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Nonlinear thermal effects in unsteady shear flows of a rarefied gas
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We study the response of a rarefied gas in a slab to the motion of its boundaries in the tangential direction.
Different from previous investigations, we consider boundaries displacements at nonsmall Mach (Ma) numbers,
coupling the dynamic and thermodynamic gas states, and deviating the system from its low-velocity isothermal
condition. The problem is studied in the entire range of gas rarefaction rates, combining limited case ballistic- and
continuum-flow analyses with direct simulation Monte Carlo computations. A nonlinear solution is derived in the
ballistic regime for arbitrary velocity profiles and amplitudes. At near-continuum conditions, a slip-flow time-
periodic solution is obtained for the case of oscillatory boundary motion, by expanding the flow field in an asymp-
totic Mach power series. The effect of replacing between isothermal and adiabatic surfaces is examined. The
results indicate that, at all Knudsen (Kn) numbers, the thermodynamic fields and normal velocity component are
dominated by double-frequency (and descending higher-order even-frequency harmonic) time dependence, dif-
ferent from the fundamental-frequency time dependence dominating the tangential gas velocity. At continuum-
limit conditions, this stems from the quadratic viscous dissipation term (negligible at low-Mach conditions),
coupling the square of the tangential velocity gradient as a forcing term. System nonlinearity also results in an
unsteady normal force acting on the boundaries, overcoming the tangential force with increasing Ma. A marked
difference from the latter is that the normal force either decreases with Kn or, at sufficiently small actuation
frequencies, varies nonmonotonically with Kn, reaching a maximum at some intermediate rarefaction conditions.
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I. INTRODUCTION

The flow field generated by the motion of a planar bound-
ary in its tangent direction is a classical problem in viscous
fluid dynamics that has been studied extensively over the years
[1]. Considering a canonical setup of an impulsively started
boundary (Rayleigh’s problem), or harmonically displaced
surface (Stokes’ second problem), the system response was
analyzed, yielding the transient and final states of the fluid,
as well as the shear force acting on the solid wall. Under
continuum incompressible conditions, the dynamic flow state
becomes decoupled from its thermodynamic description, re-
sulting in a flow field where the thermodynamic distributions
of density, temperature, and pressure are uniform. The tan-
gential velocity field is then governed by a single momentum
balance in the tangent direction.

While incompressible flow conditions prevail at relatively
low boundary velocities, fluid compressibility becomes signif-
icant when the surface-based Mach number increases. To con-
sider this problem, several works have analyzed Rayleigh’s
problem for a viscous compressible gas, combining early-
and late-time approximations with boundary-layer-type solu-
tions for the propagating disturbance [2–5]. The works have
demonstrated the coupling between the flow dynamic and
thermodynamic properties at nonsmall velocities, originating
from viscous dissipation effects. When considering the early-
time response of the system, it was argued that a rigorous
analysis of the rapid changes observed at the wall surface
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requires reconsideration of the problem, taking into account
the gas microscopic (molecular) characteristics [2].

When the characteristic length- or timescale of the flow-
field become comparable with the gas molecular mean free
path or time, respectively, the continuum description breaks
down, and the microscopic properties of the medium must
be modeled. In the context of boundary-induced shear flows,
such conditions may occur in either a narrow slab, where
the gas is confined to a thin layer compared with the mean
free path, or when boundary-induced motion is characterized
by exceedingly short timescales, as in Rayleigh’s problem
at short times, or in Stokes’ second problem at high actua-
tion frequencies. Adopting the Bhatnagar, Gross, and Krook
(BGK) kinetic model, Cercignani and Sernagiotto [6], Sone
[7], and Trilling [8] studied the linearized Rayleigh problem
for a rarefied gas in a semi-infinite domain. Later works
have then considered shear-flow problems in confined setups,
to address the steady Couette flow. Among others, Beskok,
Karniadakis, and Trimmer [9] investigated the compressible
problem in the slip-flow regime, demonstrating the nonlinear
effect of large boundary velocity in deviating the density
and temperature fields. A comprehensive overview of the
steady Couette problem was presented by Garzó and Santos
[10], allowing for both tangential velocity and temperature
differences between the boundaries, and comparing between
kinetic models predictions and Monte Carlo–based simulation
results. The counterpart time transient response to an impul-
sively shifted surface was considered in other works, includ-
ing Stefanov, Gospodinov, and Cercignani [11], and Abramov
and Butkovskii [12]. Basing their analyses on numerical
simulations, wall velocities at arbitrary Mach numbers were
examined.
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In a separate set of studies, the effect of gas rarefaction
on the wall-induced unsteady Couette flow was investigated.
Beskok and coworkers [13,14] analyzed the linearized prob-
lem for small-amplitude harmonic oscillations and developed
an empirical model to approximate the system low-frequency
response. Hadjiconstantinou [15] reconsidered the problem
and applied a second-order slip-flow model to capture the gas
behavior in the transition regime. These works were com-
plemented by Refs. [16–18], which analyzed the transition
between the continuum and ballistic limits for a BGK [16]
and hard-sphere [17,18] gases in the entire range of oscillation
frequencies and Knudsen numbers. Considering geometrical
setups other than a planar slab, Gospodinov, Roussinov, and
Stefanov [19] investigated the oscillatory Couette flow be-
tween concentric cylinders by applying a continuum-limit
finite-difference scheme at low Knudsen numbers. Wu, Reese,
and Zhang [20] addressed the low-amplitude oscillatory flow
developed in a two-dimensional cavity with an harmonically
displaced lid.

Different from existing rarefied gas studies on the steady
Couette problem, most of the above-mentioned unsteady flow
investigations [13–18,20] have focused on the limit of small
boundary velocities, thus neglecting the inevitable effect of
thermal coupling at high surface speeds. In the few cases
where nonsmall surface speeds were considered, numerical
computations were carried out. Thus, Gospodinov et al. [19]
studied the nonlinear cylindrical Couette problem in the con-
tinuum limit using a finite-difference scheme. More recently,
Wang et al. [21] investigated the two-dimensional problem
in a rectangular cavity based on numerical discretization of
the Shakhov kinetic equation. To gain further insight into the
effects of gas rarefaction and system nonlinearity, the present
work focuses on the unsteady Couette problem at nonsmall
wall velocities in a planar one-dimensional setup. The rel-
atively simplified configuration facilitates the calculation of
analytic approximations for the collisionless and continuum
gas responses, which, in turn, shed light on the coupling
mechanisms between the dynamic and thermodynamic gas
states at different rarefaction levels.

Apart from the fundamental interest in studying the above
problem, specific applications exist. In particular, situations
where nonsmall Mach number flows appear at noncontinuum
conditions have recently become of practical significance for
the design of high-speed vehicles, including high-altitude
stratospheric platforms [22] and ground-level machines. In
the latter, high-speed shear flows are encountered in the
Hyperloop machine [23], a sealed tube through which a pod
vehicle at near-vacuum conditions is set into motion. At the
low densities considered, rarefied flow conditions prevail, ac-
companied by significant shear rates over the vehicle surfaces.
Transonic speeds are considered (with a Mach number ap-
proaching ≈0.9), and the flow field turns inevitably unsteady
during acceleration or deceleration of the body at entrance
and departure. Several investigations on rarefied transonic
gas flows over airfoil-shaped surfaces have been carried out,
specifically for the Hyperloop configuration [24,25], as well
as for examining the coupling between the dynamic and ther-
modynamic gas states (e.g., Refs. [26,27]). The understanding
of the gas behavior in this regime is a key element in the above
developments, and we consider the present contribution as a

step towards such analysis. Considering other applications,
relatively high-speed shear flows at rarefied conditions pre-
vail in vacuum pump machines, such as the Holweck pump,
where flow Mach numbers as high as ≈0.5, and Knudsen
numbers reaching ≈0.5, are reported [28–30]. Several works
[21,31] have mentioned the relevance of the nonlinear Couette
problem for the analysis of microelectromechanical systems
operating at high (≈100 GHz) frequencies and oscillation
amplitudes of several nanometers.

