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We analyze the response of a gas in a micro-slab, set at an initial pure-conduction
state, to instantaneous thermal insulation of its boundaries. In line with ongoing efforts
in generating gas flows at the microscale, thermal insulation is suggested as a means for
flow excitation with no moving parts. The problem is analyzed in the entire range of
gas rarefaction rates and for arbitrary initial temperature differences between the walls.
Analytical solutions are obtained in the linearized limit of small temperature differences
for large (collisionless) and small (continuum) Knudsen numbers. These solutions are
supported by direct simulation Monte Carlo calculations, which are then used to investigate
the nonlinear problem with large initial temperature differences. Followed by the system’s
initial state, boundary insulation results in a series of time-decaying waves, propagating
across the slab, and transferring the system between its conductive and adiabatic equilibrium
states. While larger initial temperature differences result in higher flow rates, it is found that
nonlinear effects reduce the efficiency of flow excitation through boundaries insulation. At
high Knudsen numbers, this is rationalized through the system’s initial state, in which the
gas uniform temperature is lower than the arithmetic mean of walls temperatures. At low
Knudsen numbers, the dominant effect of molecular collisions causes thermal dissipation,
which in turn results in kinetic energy losses. The analysis may be readily applied to
calculate the gas response to arbitrary time variations of the boundary-imposed heat flux.
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I. INTRODUCTION

Ongoing developments in the field of micro-electro-mechanical systems require continuous
investigations of microfluidic flows, for both liquids and gases [1]. At the very small length scales
considered, the excitation and control of such flows are particularly challenging and are the focus of
a large number of studies. These works have led to the invention of microscale pumps [2] and mixers
[3], used in a variety of biomedical applications [4]. Traditionally, the flow actuators developed
thereof may be of active or passive type. In active actuators, the flow is excited through mechanically
moving components, such as pistons and thin films. In passively excited flows, no moving parts
are involved, but are replaced by nonmechanical flow-induction methodologies. This has the clear
advantage of avoiding mechanical wear caused by component motion.

Focusing on passive flow excitation in rarefied gases, the concept of Knudsen pumps was
introduced by Maxwell [5] during the nineteenth century and studied ever since (see, e.g., [6], and
references cited therein). In this setup, gas motion parallel to a surface is induced by a temperature
gradient along the boundary. In a concurrent set of works, it was found that time-dependent
temperature changes at a boundary induce gas motion in its normal direction. Specifically, the
response of a gas to instantaneous [7–9] and continuous [10] time temperature changes has
been investigated. Common to these works is the consideration of linearized conditions of small
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temperature variations and the direct application of temperature boundary conditions at the walls.
The latter, however, appears of little practical value, as the surface temperature at any experimental
setup can only be prescribed indirectly through the direct imposition of boundary heat flux. Thus,
apart from the fundamental interest in investigating the effect of heat-flux boundary conditions on
the resulting flow, it is also of evident practical importance.

Noting the above in a more general context, the impact of replacing isothermal with heat-flux
boundary conditions has been considered in several works. Gospodinov et al. [11] have investigated
the impact of changing between isothermal and adiabatic conditions on the oscillatory cylindrical
Couette flow developed at high rotation speeds. The work has demonstrated a nonlinear effect
of heat transfer at nonsmall rotation velocities, resulting in deviations from the incompressible
solution. In a different setup, Manela and Pogorelyuk [12,13] have considered the effect of thermal
boundary conditions on the passage of sound waves in a rarefied gas. The results obtained have
suggested a potential thermoacoustic mechanism for active noise control of a vibrating surface in the
entire range of gas rarefaction levels. Most recently, Meng et al. [14] have studied numerically the
effect of heat-flux boundary conditions on rarefied Couette and force-driven Poiseuille flows. Their
work showed that a zero-heat-flux (adiabatic) wall may significantly influence the flow at high
speeds.

The objective of the present work is to extend existing analyses on the response of a rarefied
gas to unsteady changes in the thermal properties of its boundaries. The main differences from
previous investigations are: (i) Boundary conditions on wall temperatures are replaced by conditions
on the normal heat flux. The boundary temperature is thus treated as unknown and is calculated in
the process of analysis. Apart from being a more realistic representation, it is indeed the change
in surface heat flux, rather than in its temperature, that is the physical source for gas motion. (ii)
An initial equilibrium state of pure conduction, i.e., with nonzero uniform heat flux, is considered.
This is qualitatively different from the zero-heat-flux initial state taken in previous works. Apart
from modifying the problem formulation and analysis, the consideration of a nonzero-heat-flux state
enables investigation of the mechanism of small-scale energy transfer from gas thermal energy into
kinetic energy. (iii) The problem is studied in both linear and nonlinear regimes, by considering
arbitrary values of the walls’ initial heat flux.

We consider a one-dimensional gas-in-a-slab setup. The gas layer is initially set in a pure-
conduction equilibrium state with its confining walls fixed at different temperatures. The initial
equilibrium state is governed by the (equal) normal heat-flux magnitudes imposed at the walls, the
temperature of one of the walls (or, instead, the mean gas temperature), and the mean density of the
gas. At time t∗ = 0, the boundaries are thermally insulated and the gas response is followed through
its terminal state. We analyze the problem in the entire range of gas rarefaction rates and for arbitrary
magnitudes of initial heat flux. Thus, both linear and nonlinear problems are considered.

The paper is organized as follows. In Sec. II the general statement of the problem is given. The
numerical scheme applied for analyzing the problem, the direct simulation Monte Carlo (DSMC)
method, is discussed in Sec. III. In Sec. IV the linear problem of small initial heat fluxes is considered
and comparison is made between numerical and analytical predictions in the collisionless and
continuum limits. The nonlinear problem is investigated in Sec. V. A summary of our results and an
assessment of their significance are given in Sec. VI.

II. STATEMENT OF THE PROBLEM

Consider a gas layer of mean density ρ∗
0 confined between two stationary diffuse reflecting walls.

