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Abstract

A linear theory is proposed for the motion and sound production of a flag in nominally uniform high Reynolds number

flow. The flag is modelled as an elastic fluid-loaded filament subject to either clamped-free or fixed-free boundary

conditions. Eigenfunctions describing standing waves in the absence of fluid loading are used to expand the loaded flag

deflection. The resulting temporal stability problem is analysed and the neutral curve and modes of motion describing the

transition to instability are discussed in detail for each boundary condition. It is found that the fixed-free flag is

considerably more stable than the clamped-free flag. In the limit of a very heavy flag, instability sets in as a resonant

standing wave, while lighter flags exhibit flutter (convective) instability. Acoustic radiation of dipole type is calculated and

discussed in the limit where the flag is acoustically compact. At the onset of instability it is found that the acoustic pressure

is dominated by the contribution from the wake and that light flags are noisier than heavy.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The fundamental fluid–structure interactions involved in the motion of a flag are of continuing and intense
interest [1]. It is probably the simplest of a whole range of related mechanical problems that include, for
example, the fluttering associated with both snoring [2] and the instabilities encountered in industrial printing
machines [3]. Similar flapping motions are known to improve the efficiency of propulsive swimming [4], and
are believed to reduce turbulent drag during locomotion [5].

Taneda [6] has investigated the motion of a flag experimentally in a wind tunnel. Zhang et al. [7] and Zhu
and Peskin [8] have examined an analogue problem involving flexible filaments in flowing soap films.
Watanabe et al. [3,9] examined the fluttering motion of paper both experimentally and numerically, using a
time-marching scheme applied to the full Navier–Stokes equations and a low-order eigenfunction expansion
assuming the flow is potential. More recently Shelley et al. [10] experimented with a flag in a water tunnel and
compared their observations with predictions of ‘heavy-flag’ theory. A linearised treatment for the problem
has been suggested by Argentina and Mahadevan [11], where a simplified mathematical description of the fluid
loading effect was assumed based on classical thin airfoil theory [12]. Connell and Yue [13] have devised a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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nonlinear, numerical scheme that couples the flag motion to an incompressible wind governed by the
Navier–Stokes equations. Alben and Shelley [14] have also considered the nonlinear dynamics of the flag,
predicting phenomena such as bistability and transition to chaos. Fitt and Pope [15] have studied the case of a
‘‘stiff’’ flag in air incident at a finite angle of attack.

Most of these studies model the flag as a thin elastic membrane. The flag equation of motion then involves a
balance between flag inertia, fluid loading, and a fourth order derivative of the flag displacement representing
the stiffness response. The validity of such a formulation for a cloth flag is questionable, because a non-
dimensional representation of the stiffness contribution reveals it to be small over its whole length (except
possibly in the immediate neighbourhood of the free end). Yet, as some of the above studies indicate (see, e.g.,
[13]), it appears to be necessary to retain stiffness in the equation of motion to ensure robustness of the
structural numerical model. Physically, it is not the introduction of this term into the equation that matters but
the consequent requirement to impose four boundary conditions.

The effect of the end conditions on the resulting motion is crucial. Most of the aforementioned studies
consider a ‘‘clamped-free’’ flag, where a vanishing deflection and angle of deflection are assumed at the pole.
However, casual observation indicates that the latter may not be appropriate in practice. Fitt and Pope [15]
have studied the effect of replacing the clamped condition with a fixed end condition where the bending
moment should vanish at the pole. In this paper we also examine the effect of replacing the clamped-free
condition by the more appropriate ‘‘fixed-free’’ condition, with the objective of calculating its influence on the
sound produced by the motion of the flag. Special care must be given to vortex shedding from the flag trailing
edge and the satisfaction of the Kutta condition, which turns out to be of dominant importance in the
resulting acoustic field. This may be contrasted with the approach of Fitt and Pope [15] who assumed the wake
to have only a small impact on the flag motion.

