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The forced motion of a flag

A. MANELA1† AND M. S. HOWE2

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Boston University, College of Engineering, 110 Cummington Street, Boston, MA 02215, USA

(Received 2 December 2008; revised 21 April 2009; accepted 22 April 2009)

The prevailing view of the dynamics of flapping flags is that the onset of motion is
caused by temporal instability of the initial planar state. This view is re-examined
by considering the linearized two-dimensional motion of a flag immersed in a high-
Reynolds-number flow and taking account of forcing by a ‘street’ of vortices shed
periodically from its cylindrical pole. The zone of nominal instability is determined
by analysis of the self-induced motion in the absence of shed vorticity, including
the balance between flag inertia, bending rigidity, varying tension and fluid loading.
Forced motion is then investigated by separating the flag deflection into ‘vortex-
induced’ and ‘self ’ components. The former is related directly to the motion that
would be generated by the shed vortices if the flag were absent. This component
serves as an inhomogeneous forcing term in the equation satisfied by the ‘self ’
motion. It is found that forced flapping is possible whenever the Reynolds number
based on the pole diameter ReD � 100, such that a wake of distinct vortex structures is
established behind the pole. Such conditions typically prevail at mean flow velocities
significantly lower than the critical threshold values predicted by the linear theory. It
is therefore argued that analyses of the onset of flag motion that are based on ideal,
homogeneous flag theory are incomplete and that consideration of the pole-induced
fluid flow is essential at all relevant wind speeds.

1. Introduction
The mechanics of a flag in a uniform stream constitutes a fundamental fluid-

structure interaction that has been studied extensively (Päıdoussis 1998). Its relative
simplicity and richness of behaviour make it relevant to a wide range of natural
phenomena and problems of engineering importance. For example, Huang (1995) has
applied the flag equation to study the flutter mechanism governing snoring. Watanabe
et al. (2002a, b) have investigated the dynamics of paper flutter and demonstrated its
importance in amending production processes in commercial printing. Similarly, Liao
et al. (2003) have demonstrated how the flapping mechanism improves propulsive
efficiency of swimming, and Shen et al. (2003) have shown that wavy body motions
may help in reducing turbulent drag during locomotion.

These and other studies have motivated both experimental and theoretical
investigations. Taneda (1968) examined the waving motions of flags in a wind tunnel.
Zhang et al. (2000) and Zhu & Peskin (2002) studied the problem using an analogous
system of flexible filaments in flowing soap films. Fitt & Pope (2001) have studied the
case of a ‘stiff’ flag in air incident at a finite angle of attack. Shelley, Vandenberghe &
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Figure 1. Schematic set-up of the problem. The flag is pinned at x = 0 to a stationary
cylindrical pole of diameter D and its free end is at x = L. The inertial fluid loading is
�P =P− − P+ and the trailing-edge vorticity is γ (x, t). The vortices shed from the flag pole
are each of strength Γ ≈ 2.5UD and convect along y = ±h ≈ ±0.45D at speed U .

Zhang (2005) performed flag experiments in a water tunnel and compared their results
to ‘heavy-flag’ analysis. Argentina & Mahadevan (2005) proposed a linearized flag
theory involving a simplified model of the pressure loading based on thin airfoil theory
(Milne-Thomson 1968). Tang & Päıdoussis (2007) studied, in addition to the onset
of instability, the post-critical behaviour of the system and compared it with existing
experimental data. Connell & Yue (2007) addressed the full nonlinear problem and
solved it numerically in conjunction with the incompressible viscous Navier–Stokes
equations. Alben & Shelley (2008) solved the inviscid nonlinear problem coupled with
the dynamics of the trailing edge vortex sheet wake. Eloy et al. (2008) considered the
three-dimensional problem and found it in better agreement with experiments. Manela
& Howe (2009) applied the approximate Argentina–Mahadevan model to study the
effect of varying the boundary conditions and calculated the sound generated by the
motion.

The common view in all of these studies is that flapping results from temporal
instability of an initial planar state. The threshold of instability is marked by a
critical value of the wind speed and determined from the solution of a homogeneous
eigenvalue problem. The equation of motion consists of a balance between flag inertia,
bending rigidity, tension force and fluid loading. External forcing is disregarded; in
particular, forcing by disturbances in the viscous wake of the flag pole are ignored.

Several works have studied the motion of a flexible filament placed in the wake of
a bluff body. Among the first to observe the usefulness of such motions were Taylor
et al. (2001), who suggested to convert the kinetic energy of these motions into electric
power by using a piezoelectric ‘eel’ as the flapping filament. Allen & Smith (2001)
examined experimentally the feasibility of this idea and found conditions for optimal
coupling between the wake and filament characteristics. Unlike in the flag problem
set-up (see figure 1), the flexible structure in this study is located at some distance
downstream from the bluff body. Other investigators, including Beal et al. (2006) and
Eldredge & Pisani (2008), studied the effectiveness of the wake-induced motions in
enabling passive locomotion.

