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a b s t r a c t

The motion and sound of a thin elastic plate, subject to uniform low-Mach flow and

actuated at its leading edge, is studied. The linearized response to arbitrary small-

amplitude translation and rotation is analyzed using Fourier decomposition of the

forcing signal. Both periodic (sinusoidal) and non-periodic (‘‘step-jump’’) actuations are

frequency Ores of the unforced system, a resonance motion is excited and the plate

oscillates at the corresponding eigenmode. The dynamical description is applied to

formulate the acoustic problem, where the sources of sound include the plate velocity

and fluid vorticity. Acoustic radiation of a dipole type is calculated and discussed in the

limit where the plate is acoustically compact. In the case of sinusoidal excitation, plate

elasticity has two opposite effects on sound radiation, depending on the forcing

frequency: at frequencies close to Ores, the near-resonance motion results in the

generation of high sound levels; however, at frequencies far from Ores, plate elasticity

reduces the amplitude of plate deflection (compared to that of a rigid plate), leading to

noise reduction. In the case of non-periodic actuation, the plate-fluid system amplifies

those frequencies that are closest to Ores, which, in turn, dominate the acoustic

signature. The results identify the trailing edge noise as the main source of sound,

dominating the sound generated by direct plate motion. We suggest the present theory

as a preliminary tool for examining the acoustic signature of flapping flight, common in

insects and flapping micro-air-vehicles.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics and sound of a thin elastic filament subject to fluid loading is a well known problem in fluid–structure
interactions and has been studied extensively over the years [1–4]. Recently, the problem has attracted growing interest
owing to its relevance to engineering applications and biological phenomena. These include the phenomenon of paper
flutter and its importance in amending production processes in commercial printing [5]; the role of flapping motion in
improving propulsive efficiency of swimming [6]; and the potential use of flow-induced motions of flexible bodies as a
source of ‘green’ energy [7–9]. The acoustic problem is relevant for the analysis of bioacoustic and industrial applications,
such as palatal snoring [10,11]; the effect of an acoustic field on the aerodynamic performance of micro-air-vehicle wings
[12]; and the design of flapping-based active noise control systems for the reduction of blade–vortex interaction noise
[13,14]. In addition, strong coupling between structure elasticity, leading edge actuation and flow vorticity is common in
insect flight, where low thickness-to-chord wing ratios enable significant active and passive flapping motions [15]. These
motions result in the radiation of a wide variety of noises known as ‘‘insect songs’’ [16,17], which are important factors in
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the social and sexual behavior of various insect species (e.g., [18]). Consequently, several works have studied the sound
field of insect-wing configurations, both experimentally [19] and numerically [20].

A major part of the theoretical works analyzing fluid–plate interactions have focused on the motion of an elastic
filament subject to uniform axial flow. The dynamical problem in this case is governed by a balance between plate inertia,
elasticity and fluid loading. Linearized stability analyzes have been carried out to determine the critical conditions for the
onset of structure motion [21–24], while other works have considered the non-linear motion evolving at super-critical
conditions [25–27]. The forced motion of a thin flexible body, resulting from active boundary actuation or unsteadiness of
the incoming flow, has been studied in a separate set of works [28–30]. In an effort to analyze the biofluidic mechanism of
small-scale flapping flight, recent interest in the forced-motion problem has focused on the particular case of periodic
leading edge actuation. Godoy-Diana et al. [31] studied the vortex streets produced by a rigid pitching foil in a
hydrodynamic tunnel. The effect of airfoil elasticity was then introduced and studied both experimentally [32] and
numerically [33,34]. Alben [35] examined the linearized (small amplitude) motion of a pitching appendage and calculated
the optimal flexibility required for maximum propulsion efficiency in the absence of wing inertia. In a later contribution
[36], the large-amplitude motion was considered together with the effect of combining heaving and pitching motions.
Michelin and Llewellyn Smith [37] included the effect of airfoil inertia and studied the dynamics of a heaving flexible wing.
At certain actuation frequencies, a resonance motion was excited and rationalized in terms of the frequency spectrum of
the unforced problem. In their conclusions section, the authors have indicated the importance of studying more realistic
flapping schemes, and including pitching actuation in their model, to study the influence of relative phase differences
between heaving and pitching motions on actual flapping pattern of an insect wing.

The acoustic problem, namely the calculation of sound produced by leading edge actuation of an elastic plate, has
received considerably less attention. Previous works have focused on different setups and examined the scattering of
sound from interaction of rigid structures with unsteady flows [38] or on sound radiation from fluid–structure interactions
of flexible structures with uniform flow [24]. Other works have investigated the effects of boundary conditions and various
forms of external forcing. Abrahams [39,40] studied the low-Mach acoustic scattering from a plate clamped at both edges
and subject to heavy fluid loading. Crighton [41] investigated the relation between vibration and sound by applying a line
force and geometrical inhomogeneities to the structure. Howe [42] considered the sound produced by the interaction of a
line vortex with a spring-supported rigid plate. Recently, the combined effect of structure elasticity and incoming-flow
unsteadiness on the acoustic radiation of a thin plate was analyzed for a flexible plate interacting with a line vortex [43].

The primary objective of the present work is to investigate the far-field acoustic signature of an elastic plate actuated at
its leading edge. Toward this end, we extend existing studies of the dynamical problem by considering the system
response to arbitrary small-amplitude leading edge actuations. We consider a linearized problem, where both leading edge
translation and rotation are prescribed, and analyze the two-dimensional forced motion. The analysis is then applied to
predict the far-field acoustic radiation, taking into account both structure dynamics and trailing edge noise contributions.
While the present theory is not expected to capture the detailed dynamics of three-dimensional flapping-flight motion, it
is aimed at examining the basic coupling between wing elasticity, leading edge excitation and sound radiation. This may
supply a preliminary tool for evaluation and further study of the resulting acoustic signature.

