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We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject
to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The
problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies,
considering both single cylinder and coaxial cylinders setups. Numerical calculations
are carried out via the direct simulation Monte Carlo method, applying a noniterative
algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained
in the limits of ballistic- and continuum-flow conditions. Comparing with a reference
inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and
boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of
the generated disturbance, the continuum-limit solution exhibits an exponential decay of the
signal with the distance from the source, reflecting thermoviscous effects, and accompanied
by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation
is observed in the ballistic limit, where boundary curvature results in “geometric reduction”
of the molecular layer affected by the source, and the signal vanishes at a distance of few
acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal
excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal.
The impact of boundary curvature becomes significant in the ballistic-flow regime, where
the optimal heat-flux amplitude required for sound reduction decreases with the distance
from the source and is essentially a function of the acoustic-wavelength-scaled distance
only.
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I. INTRODUCTION

The pressure field generated by small-amplitude motions of an object in a quiescent fluid is a
classical problem in acoustics, which has been considered extensively over the years in various model
configurations [1]. Traditionally, continuum conditions are assumed, and the far-field source radiation
is described in terms of its overall strength and directivity field. The calculation is regularly carried
out for an ideal compressible fluid, where the attenuating effects of viscosity and thermal dissipation
are neglected. In an effort to complement these works, more recent studies (e.g., Refs. [2,3]) have
examined the impacts of fluid viscosity and body shear stress on sound generation. Yet, homentropic
flow conditions have been assumed at the outset, resulting in decoupling of the dynamic and
thermodynamic flow descriptions.

In parallel with continuum studies, the propagation of sound waves in rarefied gases has been
investigated in a considerable number of works. These studies become relevant wherever the
characteristic lengthscale, or timescale, of the problem involved is of the order of molecular mean
free path, or time, respectively. Starting in the middle of the 20th Century, and continuing to current
research, almost all investigations have focused on sound generation by a planar vibrating surface
(e.g., Refs. [4–9] and papers cited therein). Considering a similar planar setup, other studies have
examined the pressure perturbation generated by thermoacoustic surface excitation, in the form of
time temperature variations of the boundary [10–13]. A later work has then indicated that it may
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be more practical to monitor the heat flux at a boundary rather than its temperature [14]. Applying
such a condition, it has been demonstrated that the vibroacoustic signal of an oscillating plane may
be monitored by counter-phase thermal excitation of the surface [14,15].

While the planar setup is of primary significance, it is of evident interest to examine the
propagation of acoustic waves in rarefied gases at qualitatively different two- and three-dimensional
model configurations, as was done in continuum acoustics [1]. Apart from the fundamental interest in
such studies, these investigations should shed light on the propagation of acoustic waves in a variety
of practical micromechanical setups, where small length- and time-scales are encountered. Toward
this end, Yap and Sader [16] have examined the acoustic field induced by a rigid sphere oscillating in
a rarefied gas. Somewhat earlier, Kalempa and Sharipov [17] have investigated the thermoacoustic
wave generation by the unsteady heating of a cylinder in a coaxial-cylinders setup. To the best of
our knowledge, these are the existing examples (excluding studies on the near-field properties in a
nonplanar configuration, e.g., Ref. [18]) where the acoustic field of a nonplanar object, immersed in
a quiescent rarefied gas, has been theoretically considered.

In light of the above, the objective of the present work is to analyze the mechanism of sound
generation in a canonical “pulsating cylinder” setup immersed in a rarefied gas. Both single and
coaxial cylinders configurations are considered, and the acoustic disturbance is generated via either
mechanical (normal boundary displacement) or thermal (normal heat-flux perturbation) excitations.
Cylinders radii and excitation timescales are chosen so that noncontinuum flow conditions prevail,
and the problem is considered in the entire range of gas rarefaction rates. By considering the
cylindrical setup, we aim at analyzing the efficiency of a two-dimensional acoustic monopole at
rarefied-flow conditions and seek to compare it with the known solution for an expanding cylinder
in an ideal fluid [1]. Analytical investigations are carried out in the two limits of low (continuum)
and high (free-molecular) rarefaction rates and are accompanied by direct simulation Monte Carlo
(DSMC) calculations in the intermediate range of gas rarefaction.

The paper starts with a general statement of the problem, given in Sec. II. The analysis is described
in Sec. III, where the analytical and numerical schemes of solution are presented. Our results are
given in Sec. IV, for both single- and double-cylinder configurations, and the impact of combining the
mechanical and thermal excitations on the total system radiation is discussed. Concluding comments
are given in Sec. V.

II. STATEMENT OF THE PROBLEM

Consider a monoatomic gas layer of uniform density ρ∗
0 (with an asterisk marking a dimensional

quantity) confined between two infinitely long coaxial cylinders. The inner and outer cylinders are of
radii r∗ = r∗

1 and r∗ = r∗
2 , respectively. The gas is initially at rest and in thermodynamic equilibrium

with the diffuse reflecting boundaries, which, at time t∗ < 0, maintain a common temperature T ∗
0 .

At time t∗ � 0, the inner cylinder pulsates in the radial direction with a prescribed velocity profile,

εU∗
1(t∗) = εU ∗

1 (t∗)r̂, (1)

while the outer cylinder is kept stationary (U∗
2 ≡ 0). Simultaneously, the radial heat-flux at the inner

wall is imposed,

εQ∗
1(t∗) = εQ∗

1(t∗)r̂, (2)

and the outer cylinder is maintained adiabatic (Q∗
2 ≡ 0). In Eqs. (1) and (2), it is assumed that ε � 1,

so that the system description may be linearized about its initial equilibrium state.
Rather than imposing the boundary temperature, Eq. (2) prescribes the walls normal heat flux.

This follows a set of recent works, where it has been noted that, in practice, the surface temperature at
any experimental setup (particularly if varying with time) can only be monitored indirectly through
the direct imposition of boundary heat-flux. In such a formulation, the boundary temperature is
treated as unknown, and calculated in the process of analysis. Following this approach, Gospodinov,
Roussinov, and Stefanov [19] have investigated the impact of changing between isothermal and
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adiabatic conditions on the oscillatory cylindrical Couette flow at high rotation speeds. Manela and
Pogorelyuk [14,15] have considered the effect of thermal boundary conditions on the passage of
sound waves in a planar setup, suggesting it as a thermoacoustic means for active noise control of
a vibrating surface. Meng, Zhang, and Reese [20] have studied numerically the effect of heat-flux
boundary conditions on rarefied Couette and force-driven Poiseuille flows. And, most recently,
boundary-heat-flux monitoring (in the form of “instantaneous insulation” of a microgap) has been
suggested as a means for flow generation at the microscale [21]. In line with these studies, the present
investigation applies a similar thermal condition on the cylindrical walls.

Our problem is rendered dimensionless by normalizing the position by the inner wall radius r∗
1 ,

the velocity by the mean thermal speed of a gas molecule U ∗
th =

√
2R∗T ∗

0 (with R∗ denoting the
specific gas constant), and the time by the consequent time-scale r∗

1 /U ∗
th. Density and temperature

are scaled by ρ∗
0 and T ∗

0 , respectively, and the heat flux is normalized by ρ∗
0U ∗3

th . The nondimensional
problem is governed by the scaled excitation profiles U1(t) and Q1(t), and by the parameters

R = r∗
2 /r∗

1 and Kn = l∗/r∗
1 , (3)

marking the cylinders radii ratio and radius-based Knudsen number, respectively. In Eq. (3), l∗
denotes the mean free path of a gas molecule.

In what follows, we investigate the gas response to the mechanical and thermal excitations
specified in Eqs. (1) and (2), in both double- and single-cylinder setups. The single-cylinder
configuration follows from the above by removing the outer cylinder or by taking its radius to
be large compared with the “penetration length” of the acoustic signal, to enable Monte Carlo
calculations in a finite domain. The analysis is carried out over the entire range of gas rarefaction
rates, combining analytic ballistic- and continuum-limit predictions with numerical Monte Carlo
calculations.