The walls are placed at x∗ = ∓L∗/2 in the (y∗,z∗) plane, with asterisks denoting dimensional
quantities. At time t∗ < 0, the wall at x∗ = −L∗/2 is set at temperature T ∗ = T ∗

c and both walls are
subject to uniform heat flux in the normal direction

q∗
w(t∗ < 0) = q∗

wx̂, (1)
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fixing the gas pure-conduction initial state. At time t∗ = 0, the walls are instantaneously insulated
and the system is kept adiabatic thereafter,

q∗
w(t∗ � 0) = 0. (2)

In the following we investigate the transient system response to its thermal insulation and its
relaxation towards the terminal adiabatic state in the entire range of gas rarefaction rates and initial
heat-flux magnitudes q∗

w.
Before proceeding to problem analysis, scaling is introduced. We normalize the position and

velocity by the slab width L∗ and mean thermal speed U ∗
th = √

2R∗T ∗
0 , respectively. Here R∗ marks

the specific gas constant and the temperature T ∗
0 is the arithmetic mean of wall temperatures at

the initial equilibrium state. This scale for the temperature appears useful for analyzing the linear
problem, where symmetry properties of the system (about its mean equilibrium state) apply. The
time is normalized by L∗/U ∗

th. The temperature and density are nondimensionalized by T ∗
0 and ρ∗

0 ,
respectively, and the heat flux is scaled by ρ∗

0U ∗3
th . The resulting scaled problem is governed by the

nondimensional parameters

qw = q∗
w/ρ∗

0U ∗3
th , Kn = l∗/L∗, (3)

denoting the initial wall heat-flux magnitude and gas Knudsen number (where l∗ marks the mean free
path of a gas molecule), respectively. In terms of the nondimensional formulation, we investigate the
system response in the entire range of qw and Kn. To start with, we focus on the linearized problem
of small initial heat flux at the walls qw � 1 and study the system response at ballistic (Kn � 1),
continuum (Kn � 1), and intermediate [Kn ∼ O(1)] conditions. We then consider the nonlinear
problem, where qw ∼ O(1), in the entire range of Knudsen numbers. The numerical scheme applied
for the calculation is the DSMC method, to be discussed in the next section. Analytical predictions
are made in the linearized limit, studied in Sec. IV, and, to a limited extent, also in the nonlinear
case in Sec. V. These predictions are assessed through comparison with DSMC results, which are
considered numerically exact.

III. NUMERICAL SCHEME: THE DSMC METHOD

The DSMC method is a stochastic particle method commonly used for studying rarefied gas
flows, and is now accepted as the most reliable scheme for analyzing complex gas flows in the entire
range of noncontinuum conditions [15]. In the present work, a one-dimensional version of the DSMC
scheme is employed to analyze the system response. We consider a hard-sphere gas collision model
in a finite domain, in conjunction with the diffuse reflection model for gas-surface interactions.
In common applications of the DSMC algorithm, such interactions are modeled through direct
prescription of the wall temperatures. However, in the present work, heat-flux boundary conditions
are applied instead, where the wall temperatures are treated as unknown. Towards this end, the
temperatures of the walls at each simulation time step are controlled in a closed-loop manner, to
reduce the deviations from the desired heat flux. The algorithm has been used previously by the
present authors and is described in Ref. [12].

The numerical realization of the problem consists of two stages. Initially, the gas pure-conduction
equilibrium distribution is achieved. Then the boundaries are turned adiabatic and the calculation
follows the system evolution through its final equilibrium. In practice, any deviation from the initial
pure-conduction state affects the initial system condition at the instant of wall insulation which, in
turn modifies the transient system behavior at t > 0. It is therefore important to enable full system
relaxation before the wall insulation is applied.

The scheme above may have been simplified considerably if the molecular description of the
gas at the initial equilibrium was known for arbitrary Knudsen numbers. However, an explicit
expression for the distribution of particle velocities is available only in the collisionless limit [16],
while at finite and small Knudsen numbers only numerical approximations exist, even for linearized
conditions (see, e.g., [17]). For simplicity, we have applied the molecular distribution for collisionless
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conditions as the simulation’s initial condition. This choice is nearly exact at high Knudsen numbers
and thus resulted in short relaxation times of the system. Yet, with decreasing Knudsen number,
the pure-conduction state deviates considerably from the collisionless distribution, resulting in
increasing relaxation times. In all cases, system equilibration has been ensured by monitoring the
fluctuations in all macroscopic fields and verifying that they decay below the statistical noise level
before switching the boundary conditions.

In line with the discussion in Sec. II, DSMC calculations were carried out for both linear
(qw � 1) and nonlinear [qw ∼ O(1)] setups. In the former case, simulation results are characterized
by high noise levels, resulting from the statistical scattering inherent in the computational algorithm.
This has been resolved through repeated time averaging of the signal. The domain was split into
128 computational cells and 256 subcells. The time step applied was 1/3 of the cell length over
the gas thermal speed at equilibrium. To resolve the statistical scattering mentioned above, the
numerical results were averaged over 16 time steps (roughly five computational cell lengths over
the gas thermal speed at equilibrium), ensuring sufficiently low noise levels that enable comparison
between the numerical and analytical predictions. A typical calculation required an order of 5 × 107

DSMC particles to allow for numerical convergence.

IV. LINEARIZED PROBLEM

We start by considering the linearized problem, where the initial heat-flux magnitude qw (and
consequent temperature difference between the walls) is small. The problem is studied analytically
in the limits of large (collisionless flow, Sec. IV A) and small (continuum limit, Sec. IV B) Knudsen
numbers. The Monte Carlo simulation discussed in Sec. III is used to validate the analytical
predictions and characterize the breakdown of each limit with varying Kn. Our results are described
in Sec. IV C

A. Ballistic-flow regime

When the slab width L∗ is of the order of the mean free path or smaller, the continuum hypothesis
does not apply and the molecular description of the gas must be taken into account. In the limit case
of Kn = l∗/L∗ � 1, the effect of gas molecular collisions may be neglected and the flow may be
treated as ballistic. Making use of the kinetic theory of gases [18], the gas state is described by the
velocity distribution function

f (x,t,c) = F [1 + εφ(x,t,c)], (4)

where c = (cx,cy,cz) is the vector of molecular velocity and F = π−3/2 exp[−c2] is the scaled
equilibrium Maxwellian distribution. In the absence of molecular collisions, we consider the
collisionless Boltzmann equation for φ(x,t,c),

∂φ

∂t
+ cx

∂φ

∂x
= 0. (5)

The equation is supplemented by wall boundary conditions, describing the interaction between the
gas molecules and the surfaces. We consider purely diffuse boundaries [18], according to which the
molecules reflected from the surfaces (having cx ≷ 0 at x = ∓0.5, respectively) acquire Maxwellian
(equilibrium) distribution characterized by each of the walls’ properties. In a linearized formulation,

φ(x = ∓1/2,t,cx ≷ 0,cy,cz) = ρ±(t) + T±(t)(c2 − 3/2), (6)

where ρ±(t) and T±(t) (the latter being the scaled time perturbation of the surfaces temperatures)
need to be determined.