Following this group of studies, the objective of the present work is to investigate
the effect of the flag pole wake on the flag motion. We argue that a proper theory of
flapping should incorporate the influence of the flag pole wake. The characteristics
of the wake depend on Reynolds number based on the effective diameter of the pole.
For a smooth, circular cylindrical pole of diameter D in a steady stream of speed U

the Reynolds number

ReD = UD/ν,

where ν is the kinematic viscosity (Blevins 1990). At moderate flow speeds, the
wake consists of a succession of distinct vortex structures (roughly aligned with
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the flag pole) typically when ReD � 100. For a pole of diameter D = 0.05 m in air,
ν ≈ 15 × 10−6 m2 s−1 and therefore ReD ≈ 3.3 × 103U (U in m s−1). Consequently,
discrete vortices would be expected downstream of the flag pole when U exceeds
∼0.03 m s−1. At higher mean wind speeds, common in both outdoor and laboratory
experiments, the vortex wake is sufficiently established to be modelled in a first
approximation by two parallel quasi-periodic vortex ‘streets’ over the opposite faces
of the flag. The vortex circulation Γ ≈ 2.5UD and the characteristic frequency f0

of the shedding satisfies f0D/U ≈ 0.2 (Griffin & Ramberg 1975, Blevins 1990). The
corresponding period t0 = 1/f0 during which two vortices of opposite sign are released
is t0 ≈ 5D/U .

In this paper a simple double vortex sheet model of this kind is used to approximate
the resulting linearized motion of the flapping flag. This model neglects any ‘back-
reaction’ of the flag motion on the motion of the vortices (see § 5). By consideration
of the homogeneous (or unforced) problem, it is shown that flapping induced by the
flag pole wake is always significant at subcritical wind speeds (given that the pole
diameter is finite), at which the unforced flag would be nominally stable. In other
words, the effect of forcing by wake vorticity is important at all relevant wind speeds,
and stability criteria that fail to take account of the vortex shedding are probably
of little practical significance. A linearized representation of the flag equation of
motion is formulated in § 2, and solutions are sought in § 3 with and without account
taken of the vortex wake. Numerical results are presented in § 4, where the relative
contributions of flag inertia, tension and bending stiffness are discussed.

2. The governing equations

Consider a uniform incompressible flow at velocity U= îU parallel to an inextensible
flag of length L and mass per unit area ρs (figure 1). The flag is pinned to a flag pole
of diameter D whose axis coincides with the z-axis of the rectangular coordinates
(x, y, z). The flag has thickness λ and span l, with λ� L � l, such that the motion
may be regarded as two-dimensional in planes of constant z. Attention is confined to
the high-Reynolds-number regime (ReL = UL/ν � 1) where the boundary layers on
the flag may be regarded as fully developed turbulent, inducing a mean flag tension

T = 2ρ0u
2
∗(L − x), (2.1)

where ρ0 is the fluid density, x is measured along the flag from the pole in the
direction of the mean stream and u∗ ∼ 0.037U is the friction velocity (Hinze 1975).
In practice, the turbulent nature of the flow over the surfaces arises because the flag
pole ‘trips’ the boundary layer, so that a dynamically steady mean turbulence state
is established over a short distance downstream of the pole. In addition, a real flag
is rough enough to promote further turbulence production at the surface. Once the
steady state is established the friction velocity becomes approximately constant and
the tension will vary linearly with distance. Small-amplitude unsteady deflections of
the flag (in the y direction) of amplitude ξ (t, x) � L are taken to satisfy the linearized
equation

ρs

∂2ξ

∂t2
+ EI

∂4ξ

∂x4
− ∂

∂x

(
T

∂ξ

∂x

)
− �P = 0, (2.2)

where EI is the flag bending rigidity (E being the Young’s modulus and I = λ3/

12(1 − σ 2) the moment of inertia per unit span, σ is the Poisson ratio of the material)
and �P denotes the pressure force across the flag in the direction of increasing ξ .
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2.1. The fluid loading �P

The pressure jump �P is attributable to an irrotational part �PI associated with
the potential flow induced by the motion of the flag together with a wake-induced
component �Pγ arising from vortices released from the trailing edge of the flag.
Following Argentina & Mahadevan (2005) we adopt the following approximation for
the potential φI on the surface of the flag produced by the motion of the flag

φI ≈ ±
√

x(L − x)

(
∂ξ

∂t
+ U

∂ξ

∂x

)
, y = ±0. (2.3)

This is precisely the result obtained from classical airfoil theory (Bisplinghoff, Ashley
& Halfman 1955) applied to a rigid airfoil, for which the normal velocity vn = ∂ξ/∂t +
U∂ξ/∂x is constant along the airfoil surface. Argentina & Mahadevan (2005) argue
that (2.3) provides a good first approximation to the exact potential provided the
deflections of the flag are small and vn varies slowly along the flag, corresponding to
the systematic neglect of terms ∼O(∂2ξ/∂x∂t) and higher. The approximation neglects
the influence on φI of ‘non-local’ flag motions whose effects are controlled by these
higher order derivatives. A more careful treatment would take account of interactions
at a distance by replacing the flag by a distribution of sources, as described, for
example, by Bisplinghoff et al. (1955), and involves integration of vn along the flag.