III. ANALYSIS

A. Numerical scheme: DSMC method

The direct simulation Monte Carlo method, proposed by Bird [22], is a stochastic particle method
commonly applied for analyzing rarefied gas flows. In the present work, the method is used to
obtain results that are “numerically exact” at arbitrary rarefied-flow conditions, and to validate our
analytical ballistic- and continuum-limit solutions. We adopt Bird’s algorithm in one-dimensional
cylindrical coordinates [22] and assume hard-sphere interactions between the gas molecules. The
boundaries are taken fully diffuse, with prescribed radial velocity and heat-flux. In difference
from traditional application of the wall-interaction algorithm, the walls temperatures are treated as
unknown. Application of the heat-flux conditions therefore requires modification in the conventional
calculation.

Imposition of a heat-flux condition in DSMC calculations has been recently discussed in several
works, where iterative algorithms have been suggested to comply with the thermal constraint
[14,15,23,24]. In difference from these works, we follow here an exact (noniterative) algorithm,
based on an energy balance occurring at the boundary. A similar approach has been applied in
Ref. [20] in the context of a finite difference discrete-velocity calculation. Requiring no iterative
procedure, this scheme appears advantageous and more efficient for numerical implementation.

To describe the algorithm, consider the distribution of the (dimensional) normal and tangential
velocity components for the wall-reflected molecules at the ith time step,

v∗i

⊥ = 1

β∗i

w

√
− ln(RU ) + U ∗i

w and v∗i

‖ = 1√
2 β∗i

w

RG, (4)

respectively. In Eq. (4), RU ∈ [0,1] and RG ∈ (−∞,∞) are uniformly- and Gaussian-distributed
random numbers, U ∗i

w is the normal wall velocity, and β∗i

w =
√

1/2R∗T ∗i

w . Assigning a heat-flux
condition, the value of βi

w is a priori unknown at every time step, and should be determined. For the
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fully diffuse boundary considered here, the total mass and thermal energy fluxes of the molecules
reflected at the boundary are

M∗i

out = ρ∗i

w

(
β∗i

w

)3
π3/2

∫
(ξ∗

r −U∗i
w )>0

(
ξ ∗
r − U ∗i

w

)
exp
{− (β∗i

w

)2[(
ξ ∗
r − U ∗i

w

)2 + ξ ∗2

θ + ξ ∗2

z

]}
dξ ∗

= ρ∗i

w

2β∗i

w

√
π

(5)

and

H∗i

out = ρ∗i

w

(
β∗i

w

)3
2π3/2

∫
(ξ∗

r −U∗i
w )>0

(
ξ ∗
r − U ∗i

w

)[(
ξ ∗
r − U

∗i
w

)2 + ξ ∗2

θ + ξ ∗2

z

]
× exp

{−(β∗i

w

)2[(
ξ ∗
r − U ∗i

w

)2 + ξ ∗2

θ + ξ ∗2

z

]}
dξ ∗ = ρ∗i

w

2
(
β∗i

w

)3√
π

, (6)

respectively. Combining Eqs. (5) and (6), we find

β∗i

w =
√
M∗i

out

H∗i

out

. (7)

Applying the conservation of mass, M∗i

out = M∗i

in , and thermal energy, H∗i

out = H∗i

in + Q∗i

w , at the
boundary, yield

β∗i

w =
√

M∗i

in

H∗i

in + Q∗i

w

, (8)

where M∗i

in and H∗i

in are computed at each time step via

M∗i

in = N

2πr∗
w�t∗

and H∗i

in = 1

2πr∗
w�t∗

N∑
j=1

[(
ξ ∗i,j

r − U ∗i

w

)2 + (ξ ∗i,j

θ

)2 + (ξ ∗i,j

z

)2]
. (9)

In Eq. (9), summation is carried over all j = 1, . . . ,N particles that have collided with the boundary
during the �t∗ time interval, and r∗

w is the cylindrical wall radius. Having determined M∗i

in and H∗i

in ,
β∗i

w is obtained using Eq. (8). Each of the reflected particles is then assigned a velocity according
to Eq. (4), and the simulation is followed to the next time step. Notably, Eq. (8) remains valid
for arbitrary nonsmall heat-fluxes, and the algorithm may be easily extended to simulate two- and
three-dimensional setups.

An outline of our computational procedure now follows. In each calculation, the one-dimensional
computational grid has been divided into 50–350 cells of length �r∗ (sufficient to capture the
acoustic signal), and a time step of �t∗ = 0.2�r∗/U ∗

th has been assigned. For the harmonic wall
excitation studied hereafter, the computation has been carried out until the system has achieved its
final periodic state. To simulate a single-cylinder setup (see Sec. IV A), the outer adiabatic cylinder
has been placed far enough, so that it had no effect on the system response. A single run consisted
of 2 × 107–5 × 107 particles, and 50 realizations have been carried out to sufficiently reduce the
numerical noise in the calculated hydrodynamic fields. Each simulation lasted 1–24 h (depending
on the system Knudsen number) using an eight-cores Intel i7-6700 machine.

B. Ballistic-flow limit

In the framework of the kinetic theory of gases and the axially symmetric configuration considered,
the gas state is governed by the probability density function f = f (r,t,ξ ) of finding a gas molecule
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with velocity about ξ at radial distance near r at time t . At the linearized conditions assumed, we
write

f (r,t,ξ ) = F [1 + εφ(r,t,ξ )], (10)

where F = π−3/2 exp[−ξ 2] denotes the nondimensional Maxwellian equilibrium distribution, and
φ(r,t,ξ ) marks the probability perturbation function. Assuming the Knudsen number to be large, we
analyze the collisionless Boltzmann equation for φ(r,t,ξ ) in cylindrical coordinates [25],

∂φ

∂t
+ ξr

∂φ

∂r
+ ξ 2

θ

r

∂φ

∂ξr

− ξrξθ

r

∂φ

∂ξθ

= 0. (11)

Denoting ξ2D = (ξ 2
r + ξ 2

θ )1/2 and θξ = tan−1 (ξθ/ξr ), and changing variables between (ξr ,ξθ ) and
(ξ2D,θξ ), Eq. (11) is rewritten in the form

∂φ

∂t
+ ξ2D cos θξ

∂φ

∂r
− ξ2D sin θξ

r

∂φ

∂θξ

= 0. (12)

The equation is supplemented by the initial condition,

φ(r,t = 0−,ξ2D,θξ ,ξz) = 0, (13)

together with a linearized form of the diffuse boundary conditions imposed at the cylindrical walls,

φ(r = 1,|θξ | < π/2) = ρ1(t) + 2ξ2D cos θξU1(t) + T1(t)
(
ξ 2

2D + ξ 2
z − 3/2

)
and φ(r = R,t,π/2 < |θξ | < π ) = ρ2(t) + T2(t)

(
ξ 2

2D + ξ 2
z − 3/2

)
. (14)

In Eqs. (14), ρ1,2(t) and T1,2(t) are yet unknown, where T1,2(t) mark the time perturbations of
walls temperatures. The conditions appearing in Eqs. (14) are of “half-space” type, thus applied
to the reflected molecules at r = 1 having |θξ | < π/2 (i.e., ξr − U1(t) > 0), and at r = R having
π/2 < |θξ | < π (i.e., ξr < 0).