The paper is organized as follows: the dynamical problem is formulated and analyzed in Section 2. The acoustic field is
calculated in Section 3. The general scheme is then applied to study the system response to sinusoidal and ‘‘step-jump’’
actuations in Sections 4 and 5, respectively. A summary of our findings is outlined in Section 6.
2. Dynamical problem

Consider a thin elastic plate of thickness l, length L, span l, mass per unit area rsl and bending rigidity EI [with E the
Young’s modulus and I¼ l3=12ð1�n2Þ the moment of inertia per unit span; n is the Poisson ratio of the material]. The plate
is subject to low-Mach high-Reynolds number uniform flow of speed U in the x1-direction (parallel to the unperturbed
plate chord) and is free to vibrate at its trailing edge (Fig. 1). The plate is actuated at its leading edge ðx1 ¼ 0Þ with
prescribed time-dependent displacement LehFðtÞ in the x2-direction and rotation epCðtÞ about the x3-direction. The length
of the plate L is assumed much smaller than its span l such that the motion may be regarded as two-dimensional. Both eh

and ep are taken small (and FðtÞ,CðtÞ �Oð1Þ) so that the following analysis can be based on linearized theory. We neglect
any flow disturbances that may occur owing to leading edge actuation (e.g., the release of leading edge vortices). A similar
assumption has been made in other works studying the response to small-amplitude heaving and pitching actuations
[35–37].

The equation of motion of the plate, governing the plate deflection xðx1,tÞ in the x2-direction, is given as a balance
between plate inertia, bending stiffness and pressure force exerted by the surrounding fluid. A non-dimensional
representation of the problem is obtained by scaling the place coordinate x1 and plate deflection x by the plate length
L; the time t by the convective time-scale L=U; and the pressure force by r0U2, where r0 is the mean fluid density. Under
the above conditions, the unsteady deflection xðx1,tÞ51 of the plate satisfies the linearized equation

m q2x
qt2
þ

m
a2

q4x
qx4

1

�DPðxÞ ¼ 0, (1)
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Fig. 1. Schematic of the problem. A thin elastic plate xðx1 ,tÞ is displaced in the x2-direction (with ehFðtÞ) and rotated about the x3-direction (with epCðtÞ)
at its leading edge, x1 ¼ 0. The plate is subject to uniform low-Mach stream at speed U in the x1-direction.
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where

m¼ rsl
r0L

and a¼ U

Ub
(2)

denote the nondimensional plate mass and wind speed, respectively, with Ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rslL2

q
a characteristic bending wave

speed. Also appearing in (1), is the pressure force DPðxÞ exerted by the fluid across the plate in the direction of increasing x.
In what follows, we regard the plate as a flexible wing and apply linearized thin airfoil theory [44,45] to model the effect of
fluid loading in the equation of motion. Explicit expression for the Fourier decomposition of DPðxÞ is given in Appendix A.

Four boundary conditions are required to specify the dynamical problem. In accordance with the above setup, we
impose

xðx1 ¼ 0Þ ¼ ehFðtÞ,
qx
qx1

� �
x1 ¼ 0

¼ epCðtÞ,
q2x
qx2

1

 !
x1 ¼ 1

¼
q3x
qx3

1

 !
x1 ¼ 1

¼ 0, (3)

requiring that the plate displacement and slope at x1 ¼ 0 follow the leading edge actuation, and that the trailing edge is
moment- and force-free.

The problem is analyzed by taking the Fourier transform of Eqs. (1) and (3). Defining the Fourier transform of a function

gðoÞ ¼
Z 1
�1

gðtÞe�iot dt (4)

and applying to (1) and (3), yield

�mo2xþ
m
a2

x
0000
�DPðxÞ ¼ 0, (5)

together with

xð0Þ ¼ ehFðoÞ, x
0
ð0Þ ¼ epCðoÞ, x

00
ð1Þ ¼ x

000
ð1Þ ¼ 0, (6)

where primes denote differentiations with x1.
For later convenience, the problem for x, consisting of a homogeneous equation and non-homogeneous boundary

conditions, is transformed into a non-homogeneous equation with homogeneous boundary conditions. Toward this end,
decompose x into

xðx1,oÞ ¼ F ðx1,oÞþehFðoÞþepx1CðoÞ, (7)

and substitute to (5)–(6). This yields an equation for F

�mo2Fþ
m
a2

F
0000
�DPðF Þ ¼F eðx1,oÞ, (8)

in conjunction with the boundary conditions

F ð0Þ ¼ F
0
ð0Þ ¼ F

00
ð1Þ ¼ F

000
ð1Þ ¼ 0: (9)

The forcing term appearing on the RHS of Eq. (8) is

F eðx1,oÞ ¼ mo2½ehFðoÞþepx1CðoÞ�þ½ehFðoÞDPð1ÞþepCðoÞDPðx1Þ�: (10)

The solution for F ðx1,oÞ is calculated numerically for prescribed leading edge actuation (F and C) and o, using the
Chebyshev collocation method [46]. The actual plate deflection is obtained by substituting F ðx1,oÞ into (7), and taking the
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inverse Fourier transform of the result

xðx1,tÞ ¼
1

2p

Z 1
�1

xðx1,oÞeiot do: (11)

3. Acoustic radiation

The far-field acoustic pressure is governed by the nondimensional inhomogeneous wave equation [3,47]

M2 q2

qt2
�r2

 !
p¼

qv?
qt

dðx2Þþr � cw � Û
� �

, (12)

where M¼U=c051 is the mean-stream Mach number, c0 is the speed of sound, and d is the Dirac delta function. The two
terms on the RHS of Eq. (12) describe the sources of sound. The first term represents the contribution of direct plate
motion, where v?ðx1,tÞ is the normal plate velocity oriented into the fluid

v?ðx1,tÞ ¼ 7
qx
qt

on x2 ¼ 70, (13)

and the second term represents the contribution of trailing edge vorticity, where Û ¼ î1 is a unit vector in the direction of
the mean flow velocity and cw denotes the vorticity distribution along the trailing edge wake (see (A1)). The Fourier
transform of the latter is specified by the Kutta condition [45]

cw ¼ î3dðx2Þgw0
ðoÞe�iox1 , (14)

where

gw0
ðoÞ ¼�

8
R 1

0

ffiffiffiffiffiffiffiffiffi
s

1�s

r
½ioxðs,oÞþx

0
ðs,oÞ� ds

p½Hð2Þ1 ðo=2Þþ iHð2Þ0 ðo=2Þ�
(15)

and HðmÞn denotes the Hankel function of mth kind and nth order.
In accordance with the form of the linearized acoustic equation (12), the acoustic pressure can be written as a sum of

‘‘plate motion’’ and ‘‘wake-induced’’ pressure contributions

pðx,tÞ ¼ pxðx,tÞþpwðx,tÞ, (16)

where

pxðx,tÞ ¼
q
qt

Z 1
�1

I
Sp

v?ðy,tÞGaðx,y,t�tÞ dSðyÞ dt (17)

and

pwðx,tÞ ¼ �

Z 1
�1

Z
Vw

ðcw � ÛÞ � rGaðx,y,t�tÞ d3y dt: (18)

In (17)–(18), Sp is the plate surface, Vw denotes the fluid region occupied by the trailing edge wake, and Gaðx,y,t�tÞ is the
acoustic Green’s function having a vanishing normal derivative on the undisturbed plate.