We consider a planar one-dimensional bidirectional setup
of a gas in a slab, where the confining walls are displaced
in their tangential direction and kept at fixed thermal condi-
tions. The study combines analytical and asymptotic solutions
in the ballistic and continuum limits with direct simulation
Monte Carlo (DSMC) predictions. At first, an analytic solu-
tion for the collisionless gas response to arbitrary wall-shear
excitation is obtained. Focusing on the case of oscillatory
boundary motion, the results illustrate the effect of replac-
ing between temperature-fixed (isothermal) and heat-flux-
fixed (adiabatic) surfaces. It is shown that nonlinear effects,
originating from nonsmall actuation velocities, give rise to
spatially nonuniform thermodynamic deviations, dominated
by double-frequency periodic time variations and higher-order
even-frequency harmonics. These nonuniformities, apart from
affecting the tangential shear stresses at the walls, result in
normal surface loading, not encountered in the linearized
isothermal approximation. The results obtained in the large
and small Knudsen number limits are validated using DSMC
calculations, and the conditions where the limit-case analyses
break down are discussed.

An outline of the paper follows. In the next section, the
general problem is described. The ballistic and continuum
limits are analyzed in Secs. III and IV, respectively. The
direct simulation Monte Carlo method, applied for problem
analysis at arbitrary rarefaction conditions, is discussed in
Sec. V, where a noniterative algorithm for the implementation
of a heat-flux boundary condition is specified. Our results are
presented in Sec. VI, followed by conclusions in Sec. VII.
Technical details regarding the ballistic and continuum solu-
tions are relegated to the Appendices.

II. PROBLEM STATEMENT

Consider a layer of a monatomic hard-sphere gas confined
between infinite parallel fully diffuse walls at y∗ = −L∗/2
and y∗ = L∗/2 (with asterisks denoting dimensional quan-
tities). The wall at y∗ = L∗/2 is set at fixed temperature,
while the wall at y∗ = −L∗/2 is set at either isothermal or
adiabatic (thermally insulated) conditions. The gas is initially
at rest with uniform density ρ∗

0 and temperature T ∗
0 , and is

in thermodynamic equilibrium with the boundaries. At time
t∗ � 0, the walls are displaced in the tangential x̂ direction,
according to

U∗
w1,2

(t∗) = U ∗
w1,2

(t∗)x̂, (1)

where the subscripts w1 and w2 correspond to the properties
of the y∗ = −L∗/2 and y∗ = L∗/2 walls, respectively. Addi-
tionally, the y∗ = −L∗/2 boundary is set at either isothermal
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or adiabatic conditions,

T ∗
w1

= T ∗
0 or Q∗

w1
(t∗) · ŷ = 0, (2)

respectively, while the y∗ = L∗/2 boundary is isothermal,

T ∗
w2

= T ∗
0 . (3)

In the following, we analyze the gas response to the
tangential-velocity disturbances in Eq. (1), in conjunction
with the different sets of thermal conditions in Eqs. (2) and
(3). Imposing a heat flux condition on only one of the walls,
while keeping the other wall isothermal, ensures that the gas
thermal energy cannot increase infinitely, and a final state with
finite hydrodynamic deviations is obtained. A study on the
effect of thermal conditions on the system response may then
be carried out.

Considering the system behavior at nonlinear conditions,
the input velocity is taken nonsmall, and of an order equivalent
to a unity Mach number (see Eq. (5) et seq.). For each specific
choice of the boundary conditions, semianalytic results are
obtained in the collision-free and continuum limits, supple-
mented by direct simulation Monte Carlo predictions. The
latter are used for validation of the limit-case results and
for evaluating the gas response in the intermediate range of
gas rarefaction. While the analysis is carried out in part for
an arbitrary choice of the signal walls inputs U ∗

w1,2
(t∗), our

results focus on the case of harmonic counter-phase walls
oscillations,

U ∗
w1

(t∗) = Ū ∗
w cos(ω∗t∗) and U ∗

w2
(t∗) = −Ū ∗

w cos(ω∗t∗),
(4)

where Ū ∗
w and ω∗ denote the walls common velocity ampli-

tude and displacement frequency, respectively. The choices of
equal amplitudes and counter-phase motions enable compa-
rable study of the forces acting on the boundaries, as well as
maintaining the gas at maximal shear rate. While the effect
of walls-motion phase difference on the system response
may be readily studied, our results indicate that it does not
yield any new phenomena that are not encountered in the
opposing motion setup, and therefore omit its discussion. The
analysis of the harmonic problem may be treated as a Fourier
decomposition investigation of a more general (possibly non-
periodic) actuation input.

To proceed to problem analysis, variables nondimensional-
ization is introduced. We normalize the length and velocity by
the gap width L∗ and the mean thermal speed U ∗

th = √
2R∗T ∗

0 ,
respectively, where R∗ denotes the specific gas constant. The
time is normalized by L∗/U ∗

th, and the density and temper-
ature are scaled by ρ∗

0 and T ∗
0 , respectively. The pressure is

normalized by ρ∗
0U ∗2

th , and the heat-flux is nondimensional-
ized by ρ∗

0U ∗3
th . For the case of harmonic excitation, the scaled

problem is governed by the parameters

Kn = l∗

L∗ , Ma = Ū ∗
w

U ∗
th

, and ω = ω∗L∗

U ∗
th

, (5)

denoting the gas Knudsen number, thermal-velocity-based
Mach number, and nondimensional frequency, respectively,
with l∗ marking the mean free path of a gas molecule. As
noted above, we focus on the gas response to walls actuation
at nonsmall Mach numbers in the entire range of Knudsen
numbers. It is assumed that all flow variables depend on
the normal-to-walls coordinate y, and are independent of the
tangential coordinate x. Accordingly, we consider an unsteady
one-dimensional and bidirectional (i.e., with nonzero flow
velocity components in both x and y directions) problem.

III. BALLISTIC LIMIT

In cases where the gap width is small compared with the
molecular mean free path, Kn � 1, or the excitation timescale
is short compared with the mean free time, the effect of molec-
ular collisions is negligible. The gas state is then governed by
the collisionless Boltzmann equation,

∂f

∂t
+ ξy

∂f

∂y
= 0, (6)

where f (y, t, ξ ) denotes the probability density function of
finding a gas molecule with velocity about ξ at position
near y at time t . Equation (6) is supplemented by an initial
equilibrium condition,

f (y, t = 0−, ξ ) = 1

π3/2
exp[−ξ 2], (7)

and fully diffuse boundary conditions,

f (y = −1/2, t, ξx, ξy > 0, ξz) = ρw1 (t )[
πTw1 (t )

]3/2 exp

[
−
(
ξx − Uw1 (t )

)2 + ξ 2
y + ξ 2

z

Tw1 (t )

]
and

f (y = 1/2, t, ξx, ξy < 0, ξz) = ρw2 (t )

π3/2
exp

[ − ((
ξx − Uw2 (t )

)2 + ξ 2
y + ξ 2

z

)]
. (8)

In Eq. (8), Tw1 (t ) = 1 in the isothermal wall case, or treated unknown in the adiabatic wall setup [see Eq. (2)]. The problem for
f (y, t, ξ ) is amenable to a general solution for an arbitrary choice of walls tangential velocities Uw1,2 (t ),

f (y, t, ξ ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρw1 (tr1 )

[πTw1 (tr1 )]3/2 exp

[
− (ξx−Uw1 (tr1 ))2+ξ 2

y +ξ 2
z

Tw1 (tr1 )

]
, ξy > (y + 1/2)/t,

ρw2 (tr2 )
π3/2 exp

[ − ((
ξx − Uw2

(
tr2

))2 + ξ 2
y + ξ 2

z

)]
, ξy < (y − 1/2)/t,

1
π3/2 exp

[−(
ξ 2
x + ξ 2

y + ξ 2
z

)]
, (y − 1/2)/t < ξy < (y + 1/2)/t,

(9)

where tr1,2 = t − (y ± 1/2)/ξy denote the acoustic retarded times corresponding to particle collisions with the y = ∓1/2 walls,
respectively. The ξy-intervals appearing in Eq. (9) separate between particles which recent wall impact after t = 0 took place
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with the y = −1/2 boundary [ξy > (y + 1/2)/t], or y = +1/2 boundary [ξy < (y − 1/2)/t )], or particles which have not
collided yet with neither of the surfaces after t = 0 [(y − 1/2)/t < ξy < (y + 1/2)/t]. With increasing time, the latter interval
diminishes, and the medium consists of particles which recent collision at t > 0 occurred with one of the walls. The functions
ρw1,2 (t ) and Tw1 (t ) appearing in Eq. (9) are determined via imposition of the macroscopic no-penetration and heat-flux conditions,