Making use of the time Laplace transform,

ḡ(s) =
∫ ∞

0
g(t) exp [−st]dt, (15)

Eq. (12), in conjunction with the initial condition in Eq. (13), is transformed into the equation

ξ2D cos θξ

∂φ̄

∂r
− ξ2D sin θξ

r

∂φ̄

∂θξ

= −sφ̄. (16)

Applying the method of characteristics, the solution for Eq. (16) is obtained by finding an integral
surface S(r,θξ ,φ̄) that is tangent at each point to the vector (ξ2D cos θξ , − ξ2D sin θξ /r, − sφ̄). This
yields a pair of ordinary equations,

dr

dθξ

= − r

tan θξ

,
dφ̄

dr
= − s

ξ2D

φ̄

cos θξ

, (17)

where the first is amenable to the solution

r = c1

sin θξ

. (18)

Substituting Eq. (18) into the second equation in Eq. (17) and integrating, yield

φ̄ = c2 exp

[
∓ s

ξ2D
r

√
1 −

(c1

r

)2
]
, (19)

where the negative and positive signs refer to the θξ -intervals |θξ | � π/2 and π/2 < |θξ | � π ,
respectively. The expression for φ̄ is specified by taking c2 = g(c1) = g(r sin θξ ) in Eq. (19), and
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FIG. 1. Illustration of particle’s θξ -parametrization in the ballistic limit for a double-cylinder setup. The bold
point marks the position of an arbitrary particle, and the shaded and unshaded θξ -zones confine the θξ -sections
acquired by the particle when reflected from the r = 1 or r = R boundaries, respectively.

applying the transformed form of boundary conditions in Eq. (14). This results in the double-sided
solution

φ̄ =

⎧⎪⎨⎪⎩
[
ρ̄1(s) ± 2ξ2DŪ1(s)

√
1 − r2 sin2 θξ + T̄1(s)

(
ξ 2

2D + ξ 2
z − 3

2

)]
× exp

[− s
ξ2D

(r cos θξ ∓√1 − r2 sin2 θξ )
][

ρ̄2(s) + T̄2(s)
(
ξ 2

2D + ξ 2
z − 3

2

)]
exp
[− s

ξ2D
(r cos θξ ∓√R2 − r2 sin2 θξ )

]
,

(20)

corresponding to particles having ξr > 0 and ξr < 0, respectively. Imposed by geometrical
considerations, gas particles reflected from the convex r = 1 cylinder acquire |θξ | � ϕ, where
ϕ = sin−1 (1/r). Inversely, particles reflected from the concave r = R surface are confined to
ϕ � |θξ | � π . This is illustrated in Fig. 1, mapping the θξ -sections acquired by the indicated particle
when reflected from the convex or concave walls.

Taking the inverse Laplace transform of Eq. (20), we find

φ(r,t,ξ2D,θξ ,ξz) =
{

ρ1
(
tr1

)+ 2ξ2DU1
(
tr1

)√
1 − r2 sin2 θξ + T1

(
tr1

)(
ξ 2

2D + ξ 2
z − 3

2

)
, |θξ | � ϕ

ρ2
(
tr2

)+ T2
(
tr2

)(
ξ 2

2D + ξ 2
z − 3

2

)
, ϕ � |θξ | � π,

(21)

where

tr1 = t − (r − 1)/ξ2D = t − (r cos θξ −
√

1 − r2 sin2 θξ )/ξ2D

and

tr2 = t − (R − r)/ξ2D = t − (r cos θξ +
√

R2 − r2 sin2 θξ )/ξ2D

are the acoustic retarded times corresponding to the signals generated at r = 1 and r = R,
respectively. The positive and negative signs that should have preceded the square-root expressions
in tr1 and tr2 , respectively, have been omitted, as they represent molecules entering or leaving the
domain through the inner and outer cylinders.

To determine the fields ρ1,2(t) and T1,2(t), the macroscopic conditions of no-penetration,

1

π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ(r = 1,R)ξ 2
2D cos θξ exp

[−ξ 2
2D − ξ 2

z

]
dθξ = U1,2(t), (22)
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and heat-flux,

1

2π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ(r = 1,R) ξ 2
2D cos θξ

(
ξ 2

2D + ξ 2
z

)
exp
[−ξ 2

2D − ξ 2
z

]
dθξ − 5

4
U1,2(t)

= Q1,2(t), (23)

are imposed at the walls, where U2(t) = 0 and Q2(t) = 0. Substituting Eq. (21) into Eqs. (22) and
(23), and carrying the changes of variables

τ = t − g1,2(r,θξ )/ξ2D, (24)

with

g1(r,θξ ) = r cos θξ −
√

1 − r2 sin2 θξ and g2(r,θξ ) = r cos θξ +
√

R2 − r2 sin2 θξ ,

yields the set of coupled integral equations,

ρ1(t) = 7
√

π

8
U1(t) − √

πQ1(t)

+ 1√
π

∫ t

0
dτ

∫
π/2<|θξ |<π

ρ2(τ )cos θξ

(g2(1,θξ ))3

(t − τ )4

[
(g2(1,θξ ))2

2(t − τ )2
−11

4

]
exp

[
− (g2(1,θξ ))2

(t − τ )2

]
dθξ

+ 1√
π

∫ t

0
dτ

∫
π/2<|θξ |<π

T2(τ ) cos θξ

(g2(1,θξ ))3

(t − τ )4

[
(g2(1,θξ ))4

2(t − τ )4
− 13(g2(1,θξ ))2

4(t − τ )2
+ 3

]
× exp

[
− (g2(1,θξ ))2

(t − τ )2

]
dθξ (25)

T1(t) =
√

π

4
U1(t) + 2

√
πQ1(t)

+ 1√
π

∫ t

0
dτ

∫
π/2<|θξ |<π

ρ2(τ ) cos θξ

(g2(1,θξ ))3

(t − τ )4

[
− (g2(1,θξ ))2

(t − τ )2
+ 3

2

]
× exp

[
− (g2(1,θξ ))2

(t − τ )2

]
dθξ

+ 1√
π

∫ t

0
dτ

∫
π/2<|θξ |<π

T2(τ ) cos θξ

(g2(1,θξ ))3

(t − τ )4

[
− (g2(1,θξ ))4

(t − τ )4
+ 5(g2(1,θξ ))2

2(t − τ )2
− 2

]
× exp

[
− (g2(1,θξ ))2

(t − τ )2

]
dθξ (26)

ρ2(t) = 1√
π

∫ t

0
dτ

∫
|θξ |<π/2

ρ1,2(τ ) cos θξ

(g1,2(R,θξ ))3

(t − τ )4

[
(g1,2(R,θξ ))2

2(t − τ )2
− 11

4

]
× exp

[
− (g1,2(R,θξ ))2

(t − τ )2

]
dθξ + 1√

π

∫ t

0
dτ

∫
|θξ |<ϕm

U1(τ ) cos θξ

(g1(R,θξ ))4

(t − τ )5

×
√

1 − R2sin2θξ

[
(g1(R,θξ ))2

(t − τ )2
− 11

2

]
exp

[
− (g1(R,θξ ))2

(t − τ )2

]
dθξ

+ 1√
π

∫ t

0
dτ

∫
|θξ |<π/2

T1,2(τ ) cos θξ

(g1,2(R,θξ ))3

(t − τ )4

[
(g1,2(R,θξ ))4

2(t − τ )4
− 13(g1,2(R,θξ ))2

4(t − τ )2
+ 3

]
× exp

[
− (g1,2(R,θξ ))2

(t − τ )2

]
dθξ (27)
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T2(t) = 1√
π

∫ t

0
dτ

∫
|θξ |<π/2

ρ1,2(τ ) cos θξ

(g1,2(R,θξ ))3

(t − τ )4

[
− (g1,2(R,θξ ))2

(t − τ )2
+ 3

2

]
× exp

[
− (g1,2(R,θξ ))2

(t − τ )2

]
dθξ + 1√

π

∫ t

0
dτ

∫
|θξ |<ϕm

U1(τ ) cos θξ

(g1(R,θξ ))4

(t − τ )5

×
√

1 − R2 sin2 θξ

[
−2(g1(R,θξ ))2

(t − τ )2
+ 3

]
exp

[
− (g1(R,θξ ))2

(t − τ )2

]
dθξ

+ 1√
π

∫ t

0
dτ

∫
|θξ |<π/2

T1,2(τ ) cos θξ

(g1,2(R,θξ ))3

(t − τ )4

[
− (g1,2(R,θξ ))4

(t − τ )4
+ 5(g1,2(R,θξ ))2

2(t − τ )2
− 2

]
× exp

[
− (g1,2(R,θξ ))2

(t − τ )2

]
dθξ , (28)

where ϕm = sin−1(1/R). Equations (25)–(28) are subject to the initial conditions

ρ1(0) = 7
√

π

8
U1(0) − √

πQ1(0), T1(0) =
√

π

4
U1(0) + 2

√
πQ1(0), ρ2(0) = 0, T2(0) = 0. (29)