The above problem is analyzed by applying the time Fourier transform

Ḡ(ω) =
∫ ∞

−∞
G(t) exp[−iωt]dt (7)
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to Eqs. (5) and (6). This yields the transformed equation

iωφ̄ + cx

dφ̄

dx
= 0 (8)

and boundary conditions

φ̄(x = ∓1/2,ω,cx ≷ 0,cy,cz) = ρ̄±(ω) + T̄±(ω)(c2 − 3/2) (9)

amenable to the solution

φ̄(x,ω,cx ≷ 0,cy,cz) = [ρ̄±(ω) + T̄±(ω)(c2 − 3/2)] exp

[
−iω

x ± 1/2

cx

]
. (10)

The time-domain solution is obtained by taking the inverse Fourier transform

G(t) = 1

2π

∫ ∞

−∞
Ḡ(ω) exp[iωt]dω (11)

of Eq. (10), yielding

φ(x,t,cx ≷ 0,cy,cz) = ρ±(t±) + T±(t±)(c2 − 3/2), (12)

where t± = t − (x ± 1/2)/cx .
The fields ρ±(t) and T±(t) appearing in Eq. (12) are specified by imposing the macroscopic

impermeability and heat-flux wall conditions [18]

1

π3/2

∫ ∞

−∞
cxφ(x = ∓1/2) exp[−c2]dc = 0 (13)

and

1

2π3/2

∫ ∞

−∞
c2cxφ(x = ∓1/2) exp[−c2]dc = qw[1 − H (t)], (14)

respectively. In Eq. (14), H (t) denotes the Heaviside step function, marking the instantaneous
insulation of the walls at t = 0 [see Eqs. (1) and (2)]. Problem symmetry (imposed by the symmetry
in wall boundary conditions and the scaling introduced) sets

ρ−(t) = −ρ+(t), T−(t) = −T+(t) (15)

and it is therefore required to satisfy conditions (13) and (14) at one boundary only. At the
prior-to-insulation (t < 0) pure-conduction state, substitution of Eq. (12) into Eqs. (13) and (14)
yields

ρ±(t < 0) = ±qw

√
π/2, T±(t < 0) = ∓qw

√
π, (16)

which fixes the gas state (12) at the initial equilibrium. Consequently, the initial macroscopic
perturbations of temperature, density, pressure, and normal heat flux are given by

T (x,t < 0) = ρ(x,t < 0) = p(x,t < 0) = 0, q(x,t < 0) = qw, (17)

respectively.
To obtain the transient system response after boundaries insulation, we substitute Eq. (12) into

Eqs. (13) and (14) with t � 0. Imposing the boundary conditions at x = −1/2 together with (15)
and applying the change of variables τ = t + 1/cx , we obtain a system of nonhomogeneous integral
equations for ρ+(t � 0) and T+(t � 0),

ρ+(t) + 1

2
T+(t) + 2

∫ t

0

ρ+(τ )

(t − τ )3
exp[−(t − τ )−2]dτ

+
∫ t

0

T+(τ )

(t − τ )3

[
2

(t − τ )2
− 1

]
exp[−(t − τ )−2]dτ = qw

√
π

t2
exp[−t−2] (18)
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and

ρ+(t) + 3

2
T+(t) +

∫ t

0

ρ+(τ )

(t − τ )3

[
1

(t − τ )2
+ 1

]
exp[−(t − τ )−2]dτ

+
∫ t

0

T+(τ )

(t − τ )3

[
1

(t − τ )4
+ 1

2(t − τ )2
+ 1

2

]
exp[−(t − τ )−2]dτ

= qw

√
π

[
exp[−t−2]

(
1

2t4
+ 1

t2
+ 1

)
− 1

]
. (19)

The system of equations satisfies the initial conditions set by the initial equilibrium state [see
Eqs. (12) and (16)] at t = 0−. The forcing terms appearing on the right-hand side in Eqs. (18) and
(19) originate from the contribution of molecules reflected from the x = +1/2 boundary at time
t < 0 and are thus proportional to qw. These terms vanish at t � 1, where the system resumes its
final equilibrium state

T (x,t � 1) = ρ(x,t � 1) = p(x,t � 1) = q(x,t � 1) = 0, (20)

which differs from the uniform initial equilibrium (17) by the value of the heat flux. It is this
difference between the conductive and adiabatic equilibrium states that drives the nonzero gas flow
at the transient time interval.

To solve for ρ+(t) and T+(t) at t � 0, Eq. (19) is subtracted from Eq. (18) to yield

T+(t) = −
∫ t

0

ρ+(τ )

(t − τ )3

[
1

(t − τ )2
− 1

]
exp[−(t − τ )−2]dτ

−
∫ t

0

T+(τ )

(t − τ )3

[
1

(t − τ )4
− 3

2(t − τ )2
+ 3

2

]
exp[−(t − τ )−2]dτ

+ qw

√
π

[(
1

2t4
+ 1

)
− 1

]
exp[−t−2]. (21)

Starting with t = 0, where the initial conditions (16) apply, T+(t) is calculated via time discretization
and numerical evaluation of the right-hand side of Eq. (21).1 Once T+(t) is calculated at each
time step, evaluation of ρ+(t) follows from its isolation from Eqs. (18) or (19).

With ρ+(t) and T+(t) known, the probability density perturbation φ in Eq. (12) is determined and
the O(ε) perturbations of the hydrodynamic fields are computed through appropriate quadratures
over the space of molecular velocities [18]. Defining

J n
±(x,t) =

∫ ±∞

0
ρ±(t±)cn

x exp
[−c2

x

]
dcx, Kn

±(x,t) =
∫ ±∞

0
T±(t±)cn

x exp
[−c2

x

]
dcx, (22)

the expressions for the density, velocity, pressure, and heat-flux fields are given by

ρ(x,t) = 1√
π

[
J 0

+ − J 0
− + K2

+ − K2
− − 1

2
(K0

+ − K0
−)

]
, (23)

u(x,t) = 1√
π

[
J 1

+ − J 1
− + K3

+ − K3
− − 1

2
(K1

+ − K1
−)

]
, (24)

p(x,t) = 2

3
√

π

[
J 2

+ − J 2
− + J 0

+ − J 0
− + K4

+ − K4
− − 1

2
(K2

+ − K2
−) − 1

2
(K0

+ − K0
−)