1

π3/2

∫ ∞

−∞
ξyf (y = ∓1/2)dξ = 0 and

1

2π3/2

∫ ∞

−∞
ξy

[
(ξx − u(−1/2, t ))2 + ξ 2

y + ξ 2
z

]
f (y = −1/2)dξ = 0, (10)

respectively, where u(−1/2, t ) is the macroscopic tangential gas velocity at the y = −1/2 surface. For the case of an isothermal
wall at y = −1/2, the adiabatic condition is omitted (Tw1 = 1), and only the impermeability conditions are applied to determine
ρw1,2 (t ). Substituting Eq. (9) into Eq. (10) and assigning the change of variables ξy = 1/(t − τ ) yield a system of coupled
nonlinear integral equations for ρw1,2 and Tw1 ,

ρw1 (t )T 1/2
w1

(t ) = 1 − exp[−1/t2] + 2
∫ t

0

ρw2 (τ )

(t − τ )3
exp

[
− 1

(t − τ )2

]
dτ, (11)

ρw2 (t ) = 1 − exp[−1/t2] + 2
∫ t

0

ρw1 (τ )

T
1/2
w1 (τ )(t − τ )3

exp

[
− 1

Tw1 (τ )(t − τ )2

]
dτ, (12)

and

ρw1 (t )T 1/2
w1

(t )

[(
Uw1 (t ) − u(−1/2, t )

)2

2
+ Tw1 (t )

]
=

(
1 + 1

2
u2(−1/2, t )

)
[1 − exp(−1/t2)]

− 1

2t2
exp(−1/t2) +

∫ t

0

ρw2 (τ )

(t − τ )3

[
1 + [

Uw2 (τ ) − u(−1/2, t )
]2 + 1

(t − τ )2

]
exp

[
− 1

(t − τ )2

]
dτ, (13)

subject to the initial conditions

Tw1 (0) = ρw1 (0) = ρw2 (0) = 1. (14)

The problem is discretized in time and integrated numerically using the Euler method, starting at t = 0 with the conditions in
Eq. (14).

Once ρw1,2 and Tw1 are calculated, the solution in Eq. (9) for f (y, t, ξ ) is known, and the hydrodynamic fields are obtained
via quadratures over the velocity space. Explicit expressions for the density ρ, tangential velocity u, normal velocity v, pressure
p, and normal heat-flux qy are given in Appendix A. For later reference, we specify expressions for the tangential and normal
forces per unit area acting on the y = −1/2 boundary,

F (t )
w1

(t ) =
∫

ξy[ξx − u(−1/2, t )]f (y = −1/2)dξ = 1√
π

{
1

2
ρw1 (t )T 1/2

w1
(t )

[
Uw1 (t ) − u(−1/2, t )

]
+ 1

2
u(−1/2, t )

[
1 − exp

(
− 1

t2

)]
−

∫ t

0
ρw2 (τ )

[
Uw2 (τ ) − u(−1/2, t )

]
exp

[
− 1

(t − τ )2

]
dτ

(t − τ )3

}
(15)

and

F (n)
w1

(t ) =
∫

ξ 2
y f (y = −1/2)dξ − 1

2

= ρw1 (t )Tw1 (t )

4
+ 1

4
erf

(
1

t

)
− 1

2
√

πt
exp

[
− 1

t2

]
+ 1√

π

∫ t

0
ρw2 (τ ) exp

[
− 1

(t − τ )2

]
dτ

(t − τ )4 − 1

2
, (16)

respectively, where erf (·) marks the Error Function of a variable. The counterpart forces on the y = +1/2 boundary are

F (t )
w2

(t ) =
∫

ξy (ξx − u(1/2, t ))f (y = 1/2)dξ = 1√
π

{
−1

2
ρw2 (t )

[
Uw2 (t ) − u(1/2, t )

]
+
∫ t

0

ρw1 (τ )

T
1/2
w1 (τ )

[
Uw1 (τ ) − u(1/2, t )

]
exp

[
− 1

Tw1 (τ )(t − τ )2

]
dτ

(t − τ )3 − 1

2
u(1/2, t )[1 − exp(−1/t2)]

}
(17)

and

F (n)
w2

(t ) =
∫

ξ 2
y f (y = 1/2)dξ − 1

2
= ρw2 (t )

4
+ 1

4
erf

(
1

t

)
− 1

2
√

πt
exp

(
− 1

t2

)
+ 1√

π

∫ t

0

ρw1 (τ )

T
1/2
w1 (τ )

exp

[
− 1

Tw1 (τ )(t − τ )2

]
dτ

(t − τ )4 − 1

2
. (18)
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In Eqs. (16) and (18), the normal force F (n)
eq = 1/2 acting in

equilibrium has been subtracted, so that F (n)
w1

(t ) and F (n)
w2

(t )
measure only the deviations from equilibrium of the normal
forces on the walls. Thus, it can be verified that at isothermal
conditions, where Tw1 (t ) = ρw1 (t ) = ρw2 (t ) = 1, both F (n)

w1
(t )

and F (n)
w2

(t ) vanish.

IV. CONTINUUM LIMIT

When the slab width is large compared with the molecular
mean free path, Kn � 1, and the excitation timescale is long
compared with the mean free time, the effect of molecular
collisions becomes dominant, and continuum-limit conditions
prevail. We then make use of a ‘slip-flow’ description, com-
bining the Navier-Stokes-Fourier equations with first-order
velocity slip and temperature jump boundary conditions.
Assuming a one-dimensional bidirectional flow setup and
adopting the scaling introduced in Sec. II, the continuity, x

momentum, y momentum, and energy equations are given by

∂ρ

∂t
+ ∂ (ρv)

∂y
= 0, (19)

ρ

(
∂u

∂t
+ v

∂u

∂y

)
= K̃n

∂

∂y

(
μ

∂u

∂y

)
, (20)

ρ

(
∂v

∂t
+ v

∂v

∂y

)
= −∂p

∂y
+ 4

3
K̃n

∂

∂y

(
μ

∂v

∂y

)
, (21)

and

ρ

(
∂T

∂t
+ v

∂T

∂y

)
= γ K̃n

Pr

∂

∂y

(
κ

∂T

∂y

)
− (γ − 1)p

∂v

∂y

+ 2K̃n(γ − 1)μ

[(
∂u

∂y

)2

+ 4

3

(
∂v

∂y

)2
]
,

(22)

respectively, and are supplemented by the equation of state for
an ideal gas,

p = 1
2ρT . (23)

In Eqs. (20)–(22),

K̃n = μ∗
0

ρ∗
0U ∗

thL
∗ (24)

is the viscosity-based Knudsen number, where μ∗
0 marks the

transport coefficient of dynamic viscosity at T ∗ = T ∗
0 . In addi-

tion, Pr and γ denote the Prandtl number and ratio of specific
heats at constant pressure and volume, respectively, and μ and
κ are the nondimensional coefficients of dynamic viscosity
and heat conduction, respectively, scaled by their reference
values at T ∗ = T ∗

0 . Considering a monatomic hard-sphere
gas, Pr = 2/3 and γ = 5/3, μ(T ) = κ (T ) = T 1/2, and K̃n =
(5

√
π/16)Kn [32]. The problem is complemented by the

velocity-slip and impermeability conditions at the walls,

v(∓1/2, t ) = 0 and u(∓1/2, t ) = Uw1,2 (t ) ± ζ
∂u

∂y

∣∣∣∣
(∓1/2,t )

,

(25)

together with a temperature jump condition at y = 1/2,

T (1/2, t ) = 1 − ϑT

∂T

∂y

∣∣∣∣
(1/2,t )

+ ϑv

∂v

∂y

∣∣∣∣
(1/2,t )

, (26)

and an adiabatic or temperature jump condition at y = −1/2,

qy (−1/2, t ) = −κ
∂T

∂y

∣∣∣∣
(−1/2,t )

= 0 or

T (−1/2, t ) = 1 + ϑT

∂T

∂y

∣∣∣∣
(−1/2,t )

+ ϑv

∂v

∂y

∣∣∣∣
(−1/2,t )

, (27)

respectively. In Eqs. (25)–(27), ζ = 1.254
√

πKn/2 and ϑT =
2.399

√
πKn/2 are the commonly used first-order nondimen-

sional slip and jump coefficients for a hard-sphere gas, respec-
tively [32]. The ϑv (∂v/∂y) terms with ϑv = 0.460

√
πKn/2

mark an additional jump correction, recently derived by Aoki
et al. [33], to accompany the compressible Navier-Stokes
equations.