The initial-value problem in Eqs. (25)–(29) may be formulated for arbitrary choices of U1(t) and
Q1(t), where the integrations over θξ and τ are carried out numerically. Once ρ1,2(t) and T1,2(t) are
obtained, the perturbation function φ in Eq. (21) is specified, and the O(ε) density, radial velocity,
temperature, and radial heat-flux perturbations may be computed via the velocity-space quadratures
[26]

ρ(t,r) = 1

π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ ξ2D exp
[−ξ 2

2D − ξ 2
z

]
dθξ ,

ur (t,r) = 1

π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ ξ 2
2D cos θξ exp

[−ξ 2
2D − ξ 2

z

]
dθξ ,

T (t,r) = 2

3π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ
(
ξ 3

2D + ξ2Dξ 2
z

)
exp
[−ξ 2

2D − ξ 2
z

]
dθξ − ρ(t,r),

qr (t,r) = 1

2π3/2

∫ ∞

−∞
dξz

∫ ∞

0
dξ2D

∫ π

−π

φ
(
ξ 4

2D + ξ 2
2Dξ 2

z

)
cos θξ exp

[−ξ 2
2D − ξ 2

z

]
dθξ − 5

4
ur (t,r),

(30)

respectively. The pressure perturbation is obtained by the linearized form of the equation of state,

p(t,r) = [ρ(t,r) + T (t,r)]/2, (31)

where the 1/2 factor originates from the scaling of pressure by ρ∗
0U 2

th = 2ρ∗
0R∗T ∗

0 .
In general, all ξz-integrals appearing in Eq. (30) may be computed in a closed form, while the

ξ2D and θξ quadratures are carried out numerically, based on the computed ρ1,2(t) and T1,2(t). In the
special case of a single cylinder, ρ1,2(t) and T1,2(t) are known in a closed form, and asymptotic
evaluation of the hydrodynamic fields may be carried out (see Sec. IV A). The ballistic-flow
approximation is expected to hold at distances not exceeding one mean free-path from the boundaries.
This becomes relevant when the gap between the cylinders, �R = R − 1, is of the order of the mean
free path, or when the time-scale characterizing walls excitation is of the order of the mean free time.
In the latter scenario, equivalent to the condition ωKn � 1, the effect of wall excitations penetrates
less than a mean free path into the gas layer regardless of the distance between the boundaries, as
demonstrated in Sec. IV.
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C. Continuum limit

In the limit of small Knudsen numbers, we make use of a continuum model, consisting of
the Navier-Stokes-Fourier equations, together with the impermeability and heat-flux conditions at
the boundaries. Applying the scaling introduced in Sec. II, and linearizing the set of unsteady
one-dimensional equations in cylindrical coordinates, we obtain the following O(ε) balances of
mass,

∂ρ

∂t
+ ∂ur

∂r
+ ur

r
= 0, (32)

momentum,

∂ur

∂t
= −1

2

(
∂ρ

∂r
+ ∂T

∂r

)
+ 4

3
K̃n

(
∂2ur

∂r2
+ 1

r

∂ur

∂r
+ ur

r2

)
, (33)

and energy,

∂T

∂t
= (1 − γ )

(
∂ur

∂r
+ ur

r

)
+ γ K̃n

Pr

(
∂2T

∂r2
+ 1

r

∂T

∂r

)
. (34)

In Eqs. (33) and (34), K̃n = ν∗/U ∗
thL

∗ is the modified Knudsen number, with ν∗ denoting the mean
kinematic viscosity of the gas. The modified Knudsen number is related to the Knudsen number via

K̃n = ν∗

U ∗
thl

∗ Kn, (35)

where ν∗/U ∗
thl

∗ = 5
√

π/16 for the hard-sphere gas model considered here [26]. Also appearing in
Eq. (34) are γ and Pr, marking the ratio of specific heats and Prandtl number, respectively. For a
perfect monatomic gas, γ = 5/3 and Pr = 2/3. The equations are supplemented by the boundary
conditions

ur (r = 1,R) = U1,2(t) and − α
∂T

∂r

∣∣∣∣
1,R

= Q1,2(t), (36)

imposing impermeability and specifying the radial heat flux at the walls, respectively. Here, U2(t) =
Q2(t) = 0, as stated in Sec. II, and α = 15K̃n/8 for a hard-sphere gas [26].

To facilitate the analysis, the problem is solved for the case of harmonic boundary excitation,

U1(t) = Ũ1 cos(ωt) and Q1(t) = Q̃1 cos(ωt + ϕ1), (37)

where Ũ1 and Q̃1 denote the amplitudes of walls signals, ω is the frequency of prescribed oscillations,
and ϕ1 is the phase shift between mechanical and thermal inputs. Having specified the form of
excitation, the results presented below may be regarded as the ω-component of the system response
to arbitrary time excitation. Assuming a solution of the form

�(t,r) = Re{�̃(r) exp[iωt]} (38)

for all fields, Eqs. (32)–(34) and (36) are transformed into a system of ordinary equations,

iωρ̃ + ũ′
r + ũr

r
= 0, iωũr = 1

2
(ρ̃ ′ + T̃ ′) + 4K̃n

3

(
ũ′′

r + ũ′
r

r
− ũr

r2

)
,

(39)

iωT̃ = (1 − γ )

(
ũ′

r + ũr

r

)
+ γ K̃n

Pr

(
T̃ ′′ + T̃ ′

r

)
,

and boundary conditions

ũr (r = 1) = Ũ1, ũr (r = R) = 0, −αT̃ ′(r = 1) = Q̃1, and −αT̃ ′(r = R) = 0, (40)
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where primes denote differentiations with respect to r . Eliminating the density and radial velocity
via

ρ̃ = i

ω

(
ũ′

r + ũr

r

)
and ũr = i

ω(1 − γ )

{
kmT̃ ′′′ + km

r
T̃ ′′ +

[
1

2
(1 − γ ) − m

(
iω + k

r2

)]
T̃ ′
}
(41)

yields a single equation for the temperature perturbation,

kmT̃ ′′′′ + 2km

r
T̃ ′′′ −

[
km

r2
+ 1

2
(γ − 1) + iω(k + m)

]
T̃ ′′

+
[
km

r3
+ 1

2r
(1 − γ ) − iω

r
(k + m)

]
T̃ ′ − ω2T̃ = 0, (42)

subject to the conditions

kmT̃ ′′′(1) + kmT̃ ′′(1) −
[

1

2
(γ − 1) + m(iω + k)

]
T̃ ′(1) = iω(γ − 1)Ũ1,

kmT̃ ′′′(R) + km

R2
T̄ ′′(R) −

[
1

2
(γ − 1) + m

(
iω + k

R2

)]
T̃ ′(R) = 0,

−αT̃ ′(1) = Q̃1, − αT̃ ′(R) = 0. (43)

In Eqs. (41)–(43),

k = γ K̃n

Pr
and m = 4K̃n

3
− i

2ω
.