In the following we assume that the plate is acoustically compact, i.e. that L=lk51, where l¼ 2p=k is the dimensional
acoustic wavelength, and k¼oU=Lc0 is the dimensional acoustic wavenumber. The condition for plate compactness is
therefore that L=lk ¼Mo=2p51, in accordance with the low Mach assumption set in (12).1 The compact approximation of
the Green’s function [3,47]

Gaðx,y,t�tÞ ¼ 1

4p9X�Y9
dðt�t�M9X�Y9Þ (19)

is applied to evaluate the far-field acoustic radiation. Here XðxÞ and YðyÞ are the Kirchhoff vectors for the plate. We
approximate YðyÞ by the Kirchhoff vector for a strip

YðyÞ ¼ y1,Re �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1�

1

2
þ iy2

� �2

�
1

4

s2
4

3
5,y3

0
@

1
A, (20)

and focus on the far-field (9X9� 9x9-1) radiation to approximate the above Gaðx,y,t�tÞ by

Gaðx,y,t�tÞ � 1

4p9x9
dðt�t�M9x9ÞþM

x � Y

4p9x92

q
qt
½dðt�t�M9x9Þ�, 9x9-1: (21)
1 Compactness is assured by considering actuations with otOð1Þ (see Section 4). In cases where the actuation signal contains large frequencies, it

will be demonstrated that their contribution to the acoustic field is negligible, thus the compact condition is satisfied (see Section 5).
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To evaluate pxðx,tÞ, substitute (21) into (17) and specify the path of integration to obtain

pxðx,½t�Þ �
Mlx2

2pL9x92

q2

qt2

Z 1

0
v?ðy1,½t�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ð1�y1Þ

p
dy1, (22)

where ½t� ¼ t�M9x9 is the acoustic retarded time. Substitute (13) together with (11) and the definition x2 ¼ 9x9cos y (with
0ryrp indicating the observer direction) into (22), to yield

pxð9x9,y,½t�Þ ��
iMl cos y
4p2L9x9

Z 1
�1

o3eio½t�
Z 1

0
xðy1,oÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ð1�y1Þ

p
dy1do: (23)

To calculate pwðx,tÞ, substitute (14) into (18) and expand for 9x9-1. Following a procedure similar to that carried out
for pxðx,tÞ, obtain

pwð9x9,y,½t�Þ ��
iMl cos y
4p2L9x9

Z 1
�1

ogw0
ðoÞeio½t�

Z 1
1

qY2

qy2

� �
y2 ¼ 0

e�ioy1 dy1 do, (24)

where gw0
ðoÞ is given by (15). Making use of (20), the y1-integration in (24) can be carried out explicitly to yieldZ 1

1

qY2

qy2

� �
y2 ¼ 0

e�ioy1 dy1 ¼�
p
2

e�io=2Hð1Þ1 ð�o=2Þ: (25)

Substitute (25) and (15) into (24) to obtain

pwð9x9,y,½t�Þ ��
iMl cos y
p2L9x9

Z 1
�1

oe½ioð½t��1=2Þ�Hð1Þ1 ð�o=2Þ

Hð2Þ1 ðo=2Þþ iHð2Þ0 ðo=2Þ

�

Z 1

0

ffiffiffiffiffiffiffiffiffi
s

1�s

r
½ioxðs,oÞþx

0
ðs,oÞ� ds do: (26)

The total far-field acoustic pressure is therefore given by the sum of (23) and (26),

pð9x9,y,½t�Þ ��
Ml cos y
4p2L9x9

½Pxð½t�ÞþPwð½t�Þ�, (27)

where Pxð½t�Þ and Pwð½t�Þ are obtained from expressions (23) and (26), respectively, scaled by the common factor
multiplying the square brackets in (27).

For later reference, it is instructive to decompose the acoustic pressure into ‘‘rigid body’’ and ‘‘elastic motion’’
components. This is achieved by separating x in (7) into

xrigid ¼ ehFðoÞþepx1CðoÞ and xelastic ¼ F ðx1,oÞ: (28)

Consequently, the total acoustic pressure can be written in the form

pð9x9,y,½t�Þ ��
Ml cos y
4p2L9x9

½Prigidð½t�ÞþPelasticð½t�Þ�, (29)

where Prigidð½t�Þ and Pelasticð½t�Þ are obtained by substituting the respective ‘‘rigid’’ and ‘‘elastic’’ components in (28) into x
in (23) and (26).

4. Periodic actuation

Consider the system response to sinusoidal actuation, where leading edge displacement and rotation are applied at a
common frequency O. The transformed boundary conditions (6) at x1 ¼ 0 are

xð0Þ ¼ 2pehdðo�OÞ and x
0
ð0Þ ¼ 2pepdðo�OÞeij, (30)

where 0rjo2p denotes a phase shift between pitching and heaving. The numerical solution is obtained by substituting

xðx1,oÞ ¼ 2pdðo�OÞ½F 0ðx1,oÞþehþepeijx1� (31)

into (5) (cf. (7)), dividing through by the delta-function, and solving for F 0ðx1,oÞ. The inverse Fourier transform (11) of (31)
then results in replacing o with O in the time-domain solution.