]
, (25)

1Note that, at a given time t > 0, such evaluation requires the values of ρ+ and T+ at times τ < t only, since
both integrands on the right-hand side of Eq. (21) vanish at τ = t .
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and

q(x,t) = −5

4
u + 1

2
√

π

[
J 3

+ − J 3
− + J 1

+ − J 1
− + K5

+ − K5
− − 1

2
(K3

+ − K3
−) − 1

2
(K1

+ − K1
−)

]
,

(26)

respectively. The temperature perturbation is obtained by the linearized form of the gas equation of
state

T = p − ρ. (27)

To evaluate of J n
±(x,t) and Kn

±(x,t) in Eqs. (23)–(26), the integral expressions in Eq. (22) are divided
into

J n
±(x,t) = ∓qw

√
π

2

∫ (x±1/2)/t

0
cn
x exp

[−c2
x

]
dcx ±

∫ t

0
ρ+(τ )

(x ± 1/2)n+1

(t − τ )n+2
exp

[
−

(
x ± 1/2

t − τ

)2]
dτ,

Kn
±(x,t) = ±qw

√
π

∫ (x±1/2)/t

0
cn
x exp

[−c2
x

]
dcx ±

∫ t

0
T+(τ )

(x ± 1/2)n+1

(t − τ )n+2
exp

[
−

(
x ± 1/2

t − τ

)2]
dτ.

(28)

In Eq. (28) the explicitly calculated integrals multiplied by qw reflect the cumulative effect of gas
molecules whose recent collision with a boundary occurred at t < 0. With increasing time, the upper
limit of these integrals decreases and their contribution vanishes. The integrals containing ρ+(τ ) and
T+(τ ), contributed by molecules whose recent collision with a boundary occurred after t = 0, are
evaluated numerically, based on the numerical calculation of ρ+(τ ) and T+(τ ) described above.

The ballistic-flow approximation is expected to hold in all cases where Kn � 1. Additionally,
since the time scale characterizing the change in boundary conditions is exceedingly small, it may be
expected that the collisionless approximation describes well the short-time gas response at nonlarge
Knudsen numbers when t � Kn (or, in dimensional notation, t∗ � l∗/U ∗

th). This will be examined
in the results of Sec. IV C.

B. Continuum model

Assuming that the distance L∗ between the boundaries is much larger than the mean free path
l∗, continuum conditions prevail and the Navier-Stokes-Fourier equations may be applied to obtain
the system behavior. Making use of the scaling introduced in Sec. II and linearizing about the initial
equilibrium state, we obtain the O(ε) unsteady one-dimensional balances of mass, momentum, and
energy

∂ρ

∂t
+ ∂u

∂x
= 0,

∂u

∂t
= −1

2

(
∂ρ

∂x
+ ∂T

∂x

)
+ 4K̃n

3

∂2u

∂x2
,

∂T

∂t
= γ K̃n

Pr

∂2T

∂x2
− (γ − 1)

∂u

∂x
, (29)

respectively. The O(ε) pressure perturbation and normal heat flux are given by the linearized form
of the equation of state and Fourier’s law

p = ρ + T , q = −β
∂T

∂x
, (30)

respectively. In Eqs. (29) and (30),

K̃n = μ∗
0

ρ∗
0U ∗

thl
∗ , Pr = μ∗

0c
∗
p

k∗
0

, γ = c∗
p

c∗
v

, β = k∗
0T

∗
0

ρ∗
0U ∗3

th L∗ , (31)

where μ∗
0 and k∗

0 denote the coefficients of gas dynamic viscosity and thermal conductivity at the
temperature T ∗

0 , respectively, and c∗
p and c∗

v mark the gas specific heat capacities at constant pressure
and volume, respectively. For the perfect hard-sphere gas considered here, the Prandtl number
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Pr = 2/3 and γ = 5/3. In addition, K̃n = (5
√

π/16)Kn and β = 15K̃n/8 [19]. The problem is
supplemented by the boundary conditions of wall impermeability and prescribed heat flux

u = 0, −β
∂T

∂x
= qw[1 − H (t)] at x = ∓1/2, (32)

respectively.
To analyze the problem, the time Fourier transform (7) is applied to Eqs. (29) and (32). This

yields a system of ordinary equations

iωρ̄ + ū′ = 0, iωū = −1

2
(ρ̄ ′ + T̄ ′) + 4K̃n

3
ū′′, iωT̄ = γ K̃n

Pr
T̄ ′′ − (γ − 1)ū′ (33)

accompanied by the boundary conditions

ū(∓1/2) = 0, − βT̄ ′(∓1/2) = qw[πδ(ω) + i/ω]. (34)

Here a prime denotes differentiation with respect to x and δ denotes the Dirac delta function.
Eliminating the density and velocity perturbations in Eq. (33) and substituting Pr = 2/3 and γ = 5/3,
we obtain a single equation for the temperature

a2T̄
′′′′ + a1T̄

′′ + a0T̄ = 0, (35)

where

a2 = 5K̃n

2

(
4K̃n

3α
− i

2ω

)
, a1 = −1

6
(23iωK̃n + 5), a0 = −ω2. (36)

The equation is supplemented by the four boundary conditions

c1T̄
′′′(∓1/2) + c2T̄

′(∓1/2) = 0, − βT̄ ′(x = ∓1/2) = qw[πδ(ω) + i/ω], (37)

where

c1 = −15K̃n

4ω

(
1

2ω
+ 4iK̃n

3

)
, c2 = 5i

4ω
− 2K̃n. (38)

In line with the symmetry properties of the problem, T̄ (x) = −T̄ (−x). The general solution for the
Fourier-transformed temperature perturbation is then

T̄ (x,ω) = A(ω) sinh[r1(ω)x] + B(ω) sinh[r2(ω)x], (39)

where

r1,2(ω) =
⎛⎝−a1 ±

√
a2

1 − 4a2a0

2a2

⎞⎠1/2

(40)

are the roots of the characteristic equation corresponding to Eq. (35). Making use of the boundary
conditions (37) sets

A(ω) = qw[πδ(ω) + i/ω]

β[r1 cosh(−r1/2) + c3r2 cosh(−r2/2)]
, B(ω) = c3A(ω), (41)

where

c3 = − r1
(
c1r

2
1 + c2

)
cosh(−r1/2)

r2
(
c1r

2
1 + c2

)
cosh(−r2/2)

. (42)
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FIG. 1. Variations of ρ+(t) (dashed line) and T+(t) (solid line) in the collisionless solution for qw =
−0.04/

√
π .