Equation (42) may be formed in an invariant notation [27],

km∇4T̃ − [ 1
2 (γ − 1) + iω(k + m)

]∇2T̃ − ω2T̃ = 0, (44)

where ∇4 and ∇2 mark the Biharmonic and Laplace operators, respectively. The transformed
temperature perturbation is therefore amenable to the closed-form solution

T̃ (r) = a1J0(i
√

λ1r) + b1Y0(i
√

λ1r) + a2J0(i
√

λ2r) + b2Y0(i
√

λ2r), (45)

where Ji and Yi are the ith order Bessel functions of the first and second kind, respectively, and λ1

and λ2 are the roots of the characteristic equation

kmλ2 − ( 1
2 (γ − 1) + iω(k + m)

)
λ − ω2 = 0, (46)

given by

λ1,2 = 1

2km

⎛⎝1

2
(γ − 1) + iω(k + m) ±

{[
1

2
(γ − 1) + iω(k + m)

]2

+ 4kmω2

}1/2
⎞⎠. (47)

The constants of integration a1, b1, a2, and b2 appearing in Eq. (45) are obtained by imposition of
the boundary conditions in Eq. (43). Reverting to the time domain, the temperature perturbation is
given by

T (r,t) = Re{[a1J0(i
√

λ1r) + b1Y0(i
√

λ1r) + a2J0(i
√

λ2r) + b2Y0(i
√

λ2r)] exp[iωt]}. (48)

All other perturbation fields are obtained by substitution of Eq. (45) into Eq. (41) and reverting to
time using Eq. (38).

The continuum-limit analysis should hold at distances that are much larger than the mean free path
from the boundaries and for time-scales that are much longer than the mean free time. In terms of
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the frequency of oscillations, the latter condition holds for ωKn � 1, or, equivalently, for ωK̃n � 1
[see Eq. (35)]. Examination of this limitation on the approximation is discussed in Sec. IV.

IV. RESULTS

We start by presenting our results in Sec. IV A for the degenerated case of a single pulsating
cylinder (R → ∞), to investigate the canonic problem of acoustic radiation in a semiconfined
domain. In Sec. IV B, we examine the problem in a confined two-cylinder setup. In each
configuration, the cases of an adiabatic pulsating cylinder (Ũ1 �= 0,Q̃1 = 0), and a stationary
nonadiabatic cylinder [Ũ1 = 0,Q̃1 �= 0; see Eq. (37)] are considered separately. The combined
effects of mechanical and thermal excitations, and their significance in monitoring the acoustic
signal, are discussed in Sec. IV C, for a single-cylinder setup.

To quantitate the impact of gas rarefaction on the acoustic disturbance, it is useful to compare our
findings with the known result for a cylinder pulsating in an ideal (inviscid and compressible) gas
[1]. In this case, the dynamic and thermodynamic fluid descriptions are decoupled, and isothermal
conditions prevail. For a single oscillating cylinder, the radial velocity and pressure perturbations
are given by

ur (r,t) = Re

{
Ũ

H
(1)
1 (−ωr

√
2/γ )

H
(1)
1 (−ω

√
2/γ )

exp[iωt]

}
, p(r,t) = Re

{
−iŨ

√
γH

(1)
0 (−ωr

√
2/γ )√

2H
(1)
1 (−ω

√
2/γ )

exp[iωt]

}
,

(49)

whereas for a two-cylinder setup,

ur (r,t) = Re{−
√

2/γ [d1J1(−ωr
√

2/γ ) + d2Y1(−ωr
√

2/γ )] exp[iωt]},
p(r,t) = Re{[d1J0(−ωr

√
2/γ ) + d2Y0(−ωr

√
2/γ )] exp[iωt]}. (50)

In Eq. (49), H (j )
i denotes the Hankel function of the ith order and j th kind. In Eq. (50), d1 and d2 are

determined by walls impermeability conditions. The
√

2/γ factor appearing in Eqs. (49) and (50)
expresses the ratio between the mean thermal speed, used for the scaling of velocity (see Sec. II),
and the mean speed of sound.

A. The case of a single cylinder

1. Ballistic-flow limit

Having removed the outer cylinder, no boundary reflections occur at r = R, and the system
description simplifies considerably. Setting ρ2(t) = T2(t) ≡ 0 in Eqs. (25) and (26), we find

ρ1(t) = 7
√

π

8
U1(t) − √

πQ1(t) and T1(t) =
√

π

4
U1(t) + 2

√
πQ1(t). (51)

The probability density perturbation φ(r,t,ξ ) in Eq. (21) is therefore known, and explicit evaluation
of the hydrodynamic perturbations in Eqs. (30) and (31) may be carried out. Introducing

I (k)
n =

∫ ∞

0
dξ2D

∫ ϕ

−ϕ

U1(t1)f (k)(θξ )
√

1 − r2 sin2(θξ )ξn
2D exp

[−ξ 2
2D

]
dθξ ,

J (k)
n =

∫ ∞

0
dξ2D

∫ ϕ

−ϕ

ρ1(t1)ξn
2Df (k)(θξ ) exp

[−ξ 2
2D

]
dθξ , (52)

K (k)
n =

∫ ∞

0
dξ2D

∫ ϕ

−ϕ

T1(t1)ξn
2Df (k)(θξ ) exp

[−ξ 2
2D

]
dθξ ,
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where t1 = t − g1(r,θξ )/ξ2D and

f (k)(θξ ) =
{

1, k = 1
cos(θξ ), k = 2 ,

Eqs. (30) and (31) for the hydrodynamic perturbations are cast in the form

ρ(t,r) = 1

π

(
2I

(1)
2 + J

(1)
1 − K

(1)
1 + K

(1)
3

)
,

u(t,r) = 1

π

(
2I

(2)
3 + J

(2)
2 − K

(2)
2 + K

(2)
4

)
,

T (t,r) = 2

3π

(−2I
(1)
2 + 2I

(1)
4 − J

(1)
1 + J

(1)
3 + K

(1)
1 − 2K

(1)
3 + K

(1)
5

)
,

p(t,r) = 1

3π

(
I

(1)
2 + 2I

(1)
4 + 1

2
J

(1)
1 + J

(1)
3 − 1

2
K

(1)
3 + K

(1)
5

)
,

q(t,r) = 1

2π

(
−2I

(2)
3 + 2I

(2)
5 − 2J

(2)
2 + J

(2)
4 + 5

2
K

(2)
2 − 3K

(2)
4 + K

(2)
6

)
. (53)

Focusing on the final time-periodic state of the system, Eqs. (52) for J (1)
n and K (1)

n contain a double
integral of the form

Gn = Re

{
1

π
exp[iωt]

∫ ∞

0
dξ2D

∫ ϕ

−ϕ

ξn
2Dexp

[−iωg1(r,θξ )/ξ2D − ξ 2
2D

]
dθξ

}
. (54)

Following Abramowitz [28] to evaluate the ξ2D-integral, and making use of the method of stationary
phase to approximate the θξ -integral, we find

Gn ≈ Re

{
C(r)

√
zn−1

3n

(
1 + a1

z
+ a2

z2

)
exp [iωt − z]

}
, (55)

valid for ω(r − 1) � 1, where

C(r) = 1√
r

erf

[
sin−1

(
1

r

)√
1

3
rz

]
, (56)

and z = 3[ω(r − 1)/2]2/3 exp [iπ/3]. The expressions for the constants a1 and a2 and details on the
calculation are given in the Appendix. Since the point of stationary phase occurs at θξ = 0, Eq. (55)
is also valid as a leading-order approximation for I (1,2)

n , J (2)
n , and K (2)

n in Eq. (52).
Considering Eqs. (52), (53), and (55), we observe that all the hydrodynamic fields at ballistic-flow

conditions decay as ∼ C(r)[ω(r − 1)](n+1)/3 exp [−(ω(r − 1))2/3] away from the cylindrical source.
The [ω(r − 1)](n+1)/3 exp {−[ω(r − 1)]2/3} part is identical with the decay rate in the counterpart
planar setup [15], and reflects the dampening effect of gas rarefaction. The added C(r) multiplier
reflects the effect of boundary curvature, which magnifies the rate of decay compared with the planar
case. Recalling the microscopic flow description discussed in Sec. III B, this increased decay factor
is attributed to the narrowing in the θξ -section imposed, at a given r , on the molecules reflected from
the r = 1 boundary (see Fig. 1 et seq.). Consequently, the number of reflected particles that reach a
certain distance from the wall (and thus contribute the far acoustic field) is “geometrically reduced,”
resulting in a stronger signal decay compared with the planar setup. Notably, the curvature-related
“near-field” decay is also significantly stronger than the characteristic r−1/2 decay in two-dimensional
sources at continuum-flow conditions [1] (see Sec. IV A 2), thus manifesting the unique impact of
boundary curvature on source acoustic efficiency at noncontinuum conditions.
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2. Continuum limit

Considering the continuum limit of small Knudsen numbers, and focusing on large distances
from the oscillating cylinder, we observe that, in Eq. (48) for T (r,t),

J0(i
√

λ1,2 r) ∼ r−1/2 cos(i
√

λ1,2 r − π/4) and Y0(i
√

λ1,2 r) ∼ r−1/2 sin(i
√

λ1,2 r − π/4).