4.1. Dynamical response

Fig. 2 presents a typical result for the system response to sinusoidal actuation. In general, it is expected that the
frequency spectrum of the forced motion would reflect the unforced (homogeneous) properties of the system, governed by
m and a. The unforced linearized stability problem has been studied previously [21–25,27,43], and a summary of the
results is presented in Appendix B and Fig. 10. Our objective is to study the motion of the body forced by leading edge
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Fig. 2. (a) Frequency spectrum of maximum trailing edge displacement and (b)–(d) time-variation of plate shape for a sinusoidally actuated plate with

m¼ 4:5 and a¼ 5. The curves in Fig. 2a correspond to actuations of heaving with no pitching (eh ¼ 10�3 and ep ¼ 0, solid line), pitching with no heaving

(eh ¼ 0 and ep ¼ 10�3, dash-dotted line) and in-phase pitching with heaving (eh ¼ ep ¼ 10�3 and j¼ 0, dashed line). In (b)–(d), the envelopes of motion at

the resonance frequency Ores � 3:9 are shown at the same ep ,eh and j combinations: eh ¼ 10�3 ,ep ¼ 0 (b); eh ¼ 0,ep ¼ 10�3 (c); and

eh ¼ ep ¼ 10�3 ,j¼ 0 (d).
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actuation. We therefore focus on conditions where the unforced flat plate is stable to small perturbations. We consider a
parameter combination typical for insect wings in air [15,17,43] and take rs � 1100 kg=m3, l=L� 5� 10�3, E� 100 MPa,
n� 0:3 and r0 � 1:2 kg=m3. Substituting these into m and a in (2) yield m� 4:5 and a�U=0:45, where U is measured in SI
units. According to the neutral curve presented in Fig. 10 (see Appendix B), the critical value of a for the onset of plate
motion at m¼ 4:5 is ac � 6:5. Consequently, our present discussion is confined to at6:5. In reference to the above value of
Ub � 0:45 m=s, this upper bound on a corresponds to a wind speed of Ut3 m=s, consistent with the low-Mach assumption
set for the evaluation of the far-field acoustic pressure in Section 3.

Taking m¼ 4:5 and a¼ 5, Fig. 2 presents the frequency response of the plate to sinusoidal actuation at three
combinations of eh,ep and j. The coupling between the forced response and unforced plate properties is manifested
through a resonance occurring at the plate least stable eigenfrequency. This is observed in Fig. 2a, where sharp peaks in the
maximal trailing edge deflection are obtained at O¼Ores � 3:9. The occurrence of the resonance at the same frequency for
different combinations of ep,eh and j is expected, since it is only the combination of m and a that determines the value of
resonance frequency. Yet, the magnitude of the resonance peak is governed by ep and eh: when both heaving and pitching
actuations are applied with no phase shift, this magnitude is maximal [see the dashed line in Fig. 2(a)]. In Fig. 2(b)–(d), the
corresponding motion envelopes for the wing are presented at the resonance frequency Ores � 3:9. Note the large ratio
between trailing edge (� Oð10�1)) and leading edge (�Oð10�3)) deflections, resulting from increased energy transfer from
the leading edge driver to the free end at resonance conditions. Again we observe that the general form of motion envelope
is similar between Fig. 2(b)–(d) (with only the amplitude varying), since it originates from the excitation of the same least
stable eigenmode of the unforced system.

A phenomenon similar to the resonance detected in Fig. 2 was found in Ref. [43] for the motion induced in an elastic
sheet by a line vortex convected above it. Yet, the two problems are qualitatively different: while in the present setup the
external actuation is characterized by a single (prescribed) frequency, the convected vortex in Ref. [43] contains the entire
spectrum of frequencies, enabling the system to ‘‘pick’’ the resonance frequency and amplify it. In addition, the nature of
resonance in the two cases is different: in the present case the energy is supplied to the system continuously, leading to a
non-decaying motion; however, in the vortex-induced problem, the structure motion decays after the passage of the
vortex owing to the negative growth rate of the excited eigenmode. In this respect, the present linear-theory results should
be taken with some caution: strictly, when actuating the system at the exact eigenmode frequency, the continuous supply
of energy may result in considerably large deflections. However, as long as the actuation amplitudes ep and eh are small
enough and the decay rate of the excited eigenmode is large enough, the linearized scheme should suffice to describe the



2.5 3 3.5 4 4.5 5 5.5 6 6.5
α=U/Ub

ξ m
ax

10–1

10–2

10–3

2.5 3 3.5 4 4.5 5 5.5 6 6.5

3
4
5
6
7
8
9

10

Ω
re

s

α=U/Ub

Fig. 3. Effect of normalized wind speed a¼U=Ub on maximum trailing edge displacement and resonance frequency for a sinusoidally actuated plate with

m¼ 4:5. (a) Maximum displacements for eh ¼ 10�5 ,ep ¼ 0 (solid line); ep ¼ 10�5 ,eh ¼ 0 (dash-dotted line); ep ¼ eh ¼ 10�5 and j¼ 0 (dashed line). (b) The

variation of resonance frequency, corresponding to the three curves presented in (a). The three curves in (b) collapse on the same solid line, which marks

the a-variation of the least stable eigenfrequency of the unforced system at m¼ 4:5. The bold dashed line marks the critical frequency O� 2:97

characterizing the onset of unforced plate motion at ac � 6:5.

A. Manela / Journal of Sound and Vibration 331 (2012) 638–650644
system behavior in the vicinity of Ores. Indeed, in all the results presented, the condition xmax51 is satisfied (see Figs. 2–4
and 6–8).