Different from the ballistic-flow formulation, the
continuum-limit problem is not amenable to a closed-form
solution for arbitrary walls excitation. We therefore limit our
discussion to harmonic boundaries oscillations as specified
in Eq. (4), and seek for a Mach number expansion of the
solution, to study the leading-order impact of nonsmall wall
velocities on the gas deviation from its isothermal state.
Inspection of Eqs. (19)–(23) and (25)–(27) suggests the
following Mach power representation of the hydrodynamic
fields,

u = Ma u(1)(y, t ) + O(Ma3), v = Ma2v(2)(y, t ) + O(Ma4),

ρ = 1 + Ma2ρ (2)(y, t ) + O(Ma4),

T = 1 + Ma2T (2)(y, t ) + O(Ma4) and

p = 1
2 + Ma2p(2)(y, t ) + O(Ma4), (28)

to be valid at relatively small Mach numbers. In the following
we apply the above expansion to calculate the system behavior
up to O(Ma2).

Substituting Eq. (28) into Eqs. (19)–(23) and (25)–(27)
together with Eq. (4), the O(Ma) problem contains the leading
order x-momentum equation,

∂u(1)

∂t
= K̃n

∂2u(1)

∂y2
, (29)

together with the velocity-slip conditions

u(1)(−1/2, t ) = cos(ωt ) + ζ
∂u(1)

∂y

∣∣∣∣
(−1/2,t )

,

u(1)(1/2, t ) = − cos(ωt ) − ζ
∂u(1)

∂y

∣∣∣∣
(1/2,t )

. (30)

Assuming harmonic time dependence of the solution,

u(1)(y, t ) = Re{ū(1)(y) exp[iωt]}, (31)

and substituting into Eq. (29), yields

u(1)(y) = A1 exp

[√
iω

K̃n
y

]
+ A2 exp

[
−
√

iω

K̃n
y

]
, (32)

033121-5



Y. BEN-AMI AND A. MANELA PHYSICAL REVIEW E 98, 033121 (2018)

where the complex constants of integration A1,2 ≡ r1,2e
iθ1,2

are fixed through the boundary conditions (30), and are not
specified here for brevity. Expectedly, the leading O(Ma)
solution captures the system isothermal state, where all ther-
modynamic variables remain unperturbed [15]. The coupling
between the gas dynamic and thermodynamic descriptions
is therefore manifested via the next O(Ma2) balance, which
becomes significant at nonsmall Mach numbers. Eq. (32) also
indicates an exponential exp[(ω/K̃n)1/2] dependence of the
solution. To comply with the near-continuum conditions, it
is therefore required, apart from assuming Kn ∼ K̃n � 1,
that ω � Kn. This requirement prevents confinement of the
flow-field to thin layers in the vicinity of the boundaries, in
which case the effective Knudsen number increases, and the
continuum description breaks down.

Proceeding to the O(Ma2) balance, substitution of Eq. (28)
into Eqs. (19)–(23) and (25)–(27) yields the coupled O(Ma2)
balances of continuity,

∂ρ (2)

∂t
+ ∂v(2)

∂y
= 0, (33)

y momentum,

∂v(2)

∂t
= −1

2

(
∂ρ (2)

∂y
+ ∂T (2)

∂y

)
+ 4

3
K̃n

∂2v(2)

∂y2
, (34)

and energy,

∂T (2)

∂t
= γ K̃n

Pr

∂2T (2)

∂y2
− (γ − 1)

∂v(2)

∂y

+ 2(γ − 1)K̃n

(
∂u(1)

∂y

)2

, (35)

equations, supplemented by the impermeability condition at
both walls,

v(2)(∓1/2, t ) = 0, (36)

temperature jump condition at y = 1/2,

T (2)(+1/2, t ) = −ϑT

∂T (2)

∂y

∣∣∣∣
(1/2,t )

+ ϑv

∂v(2)

∂y

∣∣∣∣
(1/2,t )

, (37)

and adiabatic or temperature jump condition at y = −1/2,

∂T (2)

∂y

∣∣∣∣
(−1/2,t )

= 0 or

T (2)(−1/2, t ) = ϑT

∂T (2)

∂y

∣∣∣∣
(−1/2,t )

+ ϑv

∂v(2)

∂y

∣∣∣∣
(−1/2,t )

. (38)

A nontrivial solution to the above problem is attributed to the
dissipation term in Eq. (35), coupling the square of the leading
order tangential velocity gradient (∂u(1)/∂y)2 as a forcing
term. It is therefore due to the effect of viscous dissipation

that the thermodynamic and dynamic gas states are coupled in
the continuum limit.

Inspecting the quadratic form of the forcing term, and
in view of the ω-harmonic time dependence of the solution
in Eq. (31) for u(1), we decompose the solution for the
O(Ma2) fields into steady and unsteady double-harmonic
components,

[v(2), ρ (2), T (2)](y, t ) = [
v(2)

s , ρ (2)
s , T (2)

s

]
(y)

+ Re{[v(2), ρ (2), T
(2)

](y) exp[2iωt]}. (39)

Assigning Eq. (39) into Eqs. (33)–(35) yields separate sets of
equations for the steady,

dv(2)
s

dy
= 0,

dp(2)
s

dy
= 0,

d2T (2)
s

dy2
= −2Pr(γ − 1)

γ
F (2)

s ,

p(2)
s = 1

2

(
ρ (2)

s + T (2)
s

)
, (40)

and time-periodic,

2iωρ (2) + dv(2)

dy
= 0, 2iωv(2) = −1

2

dp(2)

dy
+ 4

3
K̃n

d2v(2)

dy2
,

2iωT
(2) = γ K̃n

Pr

d2T
(2)

dy2
− (γ − 1)

dv(2)

dy
+ 2(γ − 1)K̃nF

(2)
,

p(2) = 1

2
(ρ (2) + T

(2)
), (41)

parts, where F (2)
s = |du(1)/dy|2/2 and F

(2) = (du(1)/dy)2/2
are the steady and 2ω-oscillatory components of (∂u(1)/∂y)2,
respectively. Starting with the problem for the steady part,
Eq. (40) yields the general solution,

v(2)
s = 0, T (2)

s = −2Pr(γ − 1)

γ

∫∫
F (2)

s d2y + D1y + D2,

(42)
where the constant p(2)

s is determined via the normalization
condition, ∫ 1/2

−1/2
ρ (2)

s dy = 0, (43)

imposing the conservation of gas mass within the slab. The
constants D1,2 in Eq. (42) are fixed through the thermal wall
conditions,

T (2)
s (1/2) = −ϑT

dT (2)
s

dy

∣∣∣∣
1/2

(44)

and

dT (2)
s

dy

∣∣∣∣
−1/2

= 0 or T (2)
s (−1/2) = ϑT

dT (2)
s

dy

∣∣∣∣
−1/2

. (45)

Explicit calculation yields

T (2)
s (y) = −Pr(γ − 1)

2γ

{
r2

1 exp

[
−
√

2ω

K̃n
y

]
+ r2

2 exp

[√
2ω

K̃n
y

]
+ 2r1r2 cos

(√
2ω

K̃n
y + θ2 − θ1

)}
+ D1y + D2 (46)
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and

p(2)
s = −Pr(γ − 1)

2γ

√
K̃n

2ω

{(
r2

2 − r2
1

)
sinh

[√
ω

2K̃n

]
+ 2r1r2 sin

(√
ω

2K̃n

)
cos (θ2 − θ1)

}
+ 1

2
D2, (47)

where r1,2 and θ1,2 denote the magnitudes and arguments of the complex coefficients A1,2, introduced after Eq. (32).
Turning to the periodic component, the system of Eqs. (41) may be reduced to a single nonhomogeneous equation for the

temperature,

km
d4T

(2)

dy4
−

[
1

2
(γ − 1) + 2iω(k + m)

]
d2T

(2)

dy2
− 4ω2T

(2) = 2(γ − 1)K̃n

{
iω

(
du(1)

dy

)2

− m

[(
d2u(1)

dy2

)2

+ du(1)

dy

d3u(1)

dy3

]}
,

(48)

where k = γ K̃n/Pr and m = 4K̃n/3 − i/4ω. Expressing T
(2)

(y) as a sum of a homogeneous and particular solutions,

T
(2)

(y) = T
(2)
h (y) + T

(2)
p (y), (49)

respectively, we find

T
(2)
h (y) = B1 exp[−

√
λ1y] + B2 exp[−

√
λ2y] + B3 exp[

√
λ1y] + B4 exp[

√
λ2y]

and T
(2)
p (y) = C1 exp

[
−2

√
iω

K̃n
y

]
+ C2 exp

[
2

√
iω

K̃n
y

]
+ C3, (50)

where λ1,2 are the roots of the characteristic equation

kmλ2 −
[

1

2
(γ − 1) + 2iω(k + m)

]
λ − 4ω2 = 0. (51)

Substituting the particular solution T
(2)
p (y) in Eq. (50) into Eq. (48) yields

C1,2 =
Pr(γ − 1)

(
3i − 10K̃nω

)
6iγ (Pr − 2) + 20K̃nω(2γ − Pr)

A2
1,2 and C3 = −(γ − 1)A1A2. (52)

The coefficients B1,2,3,4 in T
(2)
h (y) are obtained via application of the impermeability and thermal boundary conditions to Eq. (49)

together with Eqs. (50) and (52). Having specified T
(2)

(y), the periodic-component amplitude functions of the normal velocity
v(2)(y) and density ρ (2)(y) are found via substitutions into Eq. (41), yielding the expressions presented in Appendix B.

