasing R on the far- and near-field system behaviors is nearly indiscernible for

𝜔h ≲ 1. Yet, for 𝜔h ≳ 1, all R ≠ 0 systems deviate from the membrane R = 0 response, where the deviation occurs at lower

R for higher 𝜔h. Convergence between the membrane and elastic-filament systems is therefore achieved at smaller actuation

Fig. 2. Effect of actuation frequency on the system response at low rigidities: convergence of the filament to the membrane solution for R → 0. (a) Lift-dipole amplitude;

(b) maximal filament deflection; (c) filament circulation amplitude. The results are presented for R = 0 (solid line —–), 10−5 (dashed line - - -), 10−4 (dotted line · · ··), 10−3

(dash-dotted line -·−·-), and 10−1 (solid circled line -◦ − ◦-). The dashed vertical lines denote the membrane (R = 0) in vacuo eigenfrequencies, and the thin solid curve in

Fig. 2b marks the membrane maximal deflection at in vacuo conditions.
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frequencies for larger R. Focusing on the system lift dipole in Fig. 2a, we also observe that, in general, the highest sound levels

are generated by the membrane. Thus, when considering highly elastic configurations, bending stiffness tends to attenuate the

sound level produced by the system. One exception is depicted by the R = 10−1 curve, showing that the R = 10−1 setup turns

noisier than the membrane (and all other R ≤ 10−1 systems) in the vicinity of 𝜔h ≈ 2.4.

To rationalize this result, Fig. 2b and 2c presents the frequency variations of the maximal structure deflection and total

circulation. The results support the above observation by showing an increase in the deflection and circulation amplitudes at

R = 10−1 and 𝜔h ≈ 2.4, above the counterpart R = 0 values. At a fixed value of R, Fig. 2b illustrates a resonance-like response

of the system, where peak values are obtained at the system eigenfrequencies. This is reminiscent of the “hanging chain” in

vacuo system response shown by the thin solid line [26]. Taking the membrane as a reference setup, any increase in R results

in a shift in the system resonance frequencies to larger values. Thus, at a large enough value of the filament rigidity (as in the

R = 10−1 case), the shifted eigenfrequency occurs at a frequency that is far from the respective resonance of the membrane. It

is therefore the accumulative change with R in the near-field fluid-structure interaction, reflected by the differences between

systems eigenfrequencies and associated structures circulations, that results in increased noise levels of the elastic-body system.

The acoustic field of a highly elastic filament is further analyzed in Fig. 3a–d, focusing on the case of a membrane (R = 0),

and presenting the effect of the actuation frequency on the total lift dipole Πtot, together with its motion (Π𝜉) and wake (Πw)

components. The results are illustrated at the first four eigenfrequencies of the membrane, 𝜔h ≈ 0.8, 1.8, 2.8 and 3.9, as depicted

by the bold solid line in Fig. 2b. Keeping the same frequencies, Fig. 3e–h shows the instantaneous wake forms of the system,

obtained at period time.

Starting with Fig. 3a–d, the results indicate that the wake dipole amplitude is larger than the motion dipole, and that the two

contributions generally counteract. Consequently, the total signal levels in between the two components, and is slightly weaker

than the wake dipole. The results further show that, while low-frequency (𝜔h ≲ 1) actuations result in a nearly harmonic signal

(as in Fig. 3a), higher-frequency responses (as in Fig. 3b–d) are characterized by more complex waveforms. As illustrated by

Fig. 3f–h, these are associated with increasingly irregular wake forms. Inspecting the motion and wake dipole components

presented in Fig. 3b–d, we find that it is the motion dipole contribution, rather than the wake component, associated with a

more complex flapping motion at increasing frequencies, that results in the non-harmonic form of the total signal.

To examine the effect of non-small filament rigidities on the system far-field response, Fig. 4 compares between the 𝜔h-

variations of the motion (dashed line), wake (dash-dotted line) and total (solid curve) lift dipole amplitudes for R = 0, 0.1, 2

and 103. The dashed vertical lines mark the in vacuo eigenfrequencies at each R. With increasing R, the differences between

consecutive eigenfrequencies increase, so that for the largest R = 103 presented (Fig. 4d), none of the in vacuo eigenvalues is

contained within the 0 < 𝜔h ≤ 5 interval.