Applying Eqs. (33) and (30), the transformed velocity, density, and heat-flux perturbations are given
by

ū(x,ω) = Ar1
(
c1r

2
1 + c2

)
cosh(r1x) + Br2

(
c1r

2
2 + c2

)
cosh(r2x),

ρ̄(x,ω) = i

ω

[
Ar2

1

(
c1r

2
1 + c2

)
sinh(r1x) + Br2

2

(
c1r

2
2 + c2

)
sinh(r2x)

]
,

q̄(x,ω) = −β[Ar1 cosh(r1x) + Br2 cosh(r2x)],

(43)

respectively, and p̄ = ρ̄ + T̄ .
The time-domain description of the system is obtained by taking the real part of the inverse

Fourier transform (11) of (43). The solution should describe the pure-conduction state of the system
for t < 0 and the gas transient response for t � 0. The former equilibrium state may be obtained
independently by solving the steady counterpart of Eqs. (29) and (32), yielding

T (x,t < 0) = −qwx/β, ρ(x,t < 0) = qwx/β, p(x,t < 0) = 0, q(x,t < 0) = qw. (44)

For later reference we also indicate the final equilibrium state of the system, given by the uniform
distribution

T (x,t � 1) = ρ(x,t � 1) = p(x,t � 1) = q(x,t � 1) = 0, (45)

which is identical to the final equilibrium state in the collisionless limit (20). As discussed in
Sec. V A, the two final states become different for nonlinear conditions, which affects the transient
system behavior.

C. Results

We start by presenting the system response at large Knudsen numbers, analyzed in Sec. IV A.
To describe the microscopic solution, Fig. 1 shows the time variations of ρ+ and T+, appearing in
the collisionless solution (12), for qw = −0.04/

√
π . The function T+(t) denotes the temperature

deviation of the wall at x = −1/2 about the reference mean gas temperature. Using Eq. (16) for
the present choice of qw, T+(t < 0) = −0.04 and ρ+(t < 0) = 0.02. The results for T−(t) and ρ−(t)
follow from the symmetry properties (15).
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FIG. 2. x variations of the (a) normal heat flux and (b) velocity for Kn � 1 and qw � 1 at early times:
comparison between collisionless solution (solid lines) and DSMC predictions for Kn = 20 (symbols) at
t = 0.035, 0.18, and 0.4 with qw = −0.04/

√
π .

Considering the time interval 0 � t � 5 presented in Fig. 1, we note that, at the instant t = 0
of boundaries insulation, T+ and ρ+ become discontinuous. Specifically, these functions acquire
the initial equilibrium values of their counterpart T−(t < 0) = 0.04 and ρ−(t < 0) = −0.02 at the
x = 1/2 wall [see Eq. (15)]. This is since, when insulated, each boundary accommodates the
physical properties of the incoming particles, which in turn are governed by their recent collision
with a boundary. At the initial time interval 0 � t � 0.5, the walls interact almost entirely with
molecules whose last wall collision occurred before t = 0. The x = ∓1/2 wall properties are
therefore interchanged and kept constant, with the x = −1/2 wall accommodating the properties of
the x = 1/2 boundary (at t < 0) and vice versa. Yet the walls are not kept isothermal at later times,
where particle-wall collisions occur with molecules whose previous wall interaction took place after
t = 0. This results in the time variations shown in Fig. 1 for t � 0.5. At late times t � 5, both T+
and ρ+ vanish, indicating that the system has achieved its adiabatic equilibrium state [see Eq. (20)].

Focusing on the collisionless early-time response, Fig. 2 presents the x variations of the normal
heat flux and velocity for qw = −0.04/

√
π at the indicated values of time. Both analytical (Kn → ∞)

and DSMC (Kn = 20) results are presented and are found to be in close agreement. At the earliest
time t = 0.035 presented, a wavelike disturbance is generated at each wall and propagates into the
gas layer [see Fig. 2(b)]. With increasing time [see Fig. 2(b) at t = 0.18], the two waves approach
the middle of the slab, with their maximum amplitudes nearly unchanged. At the latest time t = 0.4
shown, the two waves join, forming an approximately double-in-magnitude velocity disturbance at
x = 0.

To gain further insight into the early-time response presented in Fig. 2, we note that, at t � 1,
the integrals J n

± and Kn
±, appearing in expressions (23)–(26) for the macroscopic fields, may be

estimated by taking only the first terms on the right-hand side of Eq. (28). This is since, at these
times, wall-particle interactions occur mainly with molecules whose previous boundary collisions
took place before t = 0. When these approximations are substituted into Eq. (24), the early-time
expression for the velocity

u(x,t � 1) ≈ −qw

{(
x + 1/2

t

)2

exp

[
−

(
x + 1/2

t

)2]
+

(
x − 1/2

t

)2

exp

[
−

(
x − 1/2

t

)2]}
(46)

is obtained. In practice, this result is identical to the full collisionless solution [i.e., where the full
expressions (28) for J n

± and Kn
± are applied] at the times presented in Fig. 2. The above approximation

is similar to the collisionless response of a gas in a slab to a sudden jump in the temperature of
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FIG. 3. Time variations of the (a) normal velocity, (b) density, (c) temperature, and (d) normal heat-flux
perturbations for Kn � 1 and qw � 1 at x = −0.32: comparison between collisionless solution (solid lines)
and DSMC predictions for Kn = 20 (crosses), Kn = 5 (blue circles), and Kn = 1 (red triangles) with qw =
−0.04/

√
π .

its boundaries [9], and the two results become identical when expressing qw in terms of the initial
change in the temperature of the x = −1/2 boundary, T+(t = 0)/

√
π [see Eq. (16)]. This is since,

as discussed in Fig. 1, the walls exhibit instantaneous change in their temperatures at t = 0, which
remains nearly constant at early times. Based on Eq. (46), the waves generated by wall insulation
propagate with the mean thermal speed (with their wave fronts located at x = t ∓ 1/2) and their
constant magnitudes are ≈|qwe−1|.

In difference from the early-time response, the effect of wall collisions with particles whose
recent boundary collision occurred after t = 0 becomes more pronounced with increasing t . At
this stage, the walls turn nonisothermal (see Fig. 1) and the above estimation becomes invalid. To
assess the entire transient behavior of the system, Fig. 3 presents the collisionless time variations of
gas velocity, density, temperature, and heat-flux perturbations at a fixed point (x = −0.32) and for
qw = −0.04/

√
π . The results are compared with DSMC predictions for Kn = 20, 5, and 1.