Fig. 3 describes the effect of normalized wind speed a on the maximum trailing edge displacement (Fig. 3(a)) and
resonance frequency (Fig. 3(b)) at m¼ 4:5 and three combinations of ep, eh and j. At low values of the normalized wind
speed ðat5:5Þ we note that the motion amplitude is slightly non-monotonic with a and a mild minimum is observed at
a� 4. However, this effect is minor (notice the logarithmic scale of the y-axis) relative to the large increase in amplitude
occurring for a\5:5: as the relative wind speed approaches its critical value (ac � 6:5 for the present value of m¼ 4:5; see
Fig. 10), the effect of resonance becomes considerably more pronounced. Similarly to the results of Fig. 2, we find that the
no-heaving ðeh ¼ 0Þ case excites the lowest amplitudes of motion and that the combination of in-phase pitching and
heaving results in the largest deflections. Traversing to Fig. 3(b), we note that the resonance frequency, which is equal to
the least stable eigenfrequency of the unforced problem, decreases with increasing a. As a approaches its critical ac � 6:5
value, the frequency tends to its critical value at the onset of plate motion, O� 2:97, marked by the bold dashed line in
Fig. 3(b) (cf. Fig. 2(b) in [43]). The location of resonance frequencies in Fig. 3(b) is found identical for all combinations of ep,
eh and j presented in Fig. 3(a).
4.2. Acoustic field

To study the effect of plate elasticity on sound radiation, Fig. 4 compares between the acoustic radiations of elastic and
rigid plates. Fig. 4(a) presents the variation of the acoustic pressure amplitude with the actuation frequency O, for rigid
[Prigid in (29)] and elastic [the total P¼PrigidþPelastic in (29)] plates. The rigid and elastic plates are actuated at the same
in-phase pitching and heaving conditions. The effect of plate elasticity on sound radiation is observed: while the acoustic
pressure amplitude of a rigid plate increases monotonically with O, the acoustic pressure radiated in the elastic case
exhibits a sharp maximum at O¼Ores � 3:9. This maximum originates from the resonance motion described in Fig. 2(a), so
that in the vicinity of O¼Ores the sound level emitted by an elastic plate is considerably larger than that of a rigid plate.
However, at frequencies far from Ores, the situation changes qualitatively and the acoustic pressure generated by the
elastic plate drops considerably. Specifically, for O\5:2 the sound level of the elastic plate becomes lower than the rigid
plate, indicating that at frequencies far from Ores a rigid plate is noisier than an elastic plate. This suggests that at these
frequencies plate elasticity acts as an ‘‘energy absorber’’, causing a reduction in the emitted sound level.

To rationalize the above result, Fig. 4(b)–(d) shows the total trailing edge displacements along one period together with
their rigid ðxrigidÞ and elastic ðxelasticÞ components [see (28)] for O¼ 3:9,5:2 and 8. Fig. 4(b) presents the displacements at the
resonance frequency Ores � 3:9: here the plate motion is dominated entirely by the elastic contribution (the dash-dotted
line almost coincides with the solid line), leading to noise levels significantly higher than in the rigid plate setup. However,
at O¼ 5:2 [Fig. 4(c)] the situation changes qualitatively: the magnitudes of rigid- and elastic-motion components become
similar, resulting in comparable noise levels. At higher frequencies [O¼ 8, Fig. 4(d)], the elastic motion component tends
to reduce the rigid motion component [acting approximately at opposite phase; cf. the dash-dotted and dashed curves in
Fig. 4(d)]. As a result, the total deflection of an elastic plate in this case [solid line in Fig. 4(d)] is smaller than a rigid plate,
and the noise level is reduced.

To analyze the separate effects of ‘‘plate motion’’ noise and trailing edge noise on the total acoustic pressure, Fig. 5
presents the frequency dependence of the normalized acoustic pressure amplitude P¼PxþPw together with plate-
motion ðPxÞ and trailing edge noise ðPwÞ components [see (27)] for m¼ 4:5, a¼ 5, ep ¼ eh ¼ 10�3 and j¼ 0. All three curves
follow the same sharp-peak pattern, resulting from the resonance motion of the plate. Remarkably, the Pw component
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contributes most to the total acoustic signal, indicating that the acoustic field is dominated by the effect of trailing edge
noise. A similar result was found in Ref. [24], in the context of the sound of an unforced flag. Mathematically, this result is
attributed to the square-root singularity of the integrand of gw0

in (15), which is included in the integral expression for Pw

[see (26) and (27)]. This singularity amplifies the contribution of the trailing edge zone, where deflections are typically the
largest [see Fig. 2(b)–(d)], to the integral, compared with the square-root decay of the integrand of Px [see (23) and (27)].
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The effect of phase shift angle j on the plate motion and acoustic radiation is studied in Fig. 6. The solid line in Fig. 6(a)
shows the maximum acoustic pressure (obtained with respect to all frequencies) at 0rjo2p for m¼ 4:5, a¼ 5 and
ep ¼ eh ¼ 10�3. The dashed line presents the respective trailing edge amplitude. Both curves follow a symmetrical form
with a minimum value at j� p, demonstrating that the plate displacement and sound level are minimized when pitching
and heaving are applied at opposite phases. This result is rationalized in Fig. 6(b), which describes the time variation of
trailing edge displacement at O¼Ores and several values of eh,ep and j. The solid line shows the trailing edge
displacement for the case of heaving with no pitching, and the dashed and dash-dotted curves present the cases of
pitching with no heaving for j¼ 0 and j¼ p, respectively. The last two curves are p-shifted from each other, and the
corresponding results in Fig. 6(a) can be obtained by taking the maximum value of the sums of the solid and dashed lines
(for j¼ 0) and the solid and dash-dotted lines (for j¼ p). We therefore find that when pitching and heaving are acting in-
phase, they amplify the total plate displacement, causing an increase in the acoustic radiation. When acting out of phase,
the two signals tend to partially cancel, and this cancelation becomes maximal in the opposite-phase case, j¼ p.

To complete the analysis of a sinusoidally actuated plate, Fig. 7 shows the effect of pitching amplitude ep, for fixed
m¼ 4:5, a¼ 5, eh ¼ 10�3 and j¼ p, on the plate motion and acoustic radiation. According to the results in Fig. 7, both
acoustic pressure and trailing edge displacement exhibit a common minimum at ep � 4:2� 10�3. This result can be
rationalized using Fig. 6(b), by taking the linear superposition of the solid line (showing the trailing edge displacement
resulting from heaving actuation only) and the dash-dotted line (showing the displacement resulting from pitching only
with j¼ p) multiplied by ep=eh: when ep=eht4:2, the pitching-induced motion acts to reduce the displacement and sound
production due to heaving; however, for ep=eh\4:2, the contribution of pitching ‘‘overcomes’’ the opposite-phase effect of
heaving and becomes dominant. Our calculations indicate that the occurrence of this minimum at some intermediate
value of ep=eh takes place in situations where the phase j between pitching and heaving actuations is nonzero. The value
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of ep=eh which minimizes the sound for given ja0 varies with j, and may be a useful mean for controlling the acoustic
radiation of the system. The reduction of the acoustic pressure is most efficient in the case j¼ p presented.