Argentina & Mahadevan (2005) used the above approximation to predict the
minimum mean flow velocity at which a flag becomes unstable in cases where vortex
shedding from the flag pole does not occur. These predictions were systematically
about 50 %–70 % of the critical velocities measured by Watanabe et al. (2002) for a
flag attached to a thin wire of negligible radius. In what follows (§ 4) it will be shown
that the effect of vortex shedding from the flag pole is to practically reduce the critical
velocity to a very small value at which shedding from the pole becomes established
(ReD ∼ 100). Thus, for our purposes, the use of the Argentina–Mahadevan model
(defined in (2.3)), although involving errors of detail, will not affect in any essential
way the qualitative conclusions of the analysis.

The application of Bernoulli’s equation to (2.3) and the neglect of terms O(∂2ξ/

∂x2, ∂2ξ/∂x∂t) in accord with the above approximation yield the non-circulatory
pressure jump in the form

�PI =
ρ0U (2x − L)√

x(L − x)

(
∂ξ

∂t
+ U

∂ξ

∂x

)
− 2ρ0

√
x(L − x)

∂2ξ

∂t2
, (2.4)

which contains the typical inverse square-root leading- and trailing-edge singularities
together with the conventional added-mass term, represented by the last term in (2.4).
The velocity will remain finite at the trailing edge of the flag provided an appropriate
amount of vorticity is released continuously within a downstream wake. This wake is
modelled by a vortex sheet of circulation γ = γ (x, t) per unit length (where L < x < ∞,
see figure 1). The corresponding circulatory pressure jump �Pγ produced by this wake
(Argentina & Mahadevan 2005) is

�Pγ = −L(2C(γ ) − 1) + 2x(1 − C(γ ))√
x(L − x)

(
∂ξ

∂t
+ U

∂ξ

∂x

)
, (2.5)
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where C(γ ) is the Theodorsen function (Theodorsen 1935),

C(γ ) =

∫ ∞

L

x√
x2 − L2

γ (x, t) dx

∫ ∞

L

√
x + L

x − L
γ (x, t) dx

. (2.6)

The total pressure jump is therefore

�P = �PI +�Pγ = −2ρ0UC(γ )

√
L − x

x

(
∂ξ

∂t
+ U

∂ξ

∂x

)
− 2ρ0

√
x(L − x)

∂2ξ

∂t2
. (2.7)

2.2. Equation of motion forced by flag pole vortices

Vortex shedding from the flag pole will be represented by two ‘streets’ of discrete line
vortices assumed to be released periodically from the flag pole and to be convected
in the mean wind over the surfaces of the flag (figure 1). The vortices have circulation
∓Γ (Γ > 0) and respectively assumed to convect along y = ±h. A vortex released at
time t = 0 is represented formally by

ω = ∓k Γ δ(y ∓ h)δ(x − Ut), (2.8)

where k is a unit vector in the positive z direction (out of the plane of figure 1) and
δ denotes the Dirac delta function. The vortex (2.8) is decomposed into frequency
components by writing

ω =

∫ ∞

−∞
ω p exp [−iωt] dω, (2.9)

where

ω p = ∓ kΓ

2πU
δ(y ∓ h) exp[iωx/U ], x > 0. (2.10)

The vorticity distribution (2.10) represents a vortex sheet extending over the semi-
infinite region 0 <x < ∞. It produces irrotational motion at points not on the sheet
described by a potential φω, say. If we approximate φω by the corresponding potential
that occurs when the sheet extends over −∞ <x < ∞, then the appropriate solution
of Laplace’s equation supplies

φω =
Γ

4πiω
exp[−iω(t − x/U ) ± |ω|(y ∓ h)/U ], |y| < h. (2.11)

This formula can be used to calculate the corresponding fluid displacement ξp induced
at the mean position of the flag by means of the relation

Dξω

Dt
≡ ∂ξω

∂t
+ U

∂ξω

∂x
=

∂φω

∂y
|y=0, (2.12)

i.e.
∂ξω

∂t
+ U

∂ξω

∂x
= ±Γ sign(ω)

4πiU
exp[−iω(t − x/U ) − |ω|h/U ]. (2.13)

The resulting solution for ξω is not valid close to the flag pole, where the contributions
from vorticity in x < 0 would be significant. However, the following particular integral
of (2.13)

ξω±(x, t − x/U, ω) = ±Γ sign(ω)

4πiU 2
x exp[−iω(t − x/U ) − |ω|h/U ], (2.14)
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in which the ξω+
and ξω− respectively correspond to vortices below and above the flag,

vanishes at the pole (x → +0), so that the error near the pole cannot be very large.
Indeed, an approximation of the kind (2.14) is probably the best and most convenient
possible on linear theory, because the actual behaviour of ξω± near the pole involves a
complex interaction between partially shed vorticity and the rigid surface of the pole
and would not be properly represented even by the semi-infinite vortex sheet (2.10).