Summing the O(Ma) and O(Ma2) contributions, the total forces per unit area acting on the y = ∓1/2 boundaries in the
tangential and normal directions (subtracting the normal equilibrium force F (n)

eq = 1/2; cf. Eqs. (15)–(18) et seq.) are

F (t )
w1,2

(t ) = Re

{
MaK̃n

du(1)

dy
(∓1/2, t ) exp [iωt]

}
(53)

and

F (n)
w1,2

(t ) = −Ma2p(2)
s + Re

{
Ma2

[
−p(2)(∓1/2, t ) + 4

3
K̃n

dv(2)

dy
(∓1/2, t )

]
exp [2iωt]

}
, (54)

respectively. Notably, while the O(Ma) tangential force is ω-
periodic, the O(Ma2) normal component contains both steady
and unsteady 2ω-periodic contributions. Being a consequence
of the form of solution in Eq. (39), this result will be further
validated and discussed in Sec. VI.

V. NUMERICAL SCHEME: DSMC METHOD

The direct simulation Monte Carlo method proposed by
Bird [34] is a stochastic particle method commonly applied
for the analysis of rarefied gas flows. In the present work, we
apply the DSMC method to validate the analytical ballistic-
and continuum-limit solutions presented in Secs. III and IV.

We adopt Bird’s algorithm and assume hard-sphere inter-
actions between the gas molecules. In line with problem
formulation, the boundaries are assumed fully diffuse, with
prescribed heat-flux or temperature. In the former case, and in
difference from traditional applications of the wall-interaction
algorithm, the boundary temperature is treated as unknown.
Realization of a heat-flux condition therefore requires modifi-
cation of the conventional calculation.

In a recent contribution by the authors [35], a noniter-
ative procedure for the imposition of a heat-flux condition
in a DSMC calculation has been suggested. The algorithm
was assigned in a pulsating cylinder setup, where the gas
tangential velocity is assumed to vanish throughout the flow
domain. The present shear-flow configuration is qualitatively
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different due to the occurrence of gas tangential velocity. It
therefore requires further adjustments that take account of
the tangential slip-flow effects. In what follows we describe
the algorithm for wall heat-flux imposition in DSMC in the
presence of gas tangential velocity. For generality, we con-
sider a wall with arbitrarily prescribed (dimensional) normal

heat-flux Q∗
w(t∗). For an adiabatic wall, Q∗

w(t∗) = 0 should be
inserted.

Consider the interaction of gas molecules with a diffuse
reflecting boundary displaced at tangential velocity U ∗

w(t∗).
The distribution of the velocity components for the wall-
reflected molecules in the ith time step is

u∗i = 1√
2 β∗i

w

RG + U ∗i

w , v∗i = 1

β∗i

w

√
− ln(RU ), and w∗i = 1√

2 β∗i

w

RG, (55)

in the tangential x∗, normal y∗, and normal-to-slab z∗ directions, respectively. In Eq. (55), RU ∈ [0, 1] and RG ∈ (−∞,∞) are

uniformly distributed and Gaussian-distributed random numbers, and β∗i

w =
√

1/2R∗T ∗i

w . Assigning a heat-flux condition, the

value of β∗i

w is apriori unknown at every time step and should be determined. For the fully diffuse boundary considered here, the
total mass and thermal energy fluxes of the reflected molecules are

M∗i

out = ρ∗i

w (β∗i

w )3

π3/2

∫
ξ∗
y >0

ξ ∗
y exp

[ − (
β∗i

w

)2((
ξ ∗
x − U ∗i

w

)2 + ξ ∗2

y + ξ ∗2

z

)]
dξ ∗ = ρ∗i

w

2
√

πβ∗i

w

(56)

and

H∗i

out = ρ∗i

w

(
β∗i

w

)3

2π3/2

∫
ξ∗
y >0

ξ ∗
y

((
ξ ∗
x − u∗i

g

)2 + ξ ∗2

y + ξ ∗2

z

)
exp

{ − (
β∗i

w

)2[(
ξ ∗
x − U ∗i

w

)2 + ξ ∗2

y + ξ ∗2

z

]}
dξ ∗

= ρ∗i

w

2
√

πβ∗i

w

[(
U ∗i

w − u∗i

g

)2

2
+ 1(

β∗i

w

)2

]
, (57)

respectively. In Eq. (57), u∗i

g marks the macroscopic gas velocity at the wall at the ith timestep, given by the average of tangential
velocities of the incoming and reflected gas molecules,

u∗i

g = 1
2

(
u∗i

g,in + u∗i

g,out

)
. (58)

For the fully diffuse boundary considered here, the macroscopic gas velocity of the reflected molecules is

u∗i

g,out =
∫
ξ∗
y >0 ξ ∗

x ξ ∗
y exp

{ − (
β∗i

w

)2[(
ξ ∗
x − U ∗i

w

)2 + ξ ∗2

y + ξ ∗2

z

]}
dξ ∗∫

ξ∗
y >0 ξ ∗

y exp
{ − (

β∗i

w

)2[(
ξ ∗
x − U ∗i

w

)2 + ξ ∗2

y + ξ ∗2

z

]}
dξ ∗ = U ∗i

w , (59)

and the macroscopic gas velocity of the approaching molecules is given by

u∗i

g,in = 1

N

N∑
j=1

ξ ∗i,j

x . (60)

The summation in Eq. (60) is carried out over all j = 1, . . . , N particles that have collided with the boundary during the
�t∗ = t∗

i − t∗
i−1

time interval.
Combining Eqs. (56)–(59), we find

1(
β∗i

w

)2 = H
∗i

out

M∗i

out

−
(
U ∗i

w − u∗i

g,in

)2

8
. (61)

Applying the balances of mass,M∗i

out =M∗i

in , and thermal energy,H∗i

out = H∗i

in + Q∗i

w , at the boundary, yields

1

β∗i

w

=

√√√√H∗i

in + Q∗i

w

M∗i

in

−
(
U ∗i

w − u∗i

g,in

)2

8
, (62)

whereM∗i

in andH∗i

in are computed via

M∗i

in = N

�t∗
and H∗i

in = 1

�t∗

N∑
j=1

1

2

[(
ξ ∗i,j

x − 1

2
U ∗i

w − 1

2
u∗i

g,in

)2

+ (
ξ ∗i,j

y

)2 + (
ξ ∗i,j

z

)2

]
. (63)

Having determined u∗i

g,in,M∗i

in , andH∗i

in , β∗i

w is obtained using Eq. (62). Each of the reflected particles is then assigned a velocity
according to Eq. (55), and the simulation is followed to the next i + 1 timestep.
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FIG. 1. Time variations (in period tp = 2π/ω units) of the devia-
tions of Tw1 , ρw1 , and ρw2 from their equilibrium initial values for an
adiabatic wall setup with Ma = 0.8 and ω = 5. The solid and dashed
curves present the ballistic limit (Kn → ∞) and DSMC Kn = 72
results, respectively. The dash-dotted line shows the tangential wall
velocity at y = −1/2, multiplied by 0.01 for scaling.

VI. RESULTS

Starting with the ballistic flow regime, Fig. 1 presents
the deviations of the boundaries-related functions Tw1 (the
y = −1/2 wall temperature) and ρw1,2 [see Eq. (8)] from
their equilibrium initial values. The case of an adiabatic wall
setup (where the y = −1/2 surface is adiabatic) is considered.
The solid and dashed curves compare between the ballistic
limit (Kn → ∞) and DSMC Kn = 72 results, respectively,
for Ma = 0.8 and ω = 5. The time evolutions of Tw1 − 1 and
ρw1,2 − 1 are presented, starting at t = 0 (when boundaries
motions commence) through t = 7tp, where tp = 2π/ω de-
notes the period of surfaces oscillations. At that time, the
system has reached its final periodic state. Close agreement
is obtained between the ballistic analysis and DSMC predic-
tions, and any differences are nearly indiscernible.