Expecting a causal far-field solution that propagates in the positive r-direction, we set b1 = ia1 and
b2 = ia2 in Eq. (48), to obtain

T (r,t) = Re
{[

a1H
(1)
0 (i

√
λ1r) + a2H

(1)
0 (i

√
λ2r)

]
exp[iωt]

}
, (57)

where a1 and a2 are fixed via the impermeability and heat-flux conditions at r = 1. Expanding
Eq. (47) for λ1,2 in the limit K̃n � 1 and ωK̃n � 1 of near-continuum conditions, we find

√
λ1 ≈

√
1

2
Pr

ω

K̃n
(1 + i),

√
λ2 ≈ 1√

2γ 3

(
2

(γ − 1)

Pr
+ 8

3

)
ω2K̃n + i

√
2

γ
ω. (58)

Substituting Eq. (58) into Eq. (57), the propagation velocities of the
√

λ1 and
√

λ2 waves are

c1 =
√

2

Pr
ωK̃n and c2 =

√
γ

2
, (59)

respectively, and their corresponding decay rates are

D1 ∼
(√

1

2
Pr

ω

K̃n
r

)−1/2

exp

[
−
√

1

2
Pr

ω

K̃n
r

]
and

D2 ∼
(√

2

γ
ωr

)−1/2

exp

[
− ω2K̃n√

2γ 3

(
2

(γ − 1)

Pr
+ 8

3

)
r

]
. (60)

The
√

λ2 wave therefore propagates with the speed of sound c2 (� c1). Comparing between D1 and
D2, we observe that the

√
λ1 decay rate is significantly larger than

√
λ2 since

√
ω/K̃n � ω2K̃n.

Focusing on the K̃n → 0 limit and keeping ω constant, the above results therefore indicate that
the

√
λ1 wave vanishes and the flow field is dominated entirely by the

√
λ2 wave, with a decay

rate of D2 ∼ (ωr
√

2/γ )
−1/2

. In this limit, the dynamical problem turns decoupled from the thermal
description, and the system response at inviscid and isothermal conditions is recaptured [1]. For
later convenience, we refer to the

√
λ1 and

√
λ2 waves as the “thermal” and “compression” waves,

respectively. These terms have also been used in Ref. [29] and earlier works, to analyze the acoustic
scattering by cylinders and spheres interacting with plane sound waves at continuum conditions.

3. Numerical results

To validate the collisionless- and continuum-limit predictions in Secs. IV A 1 and IV A 2, Fig. 2
presents comparison between the analytical and DSMC results for the acoustic pressure at fixed
ω = 3π/2. The responses to both adiabatic [Ũ1 = 0.01 , Q̃1 = 0; Fig. 2(a)] and thermal [Ũ1 = 0,

Q̃1 = 0.01; Fig. 2(b)] excitations are illustrated at time t = 2πn/ω. In both figures, the collisionless
results are compared with Kn = 5 DSMC predictions, and the continuum-limit and DSMC calculated
fields are compared for Kn = 0.03. In Fig. 2(a), the inviscid Kn → 0 response in Eq. (49) is added for
reference. A counterpart result in Fig. 2(b) is inevitably missing, as the dynamic and thermodynamic
responses are decoupled in this limit.

Comparing between the Kn = 0.03 and Kn → 0 results in Fig. 2(a), the thermoviscous effect on
wave decay is apparent, reducing the width of the layer affected by the acoustic signal with increasing
Kn. This supports the discussion in Sec. IV A 2, showing that the system response in the continuum
limit, dominated by the compression wave, is characterized by a product of “potential” inverse
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FIG. 2. Effect of the Knudsen number on the pressure perturbation in a single-cylinder setup for ω = 3π/2:
(a) adiabatic animation (Ũ1 = 0.01 , Q̃1 = 0), (b) heat-flux forcing (Ũ1 = 0 , Q̃1 = 0.01). The thick solid lines,
thin blue lines and dashed red curve present analytical predictions for collisionless, Kn = 0.03 and inviscid
(Kn → 0) gas, respectively, and the crosses and blue circles mark DSMC data for Kn = 5 and Kn = 0.03,
respectively. The results are presented at time t = 2πn/ω.

square root (∝ r−1/2) and viscous exponential (∝ exp[−ω2Kn]) decay factors. At the other extreme
of free-molecular flow, signal decay becomes ever stronger, with the layer affected by boundary
excitations confined to only few (�3) radii into the gas, in line with the discussion in Sec. IV A 1.

Inspecting the differences between the analytical and DSMC predictions, and in view of the
vastly different schemes of solution, we find that the agreement between the results is gratifying.
Any discrepancies observed are exceedingly small and may be attributed to the statistical noise
inherent in the Monte Carlo calculations. The analytical solutions may therefore be considered as
a viable means for predicting the system behavior at the two limits. This becomes particularly
useful in the continuum limit, where the signal affects a wide layer away from the wall, and DSMC
calculations become prohibitively time consuming.

Figure 3 describes the effect of excitation frequency ω on the system response. The figure shows
the pressure perturbation for the cases of adiabatic pulsation [Figs. 3(a) and 3(c)] and thermal
excitation [Figs. 3(b) and 3(d)] with ω = 3π/2 and ω = 3π/4. Both large- and small-Kn number
limits are presented and compared with DSMC data. With the higher frequency being twice the
lower, the results confirm that the wavelength of the disturbance in the latter case is doubled.
Notably, the impact of ω on the decay rate varies between the limits, with a considerable attenuating
effect observed at continuum conditions. The dampening effect of ω is supported by Eq. (60)
for D2, showing an (ωr)−1/2 exp[−ω2Kn r] dependence. This ω2-exponential decay changes at
collisionless conditions, where Eq. (55) predicts a milder ω-dependence of the r-attenuation ∝
exp{−[ω(r − 1)]2/3}. The results are well supported by DSMC predictions.