The overall ‘vortex-induced’ deflection ξp(x, t−x/U ) is given by integration of (2.14)
over all frequencies (−∞, ∞) and by summing the contributions from all vortices

ξp(x, t − x/U ) =

∞∑
n=−∞

∫ ∞

−∞
ξω+

(x, t − nt0, ω) dω

+

∞∑
n=−∞

∫ ∞

−∞
ξω−(x, t − (2n + 1)t0/2, ω) dω, (2.15)

where t0 is the period during which two vortices of opposite sign are released. An
explicit expression for ξp is calculated in (3.17).

We may now use these results to formulate a ‘forced’ equation of motion of the flag
in the presence of the flag pole vortices. Let the overall flag deflection ξ be partitioned
into its ‘self ’ and ‘vortex-induced’ parts:

ξ (x, t − x/U ) = ξo(x, t − x/U ) + ξp(x, t − x/U ), (2.16)

and substitute this into (2.2), in which T is given by (2.1). In the linearized
approximation vortices convecting in the mean flow do not produce a pressure
load on the flag. The equation for ξo therefore assumes the inhomogeneous form

ρs

∂2ξo

∂t2
+ EI

∂4ξo

∂x4
− 2ρ0u

2
∗

∂

∂x

(
(L − x)

∂ξo

∂x

)
− �P (ξo) = Fe(ξp), (2.17)

where

Fe(ξp) = −ρs

∂2ξp

∂t2
− EI

∂4ξp

∂x4
+ 2ρ0u

2
∗

∂

∂x

(
(L − x)

∂ξp

∂x

)
. (2.18)

2.3. End conditions

Four boundary conditions are required to complete the formulation of the problem.
We consider here a ‘supported-free’ flag, which satisfies

(ξ )x=0 =

(
∂2ξ

∂x2

)
x=0

=

(
∂2ξ

∂x2

)
x=L

=

(
∂3ξ

∂x3

)
x=L

= 0 ; (2.19)

the displacement and bending moment vanish at the pole, and the free end is
moment- and force-free. These conditions differ from the commonly used ‘clamped-
free’ conditions, where the condition of zero moment at the pole is replaced by the
requirement that the angle of deflection should vanish (Huang 1995; Zhang et al.
2000; Watanabe et al. 2002a, b; Zhu & Peskin 2002; Argentina & Mahadevan 2005;
Shelley et al. 2005). In general, the nature of the end conditions has a strong influence
on the profile of the resulting flag motion in the absence of flag pole vortices (Manela
& Howe 2009). It is our contention that a constraint on the bending moment at
the pole (which in practice may be non-zero but small) better reflects conditions in
practice than a requirement on the angle of deflection, and will therefore adopt this
type of condition here.



The forced motion of a flag 445

3. Analysis
3.1. The homogeneous response: Fe = 0

A non-dimensional representation of the problem is obtained by normalizing distances
with respect to the flag length L and by adopting the non-dimensional time t̄ = Ut/L.
The resulting equation is

∂2ξ̄h

∂ t̄2
+

1

α2

∂4ξ̄h

∂x̄4
− c∗

μ

∂

∂x̄

(
(1 − x̄)

∂ξ̄h

∂x̄

)
− 1

μ
�P̄ = 0, (3.1)

where the bars denote non-dimensional quantities, and where

μ = ρs/ρ0L and α = U/Ub, (3.2)

are respectively the non-dimensional flag mass density and the normalized wind

speed (Ub =
√

EI/ρsL2 being a characteristic bending wave velocity), and c∗ = 2u2
∗/

U 2 ≈ 2.74 × 10−3 which may be regarded as a fixed ‘friction factor’ (see (2.1) et seq.).
Typical values of μ and α for a polyester flag (E ≈ 3 Gpa, σ ≈ 0.3) of thickness
λ≈ 10−4 m and mass density ρs ≈ 0.4 kg m−2 in air (ρ0 ≈ 1.3 kg m−3) are μ ≈ 0.3/L

and α ≈ 40LU (numerical values measured in SI units). Thus μ ≈ 0.3 and α ≈ 40U

for a flag of length L = 1 m. In a typical experimental set-up one is usually interested
in determining the critical, or minimum, velocity (corresponding to the critical value
of α) at which flapping first occurs.

The time-harmonic solution,

ξ̄h(x̄, t̄) = ζ̄h(x̄) exp[−iω̄ht̄], (3.3)

of (3.1) has been examined by Manela & Howe (2009) for c∗ = 0 (no tension).
Substitution of (3.3) into (3.1) results in an eigenvalue problem which is solved
by expanding the solution in a series of orthonormal functions (obtained from the
balance of inertia and elasticity terms in (3.1)) that satisfy the boundary conditions
(2.19). The solution yields an expression for the neutral surface

Im{ω̄h(μ, α, Re{ω̄h})} = 0, (3.4)

determining the instability boundary in the (μ, α) plane.
When c∗ = 0 in (3.1) the calculation is slightly modified, but the basic steps in the

numerical evaluation of (3.4) are identical to those described by Manela & Howe
(2009). The details of calculation are not reproduced here because our focus is on
the motion forced by the vortex wake of the flag pole and, in addition, subsequent
results indicate that flag tension hardly affects the stability of the unforced flag (see
§ 4.1 and figure 2).