5. Non-periodic actuation

The analysis of Sections 2 and 3 is now applied to study the motion and sound generated by non-periodic leading edge
actuation. In general, the frequency spectrum of a non-periodic signal includes the entire range of frequencies,
o 2 ð�1,1Þ, and the system response should therefore reflect its resonant behavior by amplifying those frequencies
that are closest to the system eigenfrequencies.

To demonstrate this behavior, consider the case of ‘‘step-jump’’ heaving of magnitude eh occurring at time t¼0 in the
x2-coordinate of the leading edge. This can be viewed as a limit case of abrupt change in the plate altitude. Identifying the
forms of FðtÞ and CðtÞ in (3) with a step-jump actuation, the boundary conditions at the leading edge are

xðx1 ¼ 0Þ ¼ ehHðtÞ and
qx
qx1

� �
x1 ¼ 0

¼ 0, (32)

where HðtÞ is a unit step function. The Fourier transform of these conditions yield

xð0Þ ¼ eh½pdðoÞ�i=o� and x
0
ð0Þ ¼ 0, (33)

which determine the general form of the frequency-domain solution

xðx1,oÞ ¼ eh½pdðoÞðF dðx1,oÞþ1Þ�i=oðF ðx1,oÞþ1Þ�: (34)

Taking the inverse Fourier transform (11) of (34), we find that the F d-term contributes to the time-domain solution only at
o¼ 0. In addition, it can be easily verified that F dðx1,o¼ 0Þ ¼ 0, as the forcing term (10) vanishes at o¼ 0. The time-
domain solution is therefore

xðx1,tÞ ¼
eh

2
2HðtÞ�

i

p

Z 1
�1

F ðx1,oÞ e
iot

o
do

� �
, (35)

where F ðx1,oÞ is calculated using the scheme of Section 2, and the integral in (35) is evaluated numerically. Although the
integral in (35) appears of the form of a principal value integral, it is in practice an ordinary integral since F ðx1,oÞ ¼ 0 at
o¼ 0, similarly to the above F dðx1,o¼ 0Þ ¼ 0.

Fig. 8 presents the dynamical response and acoustic radiation of a plate actuated by leading edge step-jump with
eh ¼ 10�2, m¼ 4:5 and a¼ 5. Fig. 8(a) shows the trailing edge and mid-point (x1¼0.5) displacements, and Fig. 8(b) depicts
the total far-field acoustic pressure. At to0, both plate displacement and acoustic radiation vanish. The small-amplitude
oscillations observed in the figure result from numerical truncation of the infinite Fourier integral in (35), and it has been
verified that extending the limits of numerical integration improves the accuracy of calculation and reduces the error. At
t¼0, the step-jump actuation is applied and initiates sharp variations in plate displacement, accompanied by significant
pressure fluctuations. At 0ott3, the plate trailing edge undergoes considerable ‘‘overshoot’’ deflections between
x��0:01 and x� 0:025, where other parts along the plate follow similar wave-like behavior with reduced amplitudes
and varying phases. Coincidentally, relatively high-frequency pressure fluctuations are radiated. This initial transitory
behavior of the dynamical system is replaced, at later times ðt\3Þ, by the appearance of damped oscillations, fluctuating
around the new equilibrium state of the plate, x¼ eh ¼ 10�3. Interestingly, these damped oscillations are dominated by the
resonance eigenfrequency of the system, Ores � 3:9. This confirms the prediction stated in the beginning of the section that
the system excitation by an input signal containing the entire frequency spectrum should amplify those frequencies that
are closest to the system least stable eigenfrequency. Mathematically, this ‘‘frequency amplification’’ reflects the late-time
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contribution of the poles of the integrand in (35), contained in the explicit form of F ðx1,oÞ. The most dominant
contribution in this case comes from the vicinity of the least stable eigenfrequency, which has the slowest decay rate.

To further analyze the acoustic radiation, Fig. 9 presents the power spectrum SpðoÞ of the acoustic pressure presented
in Fig. 8(b) for ½t�45. For convenience, the frequency is scaled by Ores and the power spectrum by SpðOresÞ. Following the
dynamical behavior of the system, the radiated far-field sound is dominated by the resonance frequency. Unlike in the
discrete-spectrum example of Section 4, the continuous spectrum of step-jump actuation radiates sound at frequencies
close to Ores (where the scaled power spectrum is still close to 1). This is reflected by the more ‘‘complex’’ form of the late-
time acoustic signature in Fig. 8(b). At later times (not shown here), the plate state converges to its new equilibrium state
x¼ eh, and the acoustic radiation vanishes.

6. Conclusion

We studied the motion and sound generated by a thin elastic plate subject to uniform low-Mach flow and actuated at
its leading edge by arbitrary small-amplitude displacement and rotation. Assuming linearized conditions, a resonance
mode of motion was excited in cases where the frequency spectrum of the forcing signal contained an eigenfrequency Ores

of the unforced system. After solving for the plate motion, the dynamical description was used as a ‘‘source term’’ to
formulate the acoustic problem. Acoustic radiation of a dipole type was calculated in the limit where the plate is
acoustically compact. It was found that plate elasticity can amplify or reduce the sound level (compared to that of a rigid
plate), depending on the frequency of external actuation: at frequencies close to Ores, flexibility results in the generation of
increased pressure levels, following the resonance excitation; however, at frequencies far from Ores, plate elasticity
reduces the amplitude of plate deflection (compared to that of a rigid plate), leading to decreased sound levels. In addition,
we found that trailing edge noise (resulting from the satisfaction of Kutta condition and subsequent release of trailing edge
vorticity) is the main source of sound, dominating the contribution from direct plate motion. When analyzing the acoustic
radiation in the case of sinusoidal actuation, the effects of prescribed phase angle j between pitching and heaving
motions, and their amplitudes ep and eh, were rationalized using the dynamical description. In particular, the existence of
specific values of j and ep=eh, where the sound level is minimized, was illustrated.