We consider the linearised problem and make use of the simplified fluid loading model suggested by
Theodorsen [12] and applied by Argentina and Mahadevan [11]. The mathematical problem is formulated in
Section 2. The corresponding eigenvalue problem for the self-excited motion and its outcome, the critical
conditions for transition to flapping motion, are discussed in Section 3. In Section 4 the acoustic radiation is
calculated for a compact flag. Some concluding remarks are made in Section 5.
2. The governing equations

Consider nominally uniform flow of air of mean density r0 at speed U over an inextensible flag of
streamwise length L and mass rs per unit area (Fig. 1). In the undisturbed state the flag occupies the interval
0ox�oL of the x� axis, has thickness h and span l, where h5Ł5l, and is connected to a flag pole at x� ¼ 0,
where x� is measured in the direction of the mean flow. The motion is assumed to be two-dimensional,
uniform with respect to spanwise position parallel to the flag pole, and of high Reynolds number UL=nb1,
where n is the kinematic viscosity of the air. For simplicity, we neglect the effect of frictional drag. Small
amplitude deflections x�ðx�; t�Þ of the flag from an undisturbed planar form (in the direction of the y�-axis
normal to the undisturbed plane of the flag) are taken to be governed in the linearised approximation by

rs

q2x�

qt�2
þ EI

q4x�

qx�4
� Dp� ¼ 0, (1)

where EI is the bending stiffness of the flag (E being Young’s modulus and I ¼ h3=12 the moment of inertia
coefficient per unit span) and Dp� ¼ p�� � p�þ is the inertial pressure loading (representing the ‘added mass’ as
well as vortex shedding effects) in the direction of positive x� (Fig. 1). A dimensionless representation of the
U

_p*

p*

x* = 0 x* = L

γ* (x*,t*)
+

Fig. 1. Setup of the problem. The flag pole is located at x� ¼ 0 and its free end is at x� ¼ L. The inertial fluid loading is Dp� ¼ p�� � p�þ and

the circulation per unit length of the shedded vortex sheet is g�ðx�; t�Þ.
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problem is achieved by normalizing distances by the flag length L and pressure by r0U2. To obtain a

dimensionless balance between inertial and elastic effects we scale the time by L=Ub, where Ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rsL

2
q

is

the characteristic bending wave velocity. Substituting these into Eq. (1) and denoting non-dimensional
variables by the omission of asterisks, we have

q2x
qt2
þ

q4x
qx4
�

a2

m
Dp ¼ 0, (2)

where m ¼ rs=r0L is the non-dimensional flag mass and a ¼ U=Ub the normalised wind speed.
2.1. Calculation of Dp

The inertial pressure jump Dp is predominantly attributable to the effect of added mass, and is determined
as a superposition of non-circulatory (nc) and circulatory (c) flows associated, respectively, with the potential
flow motion of the relatively large scale flow induced by the motion of the flag and vortex shedding from the
flag trailing edge. Assuming a slowly varying transverse velocity of the fluid along the filament, we make use of
the approximate airfoil theory of Theodorsen [12] and write for the non-circulatory velocity potential (scaled
by LU) along the flag

fnc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p 1

a
qx
qt
þ

qx
qx

� �
. (3)

The positive and negative signs correspond, respectively, to the ‘upper’ and ‘lower’ surfaces (y ¼ �0) of the
flag. Applying the Bernoulli equation and neglecting terms Oðq2x=qx2; q2x=qxqtÞ for consistency with the
above approximation, we obtain for the non-circulatory pressure jump

Dpnc ¼
2x� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p 1

a
qx
qt
þ

qx
qx

� �
�

2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p q2x
qt2

(4)

which preserves the square-root leading- and trailing-edge singularities together with the added-mass term.
The significance of this approximation is discussed further in Section 5.

To obtain a finite velocity at the trailing edge, the circulatory flow associated with vortex shedding from the
free end must be considered. The vortex is modelled as a vortex sheet and we let g ¼ gðxv; tÞ (with 1oxvo1,
see Fig. 1) denote the circulation per unit length of the wake. The circulatory velocity potential is then [12]

fc ¼ �
1

4p

Z 1
1

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞðx2

v � 1Þ
p
ð1þ xvÞ=2� xxv

 !
gðxv; tÞdxv. (5)

The circulation gðxv; tÞ is determined by the Kutta condition, requiring that no infinite velocities occur at the
trailing edge. Therefore,

qfnc

qx
þ

qfc

qx

� �
x¼1

must be finite.

Substitution of Eqs. (3) and (5) into the above yields the condition

1

2p

Z 1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xv þ 1

xv � 1

r
gðxv; tÞdxv ¼

1

a
qx
qt
þ

qx
qx

� �
x¼1

. (6)

The circulatory pressure jump associated with fc in Eq. (5) is

Dpc ¼ �
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p Z 1
1

2xþ xv � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v � 1
p gðxv; tÞdxv. (7)
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Making use of relation (6), we obtain

Dpc ¼ �
2CðgÞ � 1þ 2xð1� CðgÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞ
p 1

a
qx
qt
þ

qx
qx

� �
, (8)

where CðgÞ is the Theodorsen function [12]