3.2. Motion forced by flag pole vortices

The inhomogeneous equation (2.17) is solved by introducing the Fourier time
transform ĝ(x̄, ω̄) of a function ḡ(x̄, t̄) according to the definition

ĝ(x̄, ω̄) =
1

2π

∫ ∞

−∞
ḡ(x̄, t̄) exp[iω̄t̄] dt̄ . (3.5)

The transformed non-dimensional equation is

−ω̄2ξ̂o +
1

α2
ξ̂ ′′′′
o − c∗

μ
((1 − x̄)ξ̂ ′

o)
′ − 1

μ
�P̂ (ξ̂o) = F̂e(ξ̂p), (3.6)



446 A. Manela and M. S. Howe

where

�P̂ (ξ̂o) = −2C(γ )

√
1 − x̄

x̄
(−iω̄ξ̂o + ξ̂ ′

o) + 2ω̄2
√

x̄(1 − x̄)ξ̂o, (3.7)

and primes denote differentiation with x. In (2.6) we put

γ̄ (x̄, t̄) = γ̄0(ω̄) exp [iω̄(̄t − x̄/2)] (3.8)

to obtain

C(ω̄) =

∫ ∞

1

x̄√
x̄2 − 1

exp [−iω̄x̄/2] dx̄

∫ ∞

1

√
x̄ + 1

x̄ − 1
exp [−iω̄x̄/2] dx̄

. (3.9)

When ω̄ is real we find (Theodorsen 1935)

C (ω̄) =
H

(2)
1 (ω̄/2)

H
(2)
1 (ω̄/2) + iH (2)

0 (ω̄/2)
(3.10)

where H
(2)
i are Hankel functions of the second kind and ith order.

The forcing term in (3.6) is

F̂e(ξ̂p) = ω̄2ξ̂p − 1

α2
ξ̂ ′′′′
p +

c∗

μ
((1 − x̄)ξ̂ ′

p)′, (3.11)

where ξ̂p is given from (2.14) and (2.15) by (see, e.g. Lighthill 1958)

ξ̂p(x̄, ω̄) =
Γ x̄

iUL
exp[iω̄x̄ − |ω̄|h/L]

∞∑
n=0

[δ(ω̄ − (2n + 1)ω̄0) − δ(ω̄ + (2n + 1)ω̄0)], (3.12)

and ω̄0 = 2π/t̄0 = 2πL/5D is the non-dimensional angular frequency of the release of
each pair of vortices of opposite sign. In accordance with (3.12), assume

ξ̂o(x̄, ω̄) =
Γ ζ̄ (x̄, ω̄)

iUL
exp[iω̄x̄−|ω̄|h/L]

∞∑
n=0

[δ(ω̄−(2n+1)ω̄0)−δ(ω̄+(2n+1)ω̄0)], (3.13)

and substitute into (3.6) together with (3.11) and (3.12) to yield an equation for
ζ̄ (x̄, ω̄). The end conditions (2.19) are to be satisfied by the sum of ξ̂ = ξ̂o + ξ̂p . Taking
Fourier transforms these become

ξ̂o(0) = −ξ̂p(0), ξ̂ ′′
o (0) = −ξ̂ ′′

p (0), ξ̂ ′′
o (1) = −ξ̂ ′′

p (1), ξ̂ ′′′
o (1) = −ξ̂ ′′′

p (1). (3.14)

The substitution of (3.13) and (3.12) into (3.14) supplies the required end conditions
for ζ̄ (x̄, ω̄). The problem obtained for ζ̄ (x̄, ω̄) is outlined in the Appendix. Note that
when the influence of the pressure loading term is relatively small (i.e. when bending
rigidity is large or when the flag is heavy) the solution reduces to ξ̂o ≈ −ξ̂p , and the

total deflection ξ̂ = ξ̂o + ξ̂p vanishes. This observation will be used later to rationalize
the motion of ‘stiff’ and ‘heavy’ flags (see figure 6).

The solution ζ̄ (x̄, ω̄) is obtained numerically by Chebyshev collocation (Peyret
2002). This method transforms (A 1) of the Appendix and the boundary conditions
(A 3) into a system of N linear algebraic equations of the form

Aζ̄ = B, (3.15)

satisfied respectively at N collocation points along the flag. Here A(ω̄) is a matrix
representing the differential operator acting on ζ̄ , B(ω̄) is the forcing vector and ζ is
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the vector of unknown values of ζ̄ at the discrete collocation points. Our calculations
indicate that excellent convergence of the numerical scheme is achieved throughout
the parameter domain for N � 60.