Having demonstrated cases where the limit-case analyses agree with DSMC results, it is of interest
to examine the conditions where these descriptions break down. Toward this end, Fig. 4 compares
the pressure perturbation between the different schemes at various values of ω and relatively large
[Figs. 4(a) and 4(b)] and small [Fig. 4(c)] Kn. Considering the high-Kn comparison in Fig. 4(a),
we observe that, for ω = 3π/2, the collisionless and Kn = 5 results agree well, while increasing
deviations appear for Kn = 0.5 and Kn = 0.1. These deviations, reflecting the effect of molecular
collisions, become vanishingly small at the higher ω = 15π frequency presented in Fig. 4(b), for
which the affected gas layer is thinner. It is therefore the product ωKn, denoting the scaled actuation
frequency in mean-collision-frequency units [see Eq. (3) and the scaling introduced in Sec. II],
which determines the applicability of collisionless conditions, requiring that ωKn � 1. Passing to
the low-Kn results in Fig. 4(c), it is observed that ωKn also governs the validity of the continuum-limit
description, now requiring ωKn � 1. Specifically, good matching between DSMC and analytical
results is achieved for Kn = 0.05 and ω = 3π/4, where ωKn ≈ 0.12, while nonsmall deviations
are observed for Kn = 0.1 and ω = 3π/2, where ωKn ≈ 0.47. Identifying ωKn as the parameter
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FIG. 3. Effect of the excitation frequency on the pressure perturbation in a single-cylinder setup in response
to (a), (c) adiabatic animation (Ũ1 = 0.01 , Q̃1 = 0), (b), (d) heat-flux forcing (Ũ1 = 0 , Q̃1 = 0.01). In (a), (b),
the thick and blue thin solid curves present collisionless predictions for ω = 3π/2 and ω = 3π/4, respectively,
and the crosses and blue circles mark respective DSMC data for Kn = 5. In (c), (d), the thick and blue thin
lines present continuum-limit predictions for Kn = 0.03 with ω = 3π/2 and ω = 3π/4, respectively, and the
crosses and blue circles mark respective DSMC data. The results are presented at time t = 2πn/ω.

governing the flow regime may be physically rationalized, since no “natural” lengthscale exists in
the unconfined single-cylinder setup, and it is the ratio between the actuation time scale, 1/ω∗, and
the microscopic time scale, l∗/U ∗

th, that determines the flow conditions. This situation changes in
the double-cylinder setup, as discussed in Sec. IV B.

B. Double-cylinder setup

We now discuss the acoustic field generated in the confined double-cylinder setup. Having an
outer cylinder, the gap between the cylinders,

�R = R − 1,

is introduced as an additional geometrical length scale. This affects both the flow-field (via gas
reflections at the outer wall) and applicability of the limit-case approximations, as discussed below.

Fixing �R = 1 (i.e., taking a gap equal to the inner-cylinder radius), Fig. 5 presents the effect of
the Knudsen number on the acoustic pressure and radial velocity for both adiabatic animation
and thermal excitation of the inner wall with ω = 3π/2. DSMC and counterpart collisionless
and continuum-limit solutions are compared for large (Kn = 5) and small (Kn = 0.01) Knudsen
numbers. The reference continuum inviscid (Kn → 0) solution for the adiabatic case is shown in
Figs. 5(a) and 5(c). The agreement between DSMC and analytic results is satisfactory in all cases,
reconfirming the validity of our calculations. The results for the radial velocity also confirm the
satisfaction of the impermeability condition at both walls.
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FIG. 4. Breakdown of the (a), (b) collisionless and (c) continuum descriptions in a single-cylinder setup for
the case of adiabatic boundary excitation (Ũ1 = 0.01 , Q̃1 = 0), depicted by the pressure perturbation. (a), (b)
Comparison between collisionless-limit results (solid line) and DSMC data (Kn = 5, crosses; Kn = 0.5, blue
circles; Kn = 0.1, red triangles) for (a) ω = 3π/2 and (b) ω = 15π . (c) Comparison between continuum-limit
predictions and DSMC data for ω = 3π/2 and Kn = 0.05 (blue thin line vs. full blue triangles); ω = 3π/2 and
Kn = 0.1 (red dashed curve vs. red squares); and ω = 3π/4 and Kn = 0.05 (thick line vs. full circles). The
results are presented at time t = 2πn/ω.

Comparing between the Kn = 0.01 and Kn → 0 results in Figs. 5(a) and 5(c), we find that the
effect of gas rarefaction on the hydrodynamic field at small (yet nonzero) Kn is vanishingly small.
As recalled from the discussion in Sec. IV A, the impact of the deviation from continuum conditions
at Kn � 1 in a single-cylinder setup is expressed by a thermoviscous decay factor, formed as an
exponential exp[−ω2Kn r] term. While this difference becomes significant away from the wall
[cf. the thin and dashed curves in Fig. 2(a)], its influence in a confined geometry should be smaller,
as confirmed by the present comparison. Clearly, the added wall may impact the signal only in cases
where it is placed at a distance shorter than the “penetration layer” affected by the boundary in the
counterpart single-cylinder setup. Thus, observing the results in Fig. 2 for ω = 3π/2, reducing the
gap below �R ≈ 4 and �R ≈ 10 at free-molecular and Kn = 0.03 conditions, respectively, should
increasingly modify the resulting flow field.

By adding the outer wall and consequent gap-width length scale, the gap-width-based Knudsen
number,

Kn�R = l∗

�R∗ = Kn

�R
,

is introduced. This adds limitations to the range of applicability of the limit-case solutions, compared
with the single-cylinder case discussed in Fig. 4. To observe that, Fig. 6 presents the effect of the gap
width �R on the acoustic pressure and radial velocity excited by adiabatic pulsations at ω = 3π/2
and relatively large [Fig. 6(a)] and low [Fig. 6(b)] Knudsen numbers. Comparing the results in
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FIG. 5. Effect of the Knudsen number on the (a), (b) pressure and (c), (d) radial velocity perturbations in
a double-cylinder setup with ω = 3π/2: (a), (c) adiabatic animation (Ũ1 = 0.01 , Q̃1 = 0), (b), (d) heat-flux
forcing (Ũ1 = 0 , Q̃1 = 0.01). The thick solid lines, thin blue lines, and dashed red curves present analytical
predictions for collisionless, Kn = 0.01, and inviscid (Kn → 0) gas, respectively, and the crosses and blue
circles mark DSMC data for Kn = 5 and Kn = 0.01, respectively. The results are presented at time t =
2π (n + 1/3)/ω for the acoustic pressure and at time t = 2πn/ω for the radial velocity field.

Fig. 6(a) with the counterpart single-cylinder results in Fig. 4(a), we observe that the agreement
between the Kn = 0.5 and free-molecular predictions is much improved in the double-cylinder
setup. Thus, it is the increased value of Kn�R = 5 (in spite of the relatively non-large value of ωKn)
that diminishes the effect of molecular collisions compared with the nonconfined case, for which
the wall effect extends to r ≈ 4. For the Kn = 0.01 and �R = 0.5 results presented in Fig. 6(b), we
find that the agreement is less satisfactory than in the �R = 1 case shown in Figs. 5(a) and 5(c).
Here, gap narrowing and consequent increase in Kn�R result in the breakdown of the continuum
description, even for a relatively small value of ωKn.

Having studied the breakdown of the limit-case solutions in the single- and double-cylinder
setups, it is concluded that, while ωKn is the dominant parameter governing the flow regime in the
former case, it is the combination of ωKn and Kn�R that governs the flow characteristics in the
latter. Since none of the limit-case solutions, including in the single-cylinder case, may be written
as a function of ωKn only, it is clear that the separate effects of Kn, ω, and �R are generally
independent. In the one-cylinder case, this particularly reflects the impact of boundary curvature,
which turns dominant in the vicinity of the excited cylinder.

C. Combined animation and thermal excitations

Having investigated the acoustic pressure generated by a vibrating cylinder and a thermally excited
cylinder in separate, it is of interest to consider the system response to a combined vibrothermal
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FIG. 6. Effect of the gap width �R on the (a) large-Kn and (b) small-Kn acoustic pressure and radial
velocity for the case of adiabatic boundary excitation (Ũ1 = 0.01 , Q̃1 = 0) with ω = 3π/2. (a) Comparison
between collisionless (thick and blue thin lines) and DSMC results for Kn = 0.5 (crosses and blue circles) with
�R = 0.1. (b) Comparison between continuum-limit (thick and blue thin lines) and DSMC (crosses and blue
circles) predictions for Kn = 0.01 and �R = 0.5. The results are presented at time t = 2πn/ω for the velocity
and t = 2π (n + 1/3)/ω for the pressure.

signal. Specifically, we aim at identifying the optimal ratio between heat-flux and normal velocity
amplitudes, Q̃1/Ũ1, that reduces the counterpart vibroacoustic signal. For simplicity, we focus on
a single-cylinder setup. Our numerical results indicate that an opposite-phase acting heat signal is
most efficient for sound attenuation in this case, and we therefore fix ϕ1 = π in Eq. (37).