Focusing on the early time response, we observe an initial
time delay in all fields before system deviation from its
thermal equilibrium begins. Specifically, an approximately
twice longer time delay is obtained for ρw2 compared with
Tw1 and ρw1 . This may be rationalized by means of system
kinematics. At t = 0, the gas is set in uniform equilibrium
[see Eq. (9)]. Initial increase in Tw1 then takes place only
after molecules that have collided with the y = 1/2 bound-
ary at t � 0 (and acquired tangential momentum from the
oscillating surface) collide with the adiabatic wall. This rise
in Tw1 , accompanied by a decrease in ρw1 , causes larger
normal velocity of the molecules departing from the adiabatic
wall. Once these molecules impact the isothermal wall, a
consequent increase in ρw2 occurs. The characteristic response
time of the isothermal wall is therefore twice the delay time
of the adiabatic boundary, as supported by Fig. 1.

Inspecting the late time response in Fig. 1, we observe that
ρw1,2 and Tw1 acquire final states characterized by nonzero
mean values, superposed by an essentially 2ω-frequency
(compared with the ω-frequency dependence of Uw1 ; cf. the
dash-dotted line) periodic signal. The nonzero mean values

are attributed to the increase in gas kinetic energy, propor-
tional to u2(t ), caused by the walls motion, and leading
to an increase in the adiabatic wall temperature Tw1 . As
observed in Eq. (13), it is the quadratic dependence on the
tangential velocity appearing in the adiabatic-wall condition
that causes the double-frequency (and higher even harmon-
ics of ω; see the discussion in Fig. 7) dependence of the
solution. This is reminiscent of the result obtained in the
continuum limit [see Eq. (35) et seq.], showing the leading
O(Ma2) double-frequency time dependence of the thermal
flow variables and normal velocity. In view of the similar
behaviors in the ballistic and continuum limits, it is expected
that the double-frequency time dependence should dominate
the system thermal response at all rarefaction conditions. This
is indeed supported by our DSMC calculations below (see
Fig. 7). A similar trend was also observed in the numerical
results of Refs. [19] and [21].

Having described the initial and transient system responses
at Kn � 1, the remaining of this section considers the system
periodic behavior obtained at long times. Toward this end,
Fig. 2 shows snapshots at period time of the tangential veloc-
ity u, the deviations of the density ρ and temperature T from
their unity equilibrium values, and the normal heat flux qy , for
Ma = 0.8 and ω = 5. Ballistic flow results are compared with
DSMC Kn = 72 calculations, for both adiabatic (adiabatic
y = −1/2 surface) and isothermal (isothermal y = −1/2 sur-
face) wall setups. The agreement between the analytical and
DSMC predictions is gratifying, supporting the accurateness
of the nonlinear ballistic analysis. Any small discrepancies
[visible particularly in the low-amplitude density signal in
Fig. 2(b)] may be attributed to the noninfinite Knudsen
number used in DSMC computations, and can be further
reduced by increasing the simulated Kn.

Inspecting the ballistic-flow isothermal wall results, we
recall that Tw1 = 1 in this case. Hence, Eq. (13) is omitted
from the analysis, and Eqs. (11) and (12) yield ρw1,2 (t ) = 1.
At these conditions, it may be readily verified that ρ(y, t ) −
1 = v(y, t ) = 0 [see Eqs. (A1) and (A3), supported by
Figs. 2(b) and 4(a)], and only the temperature, pressure and
heat flux fields deviate from their equilibrium distributions.
The isothermal wall configuration exhibits symmetry proper-
ties about y = 0, yielding symmetric temperature field and
antisymmetric tangential velocity and heat flux. No such
symmetry exists in the adiabatic wall setup, where elevated
temperatures and normal heat fluxes are observed due to the
increase in the y = −1/2 insulated wall temperature (see
Fig. 1). Notably, the tangential flow velocity remains nearly
unaffected by the change in the walls thermal conditions for
the present choice of the Mach number.

Turning to the continuum limit of small Kn and ω, Figure 3
presents counterpart results for the tangential velocity, density
and temperature deviations, and normal heat flux, for Ma =
0.3, ω = 0.1, and Kn = 0.09. Adiabatic and isothermal walls
setup are presented and compared between slip-flow analy-
sis and DSMC computations at period time. The symmetry
properties of the isothermal-setup fields are clearly observed,
in contrast with the adiabatic-wall configuration. The DSMC
results in Fig. 3(a) confirm that nonlinear thermal effects
[being O(Ma3) in accordance with the Mach power expansion
in Eq. (28)], at the Ma = 0.3 value presented, have nearly no
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FIG. 2. Spatial variations of the (a) tangential velocity, (b) density deviation, (c) temperature deviation, and (d) normal heat flux, for the
adiabatic wall (blue) and isothermal wall (red) setups with Ma = 0.8 and ω = 5. The curves (solid blue and dashed red lines) and symbols
(blue crosses and red circles) present the ballistic analytical and Kn = 72 DSMC predictions at period time, respectively.

impact on the tangential flow velocity. Indeed, all predictions
in Fig. 3(a) coincide with the leading O(Ma) slip-flow result,
regardless of the applied thermal boundary conditions.

While the agreement between DSMC and slip-flow predic-
tions appears reasonable, visible discrepancies are observed,
particularly for the temperature deviation. This may be at-
tributed to the relatively large value of Kn = 0.09 chosen, and
perhaps to higher-order Mach corrections. Better agreement
may be obtained by further decreasing Kn. Yet, this must
be followed by a subsequent decrease in the frequency ω,
so that ω � Kn, to prevent an increase in the local Knudsen
number near the walls [see Eq. (32) et seq.], and associated
magnification of the nonlinear forcing shear rate ∝ ω/Kn [see
the forcing terms in Eqs. (40) and (41) together with Eq. (32)].
Since a further reduction in ω requires exceedingly long
DSMC running times, such a comparison was not followed
here.

To complement the description of the bidirectional flow
field, Fig. 4 presents time snapshots of the normal veloc-
ity component v(y, t ). The high-Kn limit is presented in
Fig. 4(a), where ballistic-flow predictions are compared with
Kn = 72 DSMC results for Ma = 0.8 and ω = 5. The con-
tinuum limit is shown in Fig. 4(b), comparing DSMC and
slip flow calculations for Kn = 0.09, Ma = 0.3, and ω = 0.1.
Both adiabatic and isothermal wall setups are depicted at
period time.

At first we note the relatively small amplitudes of the
vertical velocity at both limits. Recalling the discussion of
the ballistic regime in Figs. 1 and 2, nonzero normal velocity
may occur in this limit only in the adiabatic wall setup, due to
deviation of the adiabatic wall temperature from the reference
equilibrium temperature. This is supported by the results in
Fig. 4(a), showing a vanishing noisy DSMC signal in the
isothermal case. This ballistic-regime restriction does not hold
in the continuum limit in Fig. 4(b), where molecular collisions
give rise to macroscopic normal velocity and momentum
transfer regardless of the walls thermal conditions. In this
limit, ω should be taken small, and v(y, t ) is consequently
reduced due to mass balance considerations (dv/dy ∼ ωρ).
The agreement between DSMC and slip flow predictions is
good even within the Knudsen layers, presumably since the
impermeability condition (in difference from the velocity slip
and temperature jump conditions) is identically satisfied by
both continuum limit and kinetic schemes.

Figures 5 and 6 present the tangential and normal stresses
acting on the boundaries in an adiabatic wall setup. The
figures show results for the stresses on both the adiabatic
y = −1/2 and isothermal y = 1/2 boundaries. Ballistic- and
continuum-limit results are compared with DSMC predic-
tions. Figure 5 describes the variations with Kn of the stresses
amplitudes, demonstrating the breakdown of the limit-case
analyses. Figure 6 depicts the variations with Ma, show-
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FIG. 3. Spatial variations of the (a) tangential velocity, (b) density deviation, (c) temperature deviation, and (d) normal heat flux, for the
adiabatic wall (blue) and isothermal wall (red) setups with Ma = 0.3, ω = 0.1 and Kn = 0.09. The curves (solid blue and dashed red lines)
and symbols (blue crosses and red circles) present slip flow analytical results and DSMC predictions at period time, respectively.

ing the effect of system nonlinearity at nonsmall Mach
numbers.