The solution ζ̄ (x̄, ω̄) is used in (3.13) to determine ξ̂o(x̄, ω̄). Because
ζ̄ (x̄, ω̄) = c.c.{ζ̄ (x̄, −ω̄)} (see (A 1)–(A 3)), the ‘self ’ deflection of the flag is given
by the inverse Fourier transform

ξ̄o(x̄, t̄ − x̄) =

∫ ∞

−∞
ξ̂o(x̄, ω̄) exp[−iω̄t̄]dω̄ =

2Γ

UL

∞∑
n=0

(Re{ζ̄ (x̄, ω̄n)}

× sin[ω̄n(̄t − x̄)] + Im{ζ̄ (x̄, ω̄n)} cos[ω̄n(̄t − x̄)]) × exp[−ω̄nh/L], (3.16)

where ω̄n =(2n + 1)ω̄0. A similar calculation using (3.12) yields

ξ̄p(x̄, t̄ − x̄) =

∫ ∞

−∞
ξ̂p(x̄, ω̄) exp[−iω̄t̄] dω̄

=
2Γ x̄

UL

∞∑
n=0

sin[ω̄n(̄t − x̄)] exp[−ω̄nh/L]. (3.17)

This completes the formal calculation of the overall forced response ξ̄ = ξ̄o + ξ̄p .

4. Numerical results
4.1. The homogeneous response

Our primary objective is to study the forced motion of the flag. However, it is
important to delineate the zone of instability in the absence of shedding from the
flag pole, because it is our contention that forcing at subcritical conditions puts in
question the relevance of the homogeneous temporal stability problem.

Figure 2 illustrates the neutral surface (3.4) in (a) the (μ, α) plane and (b) the
(μ, Re{ω̄h}) plane. The solid lines correspond to the full solution and the dashed
curves mark the neutral surface in the absence of drag-induced tension obtained
by Manela & Howe (2009). The shaded zone in figure 2(a) marks the domain of
stability. For each value of μ = ρs/ρ0L there exists a critical normalized wind speed
α = U/Ub = αc above which instability sets in. The value of αc increases monotonically
with μ, confirming the intuitive result that heavier flags require stronger wind to flap.
The critical frequency Re{ω̄h} at which instability is excited can be found from the
corresponding point in figure 2(b). This frequency decreases when μ increases, showing
that heavier flags start flapping at lower frequencies. At subcritical conditions (α <αc

for fixed μ) the flag is stable and all eigenvalues lie in the lower half of the complex
ω̄h plane. At α = αc, the lowest eigenmode becomes neutrally stable (with Im{ω̄h} =0)
and for α >αc instability sets in as a propagating wave with time-increasing amplitude.

Both parts of figure 2 show that the shape of the neutral surface is only marginally
dependent on flag tension. The introduction of the drag-tension force increases the
value of αc by less than 1 %, presumably because of the small value of the friction
coefficient c∗ ≈ 2.74 × 10−3 in (3.1). This may be contrasted with results of Argentina
& Mahadevan (2005), who predicted that αc increases by about 20 % when tension
is included for a ‘clamped-free’ flag. Apart from the different end conditions, this
difference may be a consequence of the laminar boundary layer used by these
authors (as opposed to the present turbulence induced drag (2.1)) and the apparently
incorrect form of their tension term (assumed to be a constant) in (1) of Argentina
& Mahadevan (2005).
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Figure 2. The projections of the neutral surface on the (a) (μ, α) and (b) (μ,ωL/U ) planes
for the unforced problem with (——–) and without (− − −) flag tension. The shaded zone in
(a) marks the domain of stability. The cross and triangles correspond respectively to parameter
combinations considered later in figures 3–5 and 6.

4.2. Forced motion

To demonstrate the relevance of the forced motion to the onset of motion, consider a
flag of length L =1 m and typical material properties as given after (3.2). In this case
μ ≈ 0.3 and α ≈ 40U . According to figure 2(a), the critical value of α for the onset of
motion in the absence of the pole wake is αc ≈ 14.8 and the associated critical wind
speed is Uc ≈ 0.4m s−1. For a pole of diameter D = 0.05 m the resulting Reynolds
number is ReD =UD/ν ≈ 1.3×103, considerably above the threshold value for vortex
shedding from the pole, ReDcr

∼ 100. This threshold value can be used to obtain the
following condition for the onset of forced motion,

α �
L

D

√
ρsν2

EI
ReDcr

. (4.1)

Substituting ReDcr
= 100, D/L = 0.05 and the above-mentioned values for a thin

polyester flag (λ= 10−4 m, ρs ≈ 0.4 kg m−2, E = 3 GPa), we find that the condition
for onset of forced motion in this case is α � 1.2, valid for all μ( ≈ 0.3/L). This
value is significantly lower than the critical values calculated from homogeneous flag
theory (figure 2a). Vortex shedding from the flag pole can therefore induce flapping
even when the ‘homogeneous’ flag is nominally stable. This will be illustrated in the
following where we focus on the forced motion at subcritical conditions of figure 2.