Inspecting the system response to a combined vibrothermal input, qualitative differences appear
between the continuum and free-molecular gas behaviors. Starting with the small-Kn response,
the results obtained agree with previous findings in the planar setup [15]—stating that, based on
thermodynamics first-law considerations, optimal sound cancellation is obtained when

∣∣∣∣Q̃1

Ũ1

∣∣∣∣opt

ωKn�1

= γ

2(γ − 1)
= 5

4
.

This result, valid at near-equilibrium conditions, is found independent of neither the frequency
of excitation (as long as ωKn � 1), nor boundary shape. The result may be easily verified by
taking the continuum-limit responses presented in Figs. 3(c) and 3(d), multiplying the latter by the
required γ /[2(γ − 1)] ratio and subtracting from the former. The subtraction reflects the above-noted
opposite-phase difference required between the signals, and imposing wall cooling when the cylinder
expands into the gas layer, and vice versa.

To examine the system response at free-molecular conditions to a vibrothermal input, Fig. 7(a)
presents the variation with the radial distance of the optimal ratio |Q̃1/Ũ1|opt found for sound
minimization. The plot is repeated in Fig. 7(b), where the radial-distance abscissa is replaced by
the acoustic wavelength coordinate ω(r − 1). To measure the “quality” of the minimum pressure
obtained, Fig. 7(c) shows the variation with ω(r − 1) of the ratio |p|min/|p|adiab between the minimum
pressure amplitude [at the conditions specified in Fig. 7(b)] and the pressure amplitude in the
counterpart adiabatic case (Ũ1 = 0.01,Q̃1 = 0). The results are plotted for different values of ω, and
the uniform optimal γ /[2(γ − 1)] value at continuum-limit conditions is plotted in Fig. 7(b).

Starting with Fig. 7(a), we observe that the optimal |Q̃1/Ũ1| ratio for sound minimization
decreases with both r and ω. Notably, when transferring to the ω(r − 1) coordinate in Fig. 7(b),
the ω-dependence becomes nearly indistinguishable, suggesting that the optimal ratio essentially
depends on the acoustic-wavelength-scaled distance only. This result is nevertheless different
from the uniform (in both r and ω) continuum-limit value found at near-equilibrium conditions.
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FIG. 7. Combined effects of boundary animation and heating on the acoustic radiation in a single-cylinder
setup. (a), (b) Variation with (a) r and (b) ω(r − 1) of the optimal ratio of excitation amplitudes, |Q̃1/Ũ1|opt,
which minimizes the pressure fluctuation at collisionless-flow conditions. The thick, dashed thick, thin, and
dashed thin curves present results for ω = 3π/4, 3π/2, 3π , and 6π , respectively. In Fig. 7(b), the dash-
dotted curve presents the (uniform) optimal ratio γ /[2(γ − 1)] = 5/4 obtained at continuum-flow conditions.
(c) Variation with ω(r − 1) of the ratio |p|min/|p|adiab at free-molecular conditions, between the minimum
pressure amplitude obtained in Fig. 7(b) and the counterpart pressure amplitude in response to adiabatic
excitation. The thick, dashed thick, thin, and dashed thin curves present results for ω = 3π/4, 3π/2, 3π , and
6π , respectively.

As discussed in Sec. IV A 2, the continuum-limit response is dominated by a single-frequency
compression wave, for both animation and thermal excitations. It is therefore reasonable to expect
that the conditions for optimal cancellation do not vary with the radial distance. In marked difference,
the ballistic-flow expression for the acoustic pressure in Eq. (53) shows that it composes several
decaying-wave contributions [see Eqs. (54) and (55)], each characterized by different phase velocity
and decay rate. Consequently, the conditions for optimal sound cancellation vary with the distance
from the boundary. It is only at very large distances from the source (outside the radial interval
presented in Fig. 7) that the pressure is dominated by the most slowly decaying moment K5, for which
complete sound reduction is achieved at |Q̃1/Ũ1|opt = 1/8. Yet, this result is of limited practical
significance, since at such large distances from the source the acoustic signal is already vanishingly
small. Inspecting Fig. 7(c), we find that the most efficient cancellation is achieved closest to the
wall, where all wave components compounding the pressure are nearly in-phase. Moving away from
the boundary to a distance ≈4–12 acoustic wavelengths, the results indicate that the adiabatic-wall
signal may be reduced by ≈50% (equivalent to a ≈6 dB reduction in sound pressure level) via
optimal choice of |Q̃1/Ũ1|. This is, again, different from the continuum-limit results, according to
which complete sound cancellation is achieved when applying the above γ /[2(γ − 1)] ratio.
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V. CONCLUSION

We studied the acoustic field of a circular cylinder immersed in a rarefied gas and subject
to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem
was analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering
both single cylinder and coaxial cylinders setups. Numerical calculations were carried out using
the direct simulation Monte Carlo method, where a noniterative algorithm to impose boundary
heat-flux conditions was applied. Analytical solutions were obtained in the limits of ballistic-
and continuum-flow conditions, and validated via Monte Carlo simulations. Comparing with the
reference continuum inviscid solution, the results obtained present the specific impacts of gas
rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the decay properties
of the generated disturbance, the continuum-limit solution shows on an exponential decay of the
signal with the distance from the source, reflecting the thermoviscous effect. This is accompanied by
an inverse square root decay with the propagation distance, characteristic of the inviscid problem.
Stronger attenuation was observed in the ballistic limit, where the signal vanishes at a distance
of few acoustic wavelengths from the boundary and becomes confined to a narrower layer with
increasing frequency. The combined impacts of mechanical and thermal excitations were studied to
seek for optimal conditions to minimize the vibroacoustic signal. The effect of boundary curvature
on the optimal conditions becomes significant in the ballistic-flow regime, where the optimal heat-
flux amplitude required for sound reduction decreases with the distance from the source, and
essentially depends on the acoustic-wavelength-scaled distance only. Comparing between the DSMC
and analytic predictions, the limits of validity of the free-molecular and continuum schemes were
identified and rationalized, and the respective differences between the single- and double-cylinder
setups were discussed.

By considering the acoustic radiation of a pulsating cylinder, the present work aims at analyzing
the effect of continuum breakdown on the efficiency of a two-dimensional acoustic monopole
in a relatively simple model setup. While the work focuses on the system response to harmonic
excitation, it could be easily extended to study the acoustic field generated by arbitrary small-
amplitude excitation of the boundary, treating the current analysis as a generalized Fourier component
of the input signal. A desirable extension of our analysis, investigating the counterpart problem in
other non-planar setups of interest, is currently underway.
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APPENDIX: EVALUATION OF Gn IN EQ. (54)

To evaluate the ξ2D-integral in Gn in Eq. (54), we make use of the steepest-descent analysis
carried out by Abramowitz [28]. The calculation, formally valid for ω(r − 1) � 1, yields

Gn ≈ Re

{
1√

3n+1π
exp [iωt]

∫ ϕ

−ϕ

(
z · g

2/3
1

)n/2

[
1 + a1(

z · g
2/3
1

) + a2(
z · g

2/3
1

)2
]

× exp
[−(z · g

2/3
1

)]
dθξ

}
, (A1)

where

z = 3[ω(r − 1)/2]2/3 exp [iπ/3],

a1 = (3n2 + 3n − 1)/12, a2 = (9n4 + 6n3 − 51n2 − 24n + 25)/288.
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The remaining θξ -integral is evaluated via the method of stationary phase. Expanding the integrand
about the single stationary phase point θξ = 0, we obtain

Gn ≈ Re

{√
zn

3n+1π

(
1 + a1

z
+ a2

z2

)
exp [iωt − z]

∫ ϕ

−ϕ

exp

[
1

3
zrθ2

ξ

]
dθξ

}
. (A2)

The θξ -integration then yields Eq. (55).
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