Starting with the former, Fig. 5 describes the variations
with Kn of the amplitudes of the tangential and normal walls
stresses for ω = 0.1 with Ma = 0.3 [Figs. 5(a) and 5(b)], and
Ma = 0.8 with ω = 1 [Figs. 5(c) and 5(d)]. DSMC results
are compared with continuum and ballistic limit predictions
at both walls. While it is expected that the nonlinear ballistic-

flow calculation captures well the large-Kn wall stresses at
arbitrary Ma, the slip-flow scheme yields results that agree
with DSMC calculations at Knudsen numbers larger than
anticipated. This includes the Ma = 0.8 case, where O(Ma3)
corrections (not contained in the present calculation) could
have become significant. Notably, visible discrepancies ap-
pear, in some of the cases, at low Knudsen numbers, and
decrease with increasing Kn. These are rationalized, as in
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FIG. 4. Spatial variations of the normal velocity for the adiabatic wall (blue) and isothermal wall (red) setups with (a) Ma = 0.8, ω = 5,
and Kn = 72; (b) Ma = 0.3, ω = 0.1, and Kn = 0.09. The curves (solid blue and dashed red lines) and symbols (blue crosses and red circles)
present analytical [collisionless in (a); slip flow in (b)] results and DSMC predictions at period time, respectively.

033121-11



Y. BEN-AMI AND A. MANELA PHYSICAL REVIEW E 98, 033121 (2018)

10-1 100 101 102

0.02

0.06

0.1

0.14

(a)

10-1 100 101 102

0.004

0.012

0.02

0.028

0.036 (b)

10-1 100 101 102

0.08

0.16

0.24

0.32
(c)

10-1 100 101 102

0.08

0.16

0.24

0.32 (d)

FIG. 5. Variations with Kn of the amplitudes of the (a, c) tangential and (b, d) normal forces per unit area on the adiabatic y = −1/2 (blue)
and isothermal y = 1/2 (red) boundaries for (a, b) Ma = 0.3 and ω = 0.1; (c, d) Ma = 0.8 and ω = 1. The symbols show DSMC results for
the y = −1/2 (blue crosses) and y = 1/2 (red circles) walls. The solid lines present continuum- and ballistic-limit predictions. Black curves
are presented in cases where the adiabatic and isothermal walls results coincide. The black dashed line in (c) shows the linearized isothermal
approximation for the tangential stress in the ballistic limit.

Fig. 3, by the respective increase in ω/Kn for fixed ω and
decreasing Kn, which confines the walls-affected layers to the
surfaces vicinities, magnifies the value of the local Knudsen
number, and increases the associated nonlinear impact of
gas shear rate [see Eq. (32) et seq.]. In view of the above,

we find the overall agreement between the different schemes
satisfactory, and in support of the validity of both calculations.

Comparing between the amplitudes of the tangential and
normal stresses, we find that, for both Mach numbers, the tan-
gential stress is considerably larger at high-Kn flow conditions
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FIG. 6. Variations with Ma of the amplitudes of the (a) tangential and (b) normal forces per unit area on the adiabatic y = −1/2 (blue) and
isothermal y = 1/2 (red) boundaries at the indicated (Kn, ω) combinations. The symbols show DSMC results for the y = −1/2 (blue crosses)
and y = 1/2 (red circles) walls. The solid lines present continuum- and ballistic-limit predictions. Black curves are presented where the
adiabatic and isothermal walls results coincide. The black dashed line in (a) shows the linearized isothermal approximation for the tangential
force in the ballistic limit at ω = 1.
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FIG. 7. Spectral densities of the tangential velocity (black solid lines) and temperature deviation (dashed red curves) signals at the gap
middle point, y = 0, for an adiabatic wall setup with Kn = 0.09, ω = 1 and (a) Ma = 0.8; (b) Ma = 5. The spectra are calculated based on
DSMC predictions and are scaled by their maximal values.

(cf. Fig. 6). Yet, at continuum-limit conditions, the normal
stress, resulting from nonlinear thermal effects, becomes com-
parable with the tangential stress at Ma = 0.3, and overcomes
with increasing Ma. Additionally, while the tangential force
per unit area is always monotonically increasing with Kn,
the normal stress is either monotonically decreasing for ω ∼
O(1) [as for ω = 1 in Fig. 5(d)] or, at sufficiently low ω, varies
nonmonotonically and reaches a maximum at an intermediate
Kn [as for ω = 0.1 in Fig. 5(b)]. In the following we seek to
rationalize these findings.

The increase in |F (t )
w | with Kn has been observed in pre-

vious works studying the low-Ma isothermal problem (e.g.,
Ref. [15]). The tangential force on the wall is proportional
to the difference in the tangential momentum between the
incoming and reflected particles. In the high-Kn limit, the
tangential momentum of a molecule impacting a wall at
time t∗ depends almost entirely on the tangential velocity
of the other wall at the “mean” retarded time t∗ − L∗/U ∗

th.
For the present opposite-phase motion of the boundaries,
the two walls velocities are considerably different, resulting
in significant momentum change due to boundary impact.
With decreasing Kn, collisions between the molecules be-
come frequent, advancing inter-molecular momentum transfer
during molecules passage between wall impacts. The tangen-
tial momentum change owing to particle-surface collisions is
therefore reduced, and the walls shear stress reduces with Kn.
A similar conclusion may be drawn using macroscopic argu-
ments, by examining the effect of decreasing the gap width
L∗, while maintaining the gas reference properties (ρ∗

0 , T ∗
0 )

and wall actuation parameters (Ū ∗
w, ω∗), on the shear stress

amplitude |F ∗(t )
w |. Assuming that the imposed shear rate is

proportional to Ū ∗
w/L∗ (effective at small Knudsen numbers),

it is clear that |F ∗(t )
w | increases with decreasing L∗. This is,

again, in agreement with the results in Figs. 5(a) and 5(c) for
|F (t )

w |, which, when multiplying by the constant scaling factor
ρ∗

0U ∗2
th , yield the increasing of |F ∗(t )

w | with 1/L∗.
Focusing on the low-Kn asymptotes in Figs. 5(a) and 5(c),

we observe that a single curve appears, to approximate both
adiabatic and isothermal wall tangential stresses. This is since,
in the slip-flow calculation, only the leading O(Ma) stress,
unaffected by the wall thermal conditions, was evaluated. The

DSMC results for Ma = 0.3 in Fig. 5(a) support this ap-
proximation, showing no distinguishable differences between
the shear stresses at the two walls. For the higher Ma =
0.8 presented in Fig. 5(c), the DSMC calculations predict
higher tangential stress at the isothermal wall, which may
be attributed to the O(Ma3) correction not included in our
calculation. The higher stress at the isothermal wall is retained
at all Knudsen numbers, and is attributed to a thermal effect:
molecules traversing from the adiabatic to the isothermal
boundary acquire higher speed due to the larger temperature
of the former. Hence, the momentum change at the isothermal
wall impact is larger, resulting in a higher tangential stress.

Considering the ballistic-flow asymptotes in Figs. 5(a) and
5(c), we observe that for Ma = 0.3 the adiabatic and isother-
mal wall stresses coincide. At this combination of relatively
low Mach number and frequency, the ballistic-flow tangential
stress may be well approximated by the linearized isothermal
result [obtained from Eqs. (15) and (17) in the limit ρw1,2 =
Tw1 = 1],∣∣F (t )

w1,2

∣∣ ≈ Ma/
√

π (Kn � 1, Ma � 1, ω � 1), (64)

equal ≈0.169 for Ma = 0.3. At Ma = 0.8, the linearized
isothermal approximation [not captured by Eq. (64), since
ω = 1] underestimates the ballistic-flow results, as visible by
comparing between the dashed line and the solid high-Kn
asymptotes in Fig. 5(c). These deviations, increasing with Ma,
reflect the effects of system nonlinearity at large oscillation
velocities, where increasing thermal dissipation rates couple
elevated wall shear stresses.

Similar (yet qualitatively opposite) kinematic considera-
tions may be used to rationalize the reversed trends observed
for the variation with Kn of the normal stress amplitude |F (t )

n |
in Figs. 5(b) and 5(d). At large-Kn conditions, molecular
collisions are absent, and normal wall stresses are solely
attributed to the deviations of the adiabatic wall temperature
and gas medium from the reference temperature. These, in
turn, cause an increase in the molecules normal velocity,
which reflects in the relatively small (yet nonzero) values of
|F (n)

w1,2
| in Figs. 5(b) and 5(d) at Kn � 1. The stresses increase

with Ma, in line with the larger deviation of the gas state from
its reference isothermal condition at increasing velocities.
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Decreasing the value of Kn to intermediate Kn � O(1) values
permits for molecular collisions to occur during the passage of
molecules between the boundaries. Such collisions inevitably
result in transferring molecular tangential momentum into
normal momentum, with the change in the molecules post-
collision normal velocity increasing for larger pre-collision
tangential velocity differences. Inversely to the argument in
the context of the tangential wall stress, this mechanism leads
to the increase in the amplitude of the normal stress with
decreasing Kn.