For a pole of diameter D at ReD � 1 the vortices convect along y = ±h ≈ ±0.45D

(Griffin & Ramberg 1975; Blevins 1990).Using the estimates Γ ≈ 2.5UD , f0 ≈ 0.2U/D,
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Figure 3. The profile of the flag at Ut/L = 0.15 for D/L = 0.05, μ= 0.3 and α =5. (a) The
‘vortex-induced’ (ξp/L, − − −) and ‘self ’ (ξo/L, ——–) deflections; (b) the total deflection
ξ/L = ξp/L + ξo/L. The circles denote the instantaneous location of vortices. The parameter
combination considered is denoted by the cross in figure 2(a).

the non-dimensional representations of ξ̄o and ξ̄p in (3.16)–(3.17) become

ξ̄o(x̄, t̄ − x̄) ≈ 5D

L

∞∑
n=0

(Re{ζ̄ (x̄, ω̄n)} sin[ω̄n(̄t − x̄)]

+ Im{ζ̄ (x̄, ω̄n)} cos[ω̄n(̄t − x̄)]) exp

[
−9ω̄nD

20L

]
, (4.2)

and

ξ̄p(x̄, t̄ − x̄) ≈ 5Dx̄

L

∞∑
n=0

sin [ω̄n(̄t − x̄)] exp

[
−9ω̄nD

20L

]
, (4.3)

where ω̄n = (2n + 1)2πL/5D. Typically, D/L � 0.1 and the forced motion is
characterized by flag oscillations of frequency O(U/D). The magnitude of the high-
frequency terms in the expansions (n � 1) decreases exponentially fast, and only a
small number of terms (n � 10) is required for effective convergence for all parameter
combinations studied here. With increasing D/L (corresponding to either a larger
pole or a shorter flag), the vortex strength (≈2.5UD) increases and flag deflection is
expected to increase. The dependence of the forced motion on the non-dimensional
flag mass μ and the normalized wind speed α is contained in the component ζ̄ (x̄, ω̄)
of the solution (4.2).

Figure 3 presents the flag profile obtained at time t̄ = Ut/L = 0.15 for D/L = 0.05
when μ = 0.3 and α = 5 (corresponding to the cross in figure 2a). Figure 3(a) shows
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Figure 4. Time ‘snapshots’ of the flag profile ξ/L for D/L = 0.05, μ= 0.3 and α = 5 over a
single period (0 � Ut0/L < 0.25) at Ut/L = (a) 0.02, (b) 0.06, (c) 0.1, (d ) 0.14, (e) 0.18 and
(f ) 0.22. The circles denote the instantaneous location of vortices. The parameter combination
considered is denoted by the cross in figure 2(a).

the ‘vortex-induced’ ξ̄p (dashed line) and the corresponding flag ‘reaction’ ξ̄o (solid
curve) and figure 3(b) shows the total deflection ξ̄ = ξ̄o + ξ̄p . The circles depict
the instantaneous location of vortices released on opposite sides of the flag at non-
dimensional intervals of time Ut0/2L = 5D/2L = 0.125. When a vortex convects along
the top or bottom sides of the flag, it produces rotational velocity that displaces the
fluid around it. In particular, at the undisturbed flag plane y =0, each vortex ‘pulls’
the fluid behind it and ‘pushes’ the fluid in front of it, in accordance with the direction
of the vortices indicated in figure 1. This local behaviour is visible in the ‘vortex-
induced’ deflection (dashed line) in figure 3(a). The ‘self ’ deflection (solid line) acts,
as a ‘reaction’, in the opposite direction. The total local deflection induced by each
vortex is clearly observed in figure 3(b) for the total deflection which increases in
magnitude with increasing distance from the flag pole. The resulting motion, which
can be roughly described as a superposition of such convecting ‘ripples’, is also
illustrated in figure 4, where six consecutive time ‘snapshots’ of the flag profile ξ̄ are
plotted over a single period (0 � Ut/L < 0.25).

To study the time variation of the forced motion, the following discussion is framed
in terms of the motion of the free end x/L = 1, whose deflection is typically the
largest along the flag. Figure 5 complements figures 3 and 4 by showing the free-end
motion for the same parameters D/L = 0.05, μ = 0.3 and α = 5. The time interval
0 � Ut/L � 1 corresponds to two periods of the motion (2t0) and a vortex passes
the free end every Ut0/2L = 0.125. This is reflected by the symmetry properties of
the ‘vortex-induced’ motion ξ̄p (dashed line) and the corresponding flag ‘reaction’ ξ̄o
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Figure 5. The forced motion of the free end (x/L = 1) for D/L = 0.05, μ= 0.3 and α = 5.
(a) The ‘vortex-induced’ (ξp/L, − − −) and ‘self ’ (ξo/L, ——–) motions; (b) the total deflection
ξ/L = ξp/L+ξo/L. The parameter combination considered is denoted by the cross in figure 2(a).

(solid curve) shown in figure 5(a). Their superposition ξ̄o takes the simple wave-like
pattern shown in figure 5(b).

It is expected that reduced wind speed and/or increased flag mass will result in
motions of decreased amplitude, in accordance with our conclusion after (3.14): for
either small α (‘weak’ wind) or large μ (‘heavy’ flag) the ratio of magnitudes O(α2/μ)
between the fluid loading and bending stiffness terms in the equation of motion is
small (see (3.1)). The motion is therefore dominated by flag inertia and by bending
stiffness, causing the ‘self ’ reaction ξ̄o to cancel the ‘vortex-induced’ motion ξ̄p so
that the total deflection ξ̄ ≈ 0. Yet, at every finite combination of α and μ there is a
non-zero forced deflection, regardless of the stability properties of the flag discussed
in § 4.1.