Starting with the collisionless response, we observe that all fields exhibit a short initial time
interval where their t < 0 equilibrium values (17) remain unchanged. This reflects the time it takes
for the signal generated at the x = −1/2 wall to propagate to the fixed point considered, x = −0.32.
At later times, the velocity field shows a double-peak response, caused by the two wave fronts
passing through the fixed point: the first, at earlier time, generated at x = −1/2, and the second, at
later time (and weaker in magnitude), started at x = +1/2. The system then undergoes a series of
time-decaying waves and achieves its final equilibrium (20) at t ≈ 5. Within the transient period, the
velocity remains �O(10−2) (in mean thermal speed units). The maximum velocity, achieved in the
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FIG. 4. DSMC-calculated temperature perturbation at the initial pure-conduction state for qw = −0.04/
√

π

and Kn = 20 (crosses), Kn = 5 (blue circles), and Kn = 1 (red triangles). The solid line shows the T = 0
collisionless result.

middle of the slab (cf. Fig. 5), is umax ≈ 0.0166 and is linearly dependent on qw, as long as the linear
regime, assuming small initial temperature difference between the walls, is in effect (see Sec. V).

Comparing between collisionless and DSMC results in Fig. 3, we note that, while the agreement
with the Kn = 20 data is satisfactory, considerable differences are observed, at all times, for Kn � 5.
This might seem peculiar, as it would have been expected that for Kn � 1 the collisionless analysis
should yield a reasonable approximation when t � Kn. To rationalize these discrepancies, we recall
that the system response also depends on its initial-state (at t = 0−) distribution. Thus, while
the collisionless analysis assumes that at t = 0− the uniform conditions (17) prevail, this turns
inaccurate already at Knudsen numbers of Kn � 10 [17]. To demonstrate that, Fig. 4 presents
the DSMC-calculated temperature perturbations of the gas at the initial pure-conduction state,
for the same values of Kn as in Fig. 3. Indeed, at Kn = 20 the uniform distribution T = 0 is
reasonably approximated. However, at Kn = 5, and to a more significant extent, at Kn = 1, the
initial temperature exhibits a distinct nonzero gradient. It is therefore the deviation from the initial
collisionless conditions, rather than the effect of molecular collisions for t > 0, that causes the
breakdown of the collisionless description already at Kn � 10.

Traversing to the continuum limit of small Kn, Fig. 5 presents the time variations of the
macroscopic perturbations for qw = −8.6 × 10−3 and Kn = 0.05. Linearized Navier-Stokes and
DSMC predictions are compared at the fixed point x = −0.32. The results closely agree, apart from
at late times close to the final equilibrium, where the signals are vanishingly small and the statistical
scatter in DSMC data becomes significant. Any other (however small) discrepancies between the
results may be attributed to the relatively large value of Kn chosen and vanish at lower Kn. The rapid
oscillations obtained at t ≈ 0 in the velocity field at the Navier-Stokes calculation are an artifact of
the Fourier transform calculation, where high-frequency components are numerically truncated, and
should be ignored.

Starting at t < 0, we note that the initial pure-conduction state of the system (44) is well captured
by the continuum-limit scheme. Slightly after boundaries insulation, the wave generated at x = −0.5
reaches x = −0.32 and the system transient response follows a series of decaying oscillations, until
the final equilibrium (45) is reached. In difference from the collisionless response (cf. Fig. 3), the
time for equilibrium is longer in the continuum limit, as a result of the longer relaxation process
required by molecular collisions. This time becomes prohibitively long at smaller Kn, thus inhibiting
a full description using the DSMC scheme.
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FIG. 5. Time variations of the (a) normal velocity, (b) density, (c) temperature, and (d) normal heat-flux
perturbations for Kn � 1 and qw � 1 at x = −0.32: comparison between continuum-limit solution (solid
lines) and DSMC predictions (crosses) for Kn = 0.05 and qw = −8.6 × 10−3.

To assess the overall effect of gas rarefaction on the flow magnitude in the slab, Fig. 6(a) shows
the variation of the maximal flow velocity ũmax with Kn for q̃w = −0.01/

√
π . Here we define

ũmax = umax

T
1/2
c

, q̃w = qw

Tc
3/2 (47)

to be the maximal flow velocity and initial heat-flux magnitude scaled by the initial temperature T ∗
c

of the x = −1/2 wall (see Sec. II).2 Owing to problem symmetry, the maximal velocity occurs at
the middle of the slab. The definition (47) facilitates the comparison between systems at different
Kn, by ensuring that, for each Kn, the gas is subject to the same amount of initial heat flux. This
definition is also applied in following discussion of the nonlinear problem (see Figs. 9 and 10).

The imposition of equal q̃w at different Knudsen numbers results in different initial temperature
differences between the walls. This is illustrated in Fig. 6(b), where the counterpart Kn variation of
the initial wall temperature ratio

RT = T ∗
h /T ∗

c (48)

2Hereafter, quantities denoted by tildes have been rescaled by the temperature T ∗
c , instead of the scale T ∗

0

used before.
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FIG. 6. (a) Variation of the maximal velocity ũmax with Kn for q̃w = −0.01/
√

π . The solid line shows
DSMC results and the dashed blue lines present limit-case predictions for Kn � 1 (continuum) and Kn �
1 (collisionless). (b) Variation with Kn of the walls temperature ratio RT at initial equilibrium for q̃w =
−0.01/

√
π . The solid line shows DSMC data and the dashed blue lines present limit-case results for Kn � 1

(continuum) and Kn � 1 (collisionless).

is presented. Here T ∗
h is the initial temperature of the x = 1/2 wall. For the linear assumption to be

valid, the condition RT − 1 � 1 should be satisfied. The solid lines in Fig. 6(b) show DSMC results
and the dashed lines present limit-case predictions for continuum and collisionless conditions.