The results of the present work strongly depend on the assumption of small stream-flow Mach numbers. Thus, the
analysis of the source region, consisting of the wing and trailing edge wake, is based on the incompressible theory
presented in Refs. [44,45] (see Appendix A). Furthermore, Howe’s acoustic analogy (12) used to calculate the far-field
sound is based on a small-Mach number assumption (M2

51), which neglects variations in the speed of sound and
propagation of sound by the mean flow. A more thorough analysis is required to study the effect of larger Mach numbers
on the present results. Yet, for the purpose of studying the acoustic field generated by typical insect and small-scale flight,
the simplifying approximation of small Mach numbers is in place.

A natural extension of the present work would be the consideration of generation of leading edge vorticity on the plate
motion and sound. When the plate is actuated at its leading edge, the path of the vortices released there should be
influenced by the motion of the plate. However, previous analytical studies (e.g., [30]) have assumed that leading edge
vorticity is swept with the mean stream unaffected by the filament motion. Full coupling between the structure motion
and leading edge vorticity should therefore be taken into account to study the case where the leading edge is actively
displaced. Qualitatively, it is expected that the interaction of leading edge vorticity with an actuated elastic plate would
excite a resonance motion even when the actuation frequency does not coincide with one of the system eigenfrequencies,
as the incident vorticity itself may consist of a wide range of wavenumbers [43].
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The present work extends previous studies of the dynamical problem by considering the system response to arbitrary
leading edge actuation and by analysing the far-field acoustic radiation. Apart from the example-cases studied, the analysis
can be readily applied to obtain the system response to other small-amplitude (periodic or non-periodic) actuations. Yet,
we have focused on conditions where the plate motion is driven entirely by leading edge excitation and all motions of the
unforced plate decay. The assumption made on the low amplitudes of applied boundary actuations enabled the use of
linear theory and superposition to examine the various effects of trailing edge vorticity and plate elasticity on the acoustic
radiation. A desirable extension of the present theory would therefore be to examine the acoustic field at critical and
supercritical conditions, where the homogeneous plate response is not trivial, or in cases where the forcing amplitude is
large. Such analyzes would require investigation of the non-linear problem, including the interaction between the forced
and unforced motion mechanisms. Additional study is also required to incorporate three-dimensional effects, which may
have a significant impact on sound radiation in small-scale flapping flight.
Acknowledgment

This work was supported by the Marie Curie International Reintegration Grant no. PIRG-GA-2010-276837.

Appendix A. The fluid loading DP

Adopting Theodorsen’s linearized analysis of thin-airfoil aerodynamics [44,45], the wing surface and trailing edge wake
are represented by thin vortex sheets of vorticities

cn ¼ î3dðx2Þgxðx1,tÞ and cw ¼ î3dðx2Þgwðx1,tÞ, (A1)

corresponding to the wing (0rx1r1) and wake ð1ox1o1Þ surfaces, respectively. In (A1), d denotes the Dirac delta
function. Relating the wing vortex sheet to the plate deflection and satisfying the Kutta condition to calculate the strength
of trailing edge vorticity, the time Fourier transform of the total pressure jump is obtained

DPðxÞ ¼
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and the function Cðo=2Þ is the Theodorsen function [44].

Appendix B. The unforced problem

The eigenvalue problem for the onset of unforced plate motion (Eq. (1) together with the homogeneous counterpart of
(3)) has been studied in Ref. [43]. For completeness, Fig. 10 presents the projection of the neutral surface on the ðm,aÞ plane.
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Fig. 10. The neutral curve a¼ acðmÞ for the unforced plate problem, specifying the critical conditions for onset of plate motion. Shaded and unshaded

zones mark domains of stability and instability, respectively. The circles and cross denote the theoretical predictions of Kornecki et al. [21] (as presented

in Ref. [23]) and Huang [10], respectively. The dashed line (m¼ 4:5,0oat6:5) indicates the locus of points considered in Figs. 2–9.
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The bold solid line marks the neutral curve, separating between the stable (shaded) and unstable (unshaded) zones. Also
presented are the theoretical predictions of Refs. [21] (circles) and [10] (cross) for the neutral curve. The agreement
between the results is satisfactory, supporting the application of the present scheme to study of the forced motion and
acoustic radiation. While the models used in all the calculations are similar, the quantitative discrepancies between the
results may be attributed to the different levels of accuracy applied in the various schemes (see, e.g., the discussion in
Section 3.3. of Ref. [21], where the calculation is based on taking only the first two modes in an eigenfunction expansion of
the solution).

References

[1] R.D. Blevins, Flow-Induced Vibration, Van Nostrand Reinhold, New York, 1990.
[2] M.P. Paı̈doussis, Fluid-Structure Interaction: Slender and Axial Flow, Academic, London, 1998.
[3] M.S. Howe, Acoustics of Fluid–Structure Interactions, Cambridge University Press, Cambridge, 1998.
[4] M.J. Shelley, J. Zhang, Flapping and bending bodies interacting with fluid flows, Annual Review of Fluid Mechanics 43 (2011) 449–465.
[5] Y. Watanabe, S. Suzuki, M. Sugihara, Y. Sueoka, An experimental study of paper flutter, Journal of Fluids and Structures 16 (2002) 529–542.
[6] J.C. Liao, D.N. Beal, G.V. Lauder, M.S. Triantafyllou, Fish exploiting vortices decrease muscle activity, Science 302 (2003) 1566–1569.
[7] G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, T.R. Welsh, The energy harvesting Eel: a small subsurface ocean/river power generator, IEEE

Journal of Oceanic Engineering 26 (2001) 539–547.
[8] J.J. Allen, A.J. Smits, Energy harvesting Eel, Journal of Fluids and Structures 15 (2001) 629–640.
[9] L. Tang, M.P. Paı̈doussis, J. Jiang, Cantilevered flexible plates in axial flow: energy transfer and the concept of flutter-mill, Journal of Sound and

Vibration 326 (2009) 263–276.
[10] L. Huang, Flutter of cantilevered plates in axial flow, Journal of Fluids and Structures 9 (1995) 127–147.
[11] L. Huang, Mechanical modeling of palatal snoring, Journal of the Acoustical Society of America 97 (1995) 3642–3648.
[12] T.M. Grundy, G.P. Keefe, M.V. Lowson, Effects of acoustic disturbances on low Re aerofoil flows, Progress in Astronautics and Aeronautics 195 (2001)