A comparison between the forced motion of relatively ‘rigid’ (α = 1) and ‘flexible’
(α =8) flags for μ = 0.3 and D/L = 0.05 is depicted in figure 6 (the respective (μ, α)
combinations are marked by the triangles in figure 2a). In the ‘rigid’ (α = 1) case
(figures 6a, b), ξ̄o is almost equal and opposite to ξ̄p (the latter being independent of μ

and α and determined only by the ratio D/L; see (4.3)). The amplitude of the resulting
free-end deflection ξ̄ is therefore small. In the opposite case of a ‘flexible’ (α = 8) flag
(figures 6c, d ), large differences between ξ̄p and ξ̄o are followed by considerably larger
amplitudes for ξ̄ . Similar results are obtained when comparing the forced motion of
‘heavy’ and ‘light’ flags.
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Figure 7. The effect of D/L = 0.075 (———), 0.05 (− − −) and 0.025 (− · − · −·) on the
free-end (x/L =1) deflection for μ= 0.3 and α = 5.

To illustrate the influence of the ratio D/L of pole diameter to flag length on
the forced motion, we present in figure 7 the total deflection ξ̄ of the free end
for D/L = 0.075 (solid), 0.05 (dashed) and 0.025 (dash-dotted) when μ = 0.3 and
α = 5. The value of D/L affects ξ̄p both through its amplitude (because of the
non-dimensional strength of the vortices ≈2.5D/L) and frequency ω̄n ∝ L/D (see
(4.3)). Similarly, the ‘self ’ deflection ξ̄o is affected explicitly through its amplitude
and frequency and implicitly owing to the ω̄n-dependence of ζ̄ (see (4.2)). The results
confirm that larger forced deflections occur when D/L is larger and that the frequency
of flapping decreases with increasing D/L.
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5. Conclusion
A real flag attached to a cylindrical pole of finite diameter and subject to a real

wind will inevitably be driven by vortex shedding from the flag pole. Analyses of such
problems based on ideal, homogeneous flag theory are therefore of little practical
significance. For experimental studies, however, the importance of homogeneous flag
theory is perhaps less certain. For a flag in air (or water) we can imagine a regime
where the speed of a carefully controlled, effectively turbulence free, mean stream
is gradually increased and where a flag is carefully pre-positioned parallel to the
stream so that it is initially at rest. If the flag is pinned at a suitably ‘streamlined’
support exciting no vortex shedding, then the initial motions of the flag could well
be in accord with the linear homogeneous theory. When the flag is pinned to a
pole, on the other hand, vortex shedding will typically occur from the pole at mean
flow speeds that are substantially subcritical, i.e. at which the homogeneous theory
would predict a stable behaviour. The subsequent motion of the flag would then be
described by the present theory of ‘forced’ excitation. At higher mean flow speeds
the motion must become more complex and account must be taken of both forcing
by the vortex wake of the flag pole and of possible contributions from the unstable
motion of the flag. At this stage, nonlinear effects, which have been neglected in this
work (justified by the small amplitudes of motion obtained in figures 3–7), should be
considered.

Our theory has made several approximations, including the use of the Argentina-
Mahadevan model (Argentina & Mahadevan 2005) to describe fluid loading and a
simplified representation of vortex shedding that neglects, in particular, the back-
reaction of the flag on the motion of the vortices. Essentially, these are details that
can be amended by more careful and numerically more involved treatments that are
not, however, expected to change the qualitative conclusions of this paper. In any
event, when analysing the stability of a real flag it is evidently not acceptable to
neglect the influence of the flag pole on the motion.

Appendix A. The problem for ζ̄ (x̄, ω̄)

Substitute (3.11)–(3.13) into (3.6) together with (3.7) yields the equation

−ω̄2ζ̄ +
1

α2
[ζ̄ ′′′′ + 4iω̄ζ̄ ′′′ − 6ω̄2ζ̄ ′′ − 4iω̄3ζ̄ ′ + ω̄4ζ̄ ]

−c∗

μ
[−ζ̄ ′ − iω̄ζ̄ + (1 − x̄)(ζ̄ ′′ + 2iω̄ζ̄ ′ − ω̄2ζ̄ )] − 1

μ
�Π̄

= ω̄2x̄ − 1

α2
[−4iω̄3 + ω̄4x̄] +

c∗

μ
[−1 − iω̄x̄ + (1 − x̄)(2iω̄ − ω̄2x̄)], (A 1)

where

�Π̄ (x̄, ω̄) = −2C(ω̄)

√
1 − x̄

x̄
ζ̄ ′ + 2ω̄2

√
x̄(1 − x̄)ζ̄ . (A 2)

Substitute (3.12)–(3.13) into (3.14) to obtain the end conditions

ζ̄ (0) = 0,

ζ̄ ′′(0) + 2iω̄ζ̄ ′(0) = −2iω̄,

ζ̄ ′′(1) + 2iω̄ζ̄ ′(1) − ω̄2ζ̄ (1) = −2iω̄ + ω̄2,

ζ̄ ′′′(1) + 3iω̄ζ̄ ′′(1) − 3ω̄2ζ̄ ′(1) − iω̄3ζ̄ (1) = 3ω̄2 + iω̄3. (A 3)
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