Reducing the Knudsen number further to Kn � 1, molec-
ular collisions become more frequent, with the mean free
path shortening. When the oscillation frequency is small, the
timescale for changes in the flow field is large, and it is there-
fore probable that collisions occur between molecules having
similar tangential momenta. The post-collision difference in
the molecules normal velocity is consequently smaller, and
a reduction in the normal stress on the walls is observed.
Importantly, this reduction is obtained particularly for ω � 1,
where the timescale characterizing the walls motion (∼1/ω∗)
is large compared with the scale characterizing molecules
passage across the slab (∼L∗/U ∗

th). In such a case, the ap-
pearance of a maximum value for |F (n)

w | reflects a balance
between the above-described counteracting effects: at some
“optimal” value of Kn � 1, the occurrence of few collisions
during slab passage results in significant changes in molecules
normal velocity, thus increasing the walls normal stress; below
this “optimal” value, these changes become smaller owing to
the common interactions between molecules having similar
tangential momenta, and a decrease in |F (n)

w | is obtained.
The effect of the Mach number on the tangential and nor-

mal forces is considered in Fig. 6. Specifically, the variations
of |F (t )

w | and |F (n)
w | with Ma are presented for low (Kn = 0.09)

and large (Kn = 181) Knudsen numbers. The stresses on both
adiabatic and isothermal walls are shown. DSMC results are
compared with limit-case continuum and ballistic predictions
at ω = 0.1 and ω = 1. At low Kn, the Mach power expansion
in Sec. IV predicts well the tangential linear [with ∼O(Ma3)
error] and normal quadratic [with ∼O(Ma4) error] stress de-
pendencies up to Ma ≈ 0.8. Beyond this value, the tangential
and normal forces deviate from their analytic predictions due
to higher-order effects. In marked difference, the nonlinear
ballistic-flow analysis agrees well with the DSMC results
for all Ma. For |F (t )

w |, we observe a deviation between the
nonlinear prediction and the linearized isothermal result at
Ma � 0.6 [cf. the black dashed and solid blue and red curves
in Fig. 6(a)]. While the tangential wall stress is invariably
larger than the normal stress at large Kn, the latter overcomes
|F (t )

w | for Ma � 0.7 in the continuum limit. This demon-
strates the significance of system nonlinearity and thermal
coupling on the shear-induced motion at nonsmall excitation
velocities.

In terms of system time response, the results thus far
have presented the effect of high-speed boundary actuation
on the frequency doubling of the thermodynamic and normal
velocity fields. While this is the main observation at finite
yet small Mach numbers, closer inspection of the time sig-
nals at increasing Ma shows that amplified compressibility
leads to the generation of higher-order harmonics in all hy-
drodynamic fields. To demonstrate that, Fig. 7 presents the

DSMC-calculated spectral densities of the tangential velocity
and temperature signals at the gap middle point, y = 0, for an
adiabatic wall setup with Kn = 0.09, ω = 1 and different val-
ues of Ma. At the lower Ma = 0.8 shown [Fig. 7(a)], the tem-
perature field is dominated by the double frequency ωspec =
2ω component, as supported by our continuum-limit analysis.
Yet, the tangential velocity contains both the fundamental
ωspec = ω and triple ωspec = 3ω frequency contributions. This
trend becomes more pronounced at the higher Ma = 5 pre-
sented [Fig. 7(b)], where the tangential velocity contains
an additional ωspec = 5ω contribution, and the temperature
shows a secondary ωspec = 4ω peak. Generally, as the Mach
number is increased at a given Knudsen, the solutions for
the thermodynamic and normal velocity fields contain higher
even harmonics (with ωspec = 2nω, n = 1, 2, . . . ), while the
tangential velocity subsumes higher odd harmonics (with
ωspec = (2n + 1)ω, n = 1, 2, . . . ), both at descending ampli-
tudes. Although higher-order corrections (O(Ma3) and above)
have not been calculated in the continuum-limit scheme, it is
apparent through the asymptotic balance that such corrections
would allow for multiple-harmonic components. According
to our high-Kn DSMC and ballistic-limit spectra results (not
presented here), the generation of higher harmonics turns
quantitatively weaker with increasing Kn.

VII. CONCLUSION

We investigated the response of a rarefied gas in a slab to
the motion of its boundaries in the tangential direction. In
difference from previous studies, we considered boundaries
displacements at nonsmall Mach numbers, coupling the dy-
namic and thermodynamic gas states, and deviating the sys-
tem from its low-velocity isothermal condition. The problem
was studied in the entire range of gas rarefaction conditions,
combining limit case ballistic- and continuum-flow analyses
with direct simulation Monte Carlo computations. Focusing
on the case of oscillatory boundary motion, a nonlinear solu-
tion (also formulated for arbitrary wall-velocity profiles) was
derived in the ballistic regime for arbitrary velocity ampli-
tudes. At near-continuum conditions, a slip-flow time-periodic
solution was obtained by expanding the flow field in a Mach
power series. The effect of replacing between isothermal and
adiabatic surfaces was examined. The results indicate that, at
all Knudsen numbers, the thermodynamic fields and associ-
ated normal velocity component are dominated by double-
frequency (and descending higher-order even-frequency har-
monic) time dependence, in difference from the fundamental-
frequency time dependence dominating the tangential gas
velocity. At continuum-limit conditions, this stems from the
quadratic viscous dissipation term appearing in the energy
equation (negligible at low-Mach conditions), coupling the
square of the tangential velocity gradient as a forcing term.
System nonlinearity also results in an unsteady normal force
acting on the boundaries, overcoming the tangential force
at large enough Ma. In marked difference from the latter,
the normal force either decreases with Kn, or, at sufficiently
small actuation frequencies, varies nonmonotonically with
Kn, reaching a maximum at some intermediate rarefaction
conditions.
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Examining the impact of walls thermal boundary condi-
tions, it was found that an adiabatic boundary, acting as a
heat insulator, amplifies the effect of viscous dissipation in
the slab, and results in elevated gas temperatures and heat
fluxes. These, in turn, affect the gas-surface interactions, and
modify the forces acting on the walls. Recalling the practical
importance of controlling the shear and normal loads on the
boundaries in a shear flow setup, it appears of interest to
examine the possible monitoring of these forces by means of
altering the walls-imposed heat flux. A study on this topic is
currently in progress.

The present work considers a one-dimensional (bidirec-
tional) slab setup, where all flow variables vary spatially
with the normal coordinate only. A more general approach
would examine a two-dimensional configuration, allowing for
tangential-coordinate dependence of the flow field. Such an
extension, which is not in the scope of the present contri-
bution, may enable investigation of the stability of the one-

dimensional solutions obtained here, similarly to previous
continuum studies on shear flows [36]. In this context, we
consider the present work as a preliminary step of obtain-
ing a “reference” one-dimensional description. In view of
previous analyses of the stability of rarefied gas flows in
other canonical configurations (e.g., Refs. [37–39]), it appears
reasonable to expect that gas rarefaction stabilizes the sys-
tem state, thus confining instability phenomena (and associ-
ated two-dimensional effects) to the limit of small Knudsen
numbers.
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APPENDIX A: EXPRESSIONS FOR THE HYDRODYNAMIC FIELDS IN THE BALLISTIC LIMIT

The hydrodynamic density ρ, tangential velocity u, normal velocity v, pressure p, and normal heat flux qy , obtained in the
ballistic limit for arbitrary tangential wall excitation profiles Uw1,2 (t ), are

ρ(y, t ) = 1√
π

∫ t

0

{
ρw1 (τ )

(
y + 1
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w1 (τ )
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−
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u(y, t ) = 1√
πρ(y, t )
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v(y, t ) = 1√
πρ(y, t )

∫ t
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p(y, t ) = 1
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and

qy (y, t ) = 1
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respectively. In accordance with the equation of state and the scaling introduced, the temperature field is given by

T (y, t ) = 2p(y, t )/ρ(y, t ). (A6)

APPENDIX B: EXPRESSIONS FOR v(2)( y) AND ρ (2)( y) IN THE CONTINUUM-LIMIT SOLUTION

The 2ω-oscillatory amplitude functions of the O(Ma2) vertical velocity v(2)(y) and density ρ (2)(y) are
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(
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√
iω
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y

)]}
, (B2)

respectively.
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