The membrane system response, presented in Fig. 4a, reproduces the results in Fig. 3 for all frequencies considered, indicating

that the wake sound dominates the motion contribution at all conditions. The total dipole amplitude then lies between the

two components, showing that the motion and wake dipoles essentially counteract. Increasing the filament rigidity to R = 0.1

(Fig. 4b), we find that, while the wake dipole remains the dominant source of sound at most frequencies, the motion dipole

becomes of similar amplitude in the vicinity of the second filament eigenfrequency, as well as towards the third eigenfrequency

(not presented here). Increasing R further in Fig. 4c and 4d, the results indicate a threshold frequency (𝜔h ≈ 2.6 for R = 2;

𝜔h ≈ 1.2 for R = 103), above which the motion dipole becomes dominant. Notably, for R = 103, the filament motion dipole

coincides with its rigid-body counterpart in Eq. (33), shown by the dashed line in Fig. 4d. At this value of R and the interval of

frequencies considered, the filament may therefore be treated as a rigid body. Since the motion dipole increases as O(𝜔5∕2

h
), it

practically becomes the sole source of sound at large enough frequencies. This is illustrated by the convergence of the
|||Π𝜉

||| curve

to the ||Πtot
|| line in Fig. 4d for 𝜔h ≳ 3.

Reviewing the results in Fig. 4, we find that the acoustic signal is dominated by the wake contribution at low enough actuation

frequencies for all R. With increasing R and at non small frequencies, the motion dipole overcomes the wake contribution. When

considering large enough R, the system captures its rigid-body signature within an increasingly wider interval of frequencies.

The extent of the 𝜔h interval through which the system acquires a rigid body response may be assessed by comparing between

the solid lines in Fig. 4a–d. Thus, taking the solid line in Fig. 4d for R = 103 as the reference “rigid-body signature”, we observe

that the solid lines in Fig. 4a–c are nearly identical at low enough 𝜔h < 1. With increasing 𝜔h, these curves deviate from the

rigid-body result at increasingly larger 𝜔h for larger R. This deviation reflects the effect of system elasticity on the system

signature, realized by the non-trivial flapping motion and associated wake dynamics (see Fig. 3e–h).

To fully illustrate the system transition between its “rigid” and “non-rigid” fluid-structure interaction characteristics, Fig. 5a

presents the variations with R of the lift dipole amplitude at discrete values of 𝜔h . Here the dashed horizontal lines mark the

membrane and rigid-body limit values. Fig. 5b shows the variation with 𝜔h of the phase difference 𝜑 between the motion and

wake lift dipoles at the indicated values of R. The phase difference is defined by the radian difference between the occurrences

of max
|||Πξ

||| and max ||Πw
|| along a period. The values of 𝜑 = 0, 2𝜋 correspond to in-phase signals, whereas 𝜑 = 𝜋 denotes

counter-phase signals.

Starting with low-frequency actuations, both figures support the previous observation that for small enough 𝜔h the structure

deflects as a rigid body. This can be viewed by the exceedingly small R-variations in the 𝜔h = 0.5 curve in Fig. 5a, as well as by
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Fig. 3. Effect of actuation frequency on the membrane (R = 0) response: far field radiation and wake dynamics. (a–d) Period time variations of the total lift dipole and its

components for 𝜔h = 0.8 (a), 1.8 (b), 2.8 (c), and 3.9 (d). The solid (—-), dashed (- - -) and dash-dotted (-·-·-) curves mark the total (Πtot), motion (Π𝜉 ), and wake (Πw) lift

dipoles, respectively. (e–h) Instantaneous wake forms at period time. The blue and red dots mark vortices with counterclockwise and clockwise vorticities, respectively.

The solid lines show the instantaneous filament shapes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

the convergence of all curves in Fig. 5b to a single phase at low 𝜔h. With increasing frequency, however, filament elasticity

turns significant, and affects the system acoustic signal. Thus, for 𝜔h ≳ 1, the total sound amplitude exhibits local and global

extrema at intermediate values of R between the membrane and rigid plate limits. The global maxima reflects the natural

frequency response of the configuration – where, for example, the maximum point in the 𝜔h = 2.4 curve at R = 10−1 occurs at

the configuration second eigenfrequency, depicted by the solid circled line in Fig. 2b. To rationalize the global minima, the phase
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Fig. 4. Effects of flexural stiffness and actuation frequency on the system far field response: variations with 𝜔h of the acoustic signal amplitudes at R = 0 (a), R = 0.1 (b),