91–113.
[13] M. Marcolini, E. Booth, H. Tadghighi, H. Hassan, C. Smith, L. Becker, Control of BVI Noise Using an Active Trailing Edge Flap, Vertical Lift Aircraft

Design Conference, San Francisco, CA, 1995.
[14] K. Nguyen, M. Betzina, C. Kitaplioglu, Full-Scale Demonstration of Higher Harmonic Control for Noise and Vibration Reduction on the XV-15 Rotor,

American Helicopter Society 56th Annual Forum, Virginia Beach, VA, 2000.
[15] T. Maxworthy, The fluid dynamics of insect flight, Annual Review of Fluid Mechanics 13 (1981) 329–350.
[16] H.C. Bennet-Clark, Acoustics of insect song, Nature 234 (1971) 255–259.
[17] S. Drosopoulos, M.F. Claridge (Eds.), Insect Sounds and Communication: Physiology, Behaviour, Ecology and Evolution, Taylor and Francis, Boca

Raton, FL, 2006.
[18] L.J. Cator, B.J. Arthur, L.C. Harrington, R.R. Hoy, Harmonic convergence in the love songs of the dengue vector mosquito, Science 323 (2009)

1077–1079.
[19] J. Sueur, E.J. Tuck, D. Robert, Sound radiation around a flying fly, Journal of the Acoustical Society of America 118 (2005) 530–538.
[20] Y. Bae, Y.J. Moon, Aerodynamic sound generation of flapping wing, Journal of the Acoustical Society of America 124 (2008) 72–81.
[21] A. Kornecki, E.H. Dowell, J. O’Brien, On the aeroelastic instability of two-dimensional panels in uniform incompressible flow, Journal of Sound and

Vibration 47 (1976) 163–178.
[22] M. Argentina, L. Mahadevan, Fluid-flow-induced flutter of a flag, Proceedings of the National Academy of Sciences 102 (2005) 1829–1834.
[23] C. Eloy, R. Lagrange, C. Souilliez, L. Schouveiler, Aeroelastic instability of cantilevered flexible plates in uniform flow, Journal of Fluid Mechanics 611

(2008) 97–106.
[24] A. Manela, M.S. Howe, On the stability and sound of an unforced flag, Journal of Sound and Vibration 321 (2009) 994–1006.
[25] B.H. Connell, D.K.P. Yue, Flapping dynamics of a flag in a uniform stream, Journal of Fluid Mechanics 581 (2007) 33–67.
[26] L. Tang, M.P. Paı̈doussis, On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates, Journal of Sound and

Vibration 305 (2007) 97–115.
[27] S. Alben, M.J. Shelley, Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Physical Review Letters 101 (2008) 119902.
[28] L. Tang, M.P. Paı̈doussis, J. Jiang, The dynamics of variants of two-dimensional cantilevered flexible plates in axial flow, Journal of Sound and Vibration

323 (2009) 214–231.
[29] V.V. Golubev, B.D. Dreyer, T.M. Hollenshade, M.R. Visbal, High-Accuracy Viscous Analysis of Unsteady Flexible Airfoil Response to Impinging Gust,

AIAA Paper No. 2009-3271, 2009.
[30] A. Manela, M.S. Howe, The forced motion of a flag, Journal of Fluid Mechanics 635 (2009) 439–454.
[31] R. Godoy-Diana, J.-L. Aider, J.E. Wesfreid, Transitions in the wake of a flapping foil, Physical Review E 77 (2008) 016308.
[32] B. Thiria, R. Godoy-Diana, How wing compliance drives the efficiency of self-propelled flapping flyers, Physical Review E 82 (2010) 015303.
[33] D. Qi, Y. Liu, W. Shyy, H. Aono, Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow,

Physics of Fluids 22 (2010) 091901.
[34] H. Masoud, A. Alexeev, Resonance of flexible flapping wings at low Reynolds number, Physical Review E 81 (2010) 056304.
[35] S. Alben, Optimal flexibility of a flapping appendage in an inviscid fluid, Journal of Fluid Mechanics 614 (2008) 355–380.
[36] S. Alben, Simulating the dynamics of flexible bodies and vortex sheets, Journal of Computational Physics 228 (2009) 2587–2603.
[37] S. Michelin, S.G. Llewellyn Smith, Resonance and propulsion performance of a heaving flexible wing, Physics of Fluids 21 (2009) 071902.
[38] M.S. Howe, The influence of vortex shedding on the generation of sound by convected turbulence, Journal of Fluid Mechanics 76 (1976) 711–740.
[39] I.D. Abrahams, Scattering of sound by a heavily loaded finite elastic plate, Proceedings of the Royal Society of London 378 (1981) 89–117.
[40] I.D. Abrahams, Scattering of sound by an elastic plate with flow, Journal of Sound and Vibration 89 (1983) 213–231.
[41] D.G. Crighton, The 1988 Rayleigh medal lecture: fluid-loading—the interaction between sound and vibration, Journal of Sound and Vibration 133

(1989) 1–27.
[42] M.S. Howe, Elastic blade–vortex interaction noise, Journal of Sound and Vibration 177 (1994) 325–336.
[43] A. Manela, Sound generated by a vortex convected past an elastic sheet, Journal of Sound and Vibration 330 (2011) 416–430.
[44] T. Theodorsen, General Theory of Aerodynamic Instability and the Mechanism of Flutter, NACA Report no. 496 (1935).
[45] R.L. Bisplinghoff, H. Ashley, R.L. Halfman, Aeroelasticity, Addison-Wesley, Toronto, 1955.
[46] R. Peyret, Spectral Methods for Incompressible Viscous Flow, Springer, New-York, 2002.
[47] M.S. Howe, Theory of Vortex Sound, Cambridge University Press, Cambridge, 2003.


	Vibration and sound of an elastic wing actuated at its leading edge
	Introduction
	Dynamical problem
	Acoustic radiation
	Periodic actuation
	Dynamical response
	Acoustic field

	Non-periodic actuation
	Conclusion
	Acknowledgment
	The fluid loading DeltaP
	The unforced problem
	References