Starting with Fig. 6(a), we note that, at fixed q̃w, the maximum velocity is monotonically
decreasing with Kn. This is since, for constant q̃w, the initial temperature ratio RT , a measure
of the total energy captured by the system at t = 0, decreases with Kn [see Fig. 6(b)]. In
the continuum limit, the decrease in RT is well predicted by the Kn � 1 asymptote, reflecting the
inverse Kn dependence of the temperature ratio on the heat flux [see Eq. (30)]. For the present choice
of q̃w = −0.01/

√
π , the maximal flow speed varies between ũmax ≈ 7.9 × 10−3 at Kn = 0.02 and

ũmax ≈ 4 × 10−3 for collisionless conditions. The two limits are captured by the low- and high-Kn
asymptotes, which also indicate that the Navier-Stokes and collisionless schemes break down for
Kn � 0.05 and Kn � 10, respectively. In addition, the continuum scheme breaks down at Kn < 0.02,
owing to the initial nonsmall temperature differences obtained [see Fig. 6(b)]. This is the reason
for the slight deviations in Fig. 6(a) between the solid line and the Kn � 1 asymptote close to
Kn = 0.02 (see also Fig. 10).

V. NONLINEAR PROBLEM

A. Initial and final equilibrium

Having studied the linearized problem, we now turn to consider the nonlinear regime, where the
initial equilibrium is characterized by large temperature differences between the walls. Hereafter,
we adopt the scaling introduced in Eq. (47) and normalize the temperature by the x = −1/2 wall
temperature. In difference from the linearized problem, the hydrodynamic fields to be presented are
the total fields and not the perturbations over their mean values. While analytical predictions of the
transient system response are prohibitive in this case, closed-form expressions can be found for the
initial and final states.

Starting with the collisionless limit, the macroscopic fields at the initial pure-conduction state are
given by the uniform distributions [16]

ρ(x,t < 0) = 1, T̃ (x,t < 0) = p̃(x,t < 0) =
√

RT ,

q̃(x,t < 0) = q̃w = 1

4
√

π

γ + 1

γ − 1

√
RT√

RT + 1
(RT − 1), (49)
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which degenerate to the linearized approximation (17) for the perturbations in the limit RT − 1 � 1.
Unlike in the linearized case, the gas temperature here

√
RT is lower than the arithmetic mean of

initial wall temperatures (1 + RT )/2. This is since, at any given time, the density of molecules
reflected from the cold wall is larger than the density of those reflected from the hot wall, as their
mean speed is lower. The final equilibrium in the collisionless limit is given by

ρ(x,t � 1) = 1, T̃ (x,t � 1) = p̃(x,t � 1) =
√

RT , q̃(x,t � 1) = 0, (50)

which differs from the linearized approximation (20) by the values of the temperature and pressure.
In the continuum limit, the nonuniform initial state of the system is governed by the heat-

conduction equation

d

dx

(
k(T̃ )

dT̃

dx

)
= 0, (51)

where k(T̃ ) =
√

T̃ is the nondimensional heat-flux coefficient for a hard-sphere gas [19]. Integration
of Eq. (51) in conjunction with the constant heat-flux condition q̃ = q̃w yields

T̃ (x,t < 0) =
(

−3q̃w

2β
x + C

)2/3

, (52)

which is different from the linear distribution (44) obtained for RT − 1 � 1. The constant of
integration C is calculated numerically by applying the temperature jump condition

T̃ (x = −1/2) = 1 + τ
dT̃

dx

∣∣∣∣
x=−1/2

, (53)

where τ = 2.1269Kn is the temperature jump coefficient for a hard-sphere gas [19]. At the initial
equilibrium, the momentum equation in the x direction fixes the pressure to be constant,

p̃(x,t < 0) = α, (54)

and the density is given by

ρ(x,t < 0) = α

(
−3q̃w

2β
x + C

)−2/3

. (55)

The constant α is determined through a normalization condition

α =
[∫ 1/2

−1/2

(
−3q̃w

2β
x + C

)−2/3

dx

]−1

. (56)

The final equilibrium state at Kn � 1 is the uniform distribution

ρ(x,t � 1) = 1, T̃ (x,t � 1) = p̃(x,t � 1) = α, q̃(x,t � 1) = 0. (57)

For later reference we note that, at the initial equilibrium for Kn � 1, the walls’ heat flux and
temperature ratio are related through

RT =
(

−3q̃w

4β
+ C

)2/3

− q̃wτ

β

(
−3q̃w

4β
+ C

)−1/3

. (58)

The above initial and final equilibrium states have been validated numerically in the Kn � 1
and Kn � 1 limits using DSMC calculations. This is illustrated in Fig. 7, by comparison between
DSMC and analytical predictions for the initial distributions of temperature [Fig. 7(a)] and density
[Fig. 7(b)] at RT = 10. The overall agreement is satisfactory. Slight deviations are observed close to
the walls in the Kn = 0.02 solution, where the effect of Knudsen layers, magnified by the relatively
large gradients of the hydrodynamic fields (and hence increase in the local Knudsen number), is
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FIG. 7. Initial pure-conduction distributions of the (a) temperature and (b) density fields for RT = 10 and
the indicated values of Kn: comparison between DSMC (crosses) and continuum- and collisionless-limit (solid
lines) results.

significant. The results obtained for the initial and final equilibria will be now used to analyze the
transient system behavior.

B. Transient response

To investigate the transient gas response for nonlinear conditions, Fig. 8 presents the time
variations, at a fixed point x = −0.32, of the normal velocity and heat flux for RT = 10 and
different values of the Knudsen number: large (Kn = 20) [Figs. 8(a) and 8(b)] and small (Kn = 0.02)
[Figs. 8(c) and 8(d)]. The results are based on DSMC calculations. A comparison is made with the
initial equilibrium values predicted by Eqs. (49) and (58).

Although the initial state of the system is characterized by large temperature gradients, the
findings in Fig. 8 appear qualitatively similar, in terms of disturbance waveform, to those presented
in the linearized regime [cf. Figs. 3(a), 3(d), 5(a), and 5(d)]. Similarly, the system equilibration time
remains nearly unchanged by the difference in the initial conditions, indicating that the time required
for system relaxation is affected mainly by the Knudsen number. The single significant difference
between the results is in the order of magnitude of the hydrodynamic perturbations, being nearly two
orders magnitude larger in the nonlinear case. The initial equilibrium state, which is well predicted
by the dashed line in the high-Kn results in Fig. 8(b), is somewhat overpredicted (in absolute value)
in Fig. 8(d). This reflects the inaccuracy in the continuum-limit scheme for nonlinear conditions, as
discussed in Fig. 7.