R = 2 (c), and R = 103 (d). The solid (—-), dashed (- - -) and dash-dotted (-·-·-) curves mark the amplitudes of the total lift dipole (Πtot), and the corresponding motion (Π𝜉 )

and wake (Πw) components, respectively. The dashed vertical lines denote the filament in vacuo eigenfrequencies at each value of R.

difference between the motion and wake dipole components should be considered. Inspecting Fig. 5b, we find that the sharp

minimum obtained in Fig. 5a for 𝜔h = 1.8 at R = 2 occurs where the two components are opposite in phase (see the point where

the solid-squared line crosses 𝜑 = 𝜋 in Fig. 5b). As observed in Fig. 4c, at this combination of R = 2 and 𝜔h = 1.8, the motion

and wake components are of similar amplitude, thus resulting in a nearly optimal cancellation effect. In a similar manner, the

global minima observed in Fig. 5a for 𝜔h ≈ 2.4, 3 and 4 follow from comparable magnitude and counter-phased motion and

wake dipoles, crossing 𝜑 ≈ 𝜋 at the respective (R, 𝜔h) combinations in Fig. 5b.

Fig. 5. Effects of flexural stiffness and actuation frequency on the system far-field response: (a) Variation with R of the lift dipole amplitude at the indicated values of 𝜔h .

(b) Variation with 𝜔h of the phase difference 𝜑 between the motion and wake lift dipoles at the indicated values of R. The values 𝜑 = 0, 2𝜋 correspond to in-phase acting

signals, while 𝜑 = 𝜋 denotes counter-phase signals. In Fig. 5a, the left and right dashed lines (- - -) mark the membrane and rigid-body limit values at each 𝜔h , respectively.
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With increasing actuation frequency, the “counter-phase state” where 𝜑 = 𝜋 occurs at higher values of R. Consequently,

the filament convergence to a rigid-body type of motion is obtained at higher rigidities (cf. the convergence of the different

curves in Fig. 5a to their rigid-body limits). The occurrence of a “counter-phase frequency” is not encountered in a rigid filament

setup (with R ≳ 103), where the phase difference remains nearly unchanged (𝜑 ≈ 3𝜋∕2 for all 𝜔h considered). It is therefore

the combined effects of intermediate values of R and 𝜔h that result in the above-described mechanism of sound cancellation,

which may prove useful as a means for flapping-motion sound reduction.

4. Conclusion

We studied the acoustic far field of a thin flexible filament subject to uniform mean flow and a ‘hanging chain’ external force

parallel to its unperturbed state. The filament was harmonically actuated at its upstream edge with small-amplitude heaving

motion and prescribed frequency. By varying the filament flexural rigidity, we analyzed the system far field radiation for all

stiffnesses, ranging from a membrane to a rigid body. Assuming two-dimensional high Reynolds and low Mach number flow,

a near-field description was applied based on potential thin airfoil theory and a discrete wake model, to formulate the source

term in the Powell-Howe acoustic analogy. The far field sound was then calculated using a compact Green’s function approach,

yielding the leading order acoustic dipole field. In the limit of small flexural stiffnesses, we found that the acoustic field of

a highly-elastic filament converges to the far field of a hanging membrane, both dominated by the wake dipole sound. The

wake sound contribution also dominates in the limit of small actuation frequencies, where the filament deflects as a rigid body

regardless of its structural stiffness. Sufficient increase in heaving frequency then amplifies the relative contribution of filament

motion dipole, resulting in significant differences between systems with different rigidities. Reflecting the impact of filament

elasticity, these differences manifest the system’s natural frequency response, leading to increased levels of sound for actuations

at one of the system’s eigenfrequencies. In cases where the trailing edge wake and motion dipoles acquire similar amplitudes

and opposite phases, significant sound reduction was found. With increasing frequency, rigid-body filament motion and far-field

signature were captured above increasingly higher values of the body structural rigidity.

The study has focused on the case of harmonic excitation, and analyzed the effects of actuation frequency and body bending

stiffness on the system response. In applications where the body stiffness is fixed, the present framework may still be useful for

analyzing the far-field fluid response to arbitrary (small-amplitude, even if broadband) filament actuation, as well as to other

forms of external loading (e.g., incoming flow non-uniformity). In this respect, considering our investigation as a generalized

Fourier analysis, it is expected that any external excitation, when discretized into its spectral components, should reflect the

system modal response as obtained by the current calculation. Additional topics, such as the near- and far-field investigations

of the unforced (critical and supercritical) system response, are subjects for future studies.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jsv.2018.07.014.
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