Focusing on the effect of large initial temperature differences on the flow magnitudes obtained,
Fig. 9 compares the Kn variations of the maximal speed ũmax at nonlinear (RT = 10) [Fig. 9(a)] and
linear (RT = 1.1) [Fig. 9(b)] regimes. The results in Fig. 9(b) are, in a sense, equivalent to those
presented in Fig. 6(a), only that the Kn variation of ũmax is given in the latter for fixed q̃w and not for
fixed RT . Here we adopt the fixed-RT presentation, for which the restriction to linear or nonlinear
conditions is easily perceived [see Fig. 6(b)]. Explicit formulas connecting RT and qw at Kn � 1
and Kn � 1 are given in Eqs. (49) and (58), respectively.

The results in Figs. 9(a) and 9(b) indicate a similar trend, that is, a monotonic increase in the
maximal velocity ũmax with increasing Kn. This does not contradict the monotonically decreasing
curve at fixed q̃w shown in Fig. 6(a), since, at constant q̃w, the temperature ratio becomes increasingly
large with decreasing Kn [see Fig. 6(b)]. Considering the fixed value of RT as a measure for the
system’s initial energetic strength, it is expected that, when translated into kinetic energy, gas velocity
becomes larger at higher Kn, where molecular collisions are less frequent.

Perhaps the most interesting feature in Fig. 9 is the ratio between the maximal velocities obtained
for nonlinear and linear conditions. While the values of ũmax for RT = 10 are considerably larger
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FIG. 8. Time variations of the normal velocity [(a) and (c)] and normal heat flux [(b) and (d)] at x = −0.32
for RT = 10 and Kn = 20 [(a) and (b)] and Kn = 0.02 [(c) and (d)]. The solid lines show DSMC results and the
dashed blue lines in (b) and (d) mark initial equilibrium values as predicted by Eqs. (49) and (58), respectively.

FIG. 9. Variation of the maximal velocity ũmax with Kn for (a) RT = 10 and (b) RT = 1.1. The solid
lines show DSMC results and the dashed blue curves in Fig. 9(b) present limit-case predictions for Kn � 1
(continuum limit) and Kn � 1 (collisionless limit) in the linear case.
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FIG. 10. Variation of the maximal velocity ũmax with RT at the indicated values of Kn = 0.05, 1, and 10.
The solid lines show DSMC results and the dashed blue lines present limit-case predictions for RT − 1 � 1 at
Kn = 0.05 (continuum limit) and Kn � 1 (collisionless).

than for RT = 1.1 [as also observed by comparing Figs. 8(a), 8(c), 3(a), and 5(a)], they are much
smaller than expected by the quotient (10 − 1)/(1.1 − 1) = 90, which is the ratio between the values
of RT − 1 at RT = 10 and RT = 1.1. Specifically, ũmax does not exceed ũmax = 0.6 in thermal-speed
units for collisionless conditions. It is therefore observed that nonlinear effects reduce the efficiency
of flow generation through boundaries insulation. For collisionless conditions, this is attributed to
the initial equilibrium state (49), in which the gas temperature

√
RT is lower than the arithmetic

mean of the initial wall temperatures. As stated in Sec. V A, this results from the microscopic state
of the gas, where the gas molecules reflected from the cold wall are slower and therefore larger
in number. For continuum conditions, the reduced efficiency may be related to the mechanism of
thermal dissipation, absent in the linear regime. This assertion, however, requires further study of the
nonlinear continuum equations (where a nonlinear dissipation term appears in the energy balance),
which has not been carried out in the present work.

To complement the discussion of the nonlinear problem, Fig. 10 presents the variation of ũmax with
RT at several values of Kn, based on DSMC calculations. The dashed lines added to the Kn = 0.05
and Kn = 10 curves show a comparison with linearized limit-case predictions for continuum and
collisionless conditions, respectively. In agreement with Fig. 9, the results in Fig. 10 indicate an
increase in ũmax with both RT and Kn. The breakdown of the linear description may be assessed
through a comparison of the dashed and solid lines at Kn = 0.05 and Kn = 10, showing that the
linear approximation becomes invalid for RT � 1.3 (cf. discussion of Fig. 6). At these values of RT ,
nonlinear effects become significant and result in attenuation of the flow field magnitude below the
value predicted by linear theory.

VI. CONCLUSION

We studied the time response of a gas in a micro-slab, set at the initial pure-conduction state, to
instantaneous thermal insulation of its boundaries. The problem was analyzed in the whole range of
gas rarefaction rates and for arbitrary initial temperature differences between the walls. Analytical
solutions were derived for linearized conditions of small temperature differences in the limits of
large (collisionless) and small (continuum) Knudsen numbers. These solutions were supported by
direct simulation Monte Carlo calculations, which were then applied to investigate the nonlinear
problem of large initial temperature differences. Followed by the system’s initial state, the results
describe the transient gas response to boundaries insulation, which includes a series of time-decaying
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waves, propagating across the slab, and transferring the system between its conductive and adiabatic
equilibria. While large initial temperature differences result in growing flow rates, it is found that
nonlinear effects reduce the efficiency of insulation-induced flow generation. At high Knudsen
numbers, this is rationalized through the initial system state, where the gas uniform temperature is
lower than the arithmetic mean of wall temperatures. At low Knudsen numbers, the dominant effect
of molecular collisions is likely to cause thermal dissipation, resulting in inevitable energy losses.

The agreement between the DSMC and analytical limit-case predictions was generally
satisfactory. Yet the breakdown of the limit-case schemes was observed, in several cases, earlier
than expected. To begin with, the collisionless description in the linear case becomes invalid at
Knudsen numbers as large as Kn � 10. This is since, already at rather large Knudsen numbers, the
initial pure-conduction state of the system deviates considerably from the collisionless description. In
a different context, the continuum-limit predictions for the pure-conduction state appear inaccurate at
nonlinear conditions, where the effect of Knudsen layers, magnified by the relatively large gradients
of the hydrodynamic fields (and hence increase in the local Knudsen number), becomes significant.

The present work focused on the unsteady transient response of the gas system to instantaneous
boundaries insulation. Yet the analysis may be readily applied to calculate the gas response to
any arbitrary time history of the boundary-imposed heat flux. As such, the flow generated through
wall heat-flux control may prove to be a useful means for exciting microscale gas flows with no
moving parts. As an advantage over the specification of boundary temperature, routinely imposed
in theoretical studies of rarefied gas flows, application of heat-flux boundary conditions may be
directly implemented in a practical setup. The study of more elaborate two- and three-dimensional
configurations, as well as different types of microscopic boundary conditions (other than the diffuse-
reflecting boundaries considered here), is deferred to future work.
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