CðgÞ ¼

R1
1

xvffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v � 1
p gðxv; tÞdxv

R1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xv þ 1

xv � 1

r
gðxv; tÞdxv

. (9)

The total pressure jump is therefore given by

Dp ¼ Dpnc þ Dpc ¼ �2CðgÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r
1

a
qx
qt
þ

qx
qx

� �
�

2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p q2x
qt2

. (10)

2.2. End conditions

We examine solutions of Eq. (2) that satisfy either ‘‘fixed-free’’

xð0; tÞ ¼ 0;
q2x
qx2
ð0; tÞ ¼ 0;

q2x
qx2
ð1; tÞ ¼ 0;

q3x
qx3
ð1; tÞ ¼ 0 (11)

or ‘‘clamped-free’’

xð0; tÞ ¼ 0;
qx
qx
ð0; tÞ ¼ 0;

q2x
qx2
ð1; tÞ ¼ 0;

q3x
qx3
ð1; tÞ ¼ 0 (12)

boundary conditions.
3. Temporal stability analysis

3.1. The eigenvalue problem

Assuming exponential time dependence

xðx; tÞ ¼ zðxÞ exp½�iot�, (13)

we obtain, respectively, from Eqs. (2) and (10)

�o2zþ z0000 �
a2

m
DP ¼ 0, (14)

where a prime denotes differentiation with respect to x and

DP ¼ �2CðgÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r
�
io
a
zþ z0

� �
þ

2o2

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
z. (15)

The end-conditions are fixed-free:

zð0Þ ¼ z00ð0Þ ¼ z00ð1Þ ¼ z000ð1Þ ¼ 0, (16)

or clamped-free:

zð0Þ ¼ z0ð0Þ ¼ z00ð1Þ ¼ z000ð1Þ ¼ 0. (17)
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3.1.1. No inertial fluid loading

Eq. (14) reduces to the familiar equation governing small oscillations of an elastic beam when DP ¼ 0. This
case is important because the associated eigenfunctions can be used to investigate the general fluid loaded and
forced motions. When DP ¼ 0, the general solution of Eq. (14) is [16]

znðxÞ ¼ a½cosðknxÞ þ coshðknxÞ� þ b½cosðknxÞ � coshðknxÞ�

þ c½sinðknxÞ þ sinhðknxÞ� þ d½sinðknxÞ � sinhðknxÞ�, (18)

where a; b; c; d and kn are constants determined by the boundary conditions. For fixed-free conditions we find
from Eq. (16) that a ¼ b ¼ 0 and

znðxÞ ¼ sinðknxÞ þ
sinðknÞ

sinhðknÞ
sinhðknxÞ (19)

with kn determined by the eigenvalue equation

tanðknÞ � tanhðknÞ ¼ 0. (20)

For clamped-free conditions, the application of Eq. (17) yields a ¼ c ¼ 0 and

znðxÞ ¼ ½sinðknxÞ � sinhðknxÞ� �
sinðknÞ þ sinhðknÞ

cosðknÞ þ coshðknÞ
½cosðknxÞ � coshðknxÞ� (21)

with kn satisfying

cosðknÞ coshðknÞ þ 1 ¼ 0. (22)

The amplitude of the motion described by either Eq. (19) or (21) is arbitrary.
It follows that the general unforced motion of the flag in the absence of unsteady fluid loading consists of a

linear superposition of standing waves of the form

xn ¼ znðxÞ exp½�iont�; on ¼ k2
n, (23)

where zn; kn are determined by either Eqs. (19)–(20) or (21)–(22).

3.1.2. Influence of inertial fluid loading

Consider a time harmonic solution of the type (13) and expand the amplitude zðxÞ in terms of the
eigenfunctions zn

zðxÞ ¼
X1
n¼1

anzn. (24)

This automatically satisfies conditions (16) or (17) . Substitute Eqs. (24) and (15) into Eq. (14) to obtain

X1
n¼1

anð�o2 þ k4
nÞzn þ 2

a2

m
CðgÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r X1
n¼1

anz
0
n

� 2
ioa
m

CðgÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r X1
n¼1

anzn � 2
o2

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p X1
n¼1

anzn ¼ 0. (25)

The coefficients an satisfy the infinite system of linear equations obtained by multiplying Eq. (25) by zmðxÞ,
integrating over the flag ð0oxo1Þ and invoking the orthogonality relation (after writing zn in ortho-
normal form) Z 1

0

znzm dx ¼ dmn, (26)

where dmn is the Kronecker delta. This yields

amð�o2 þ k4
mÞ þ 2

a2

m
CðgÞ

X1
n¼1

anImn � 2
ioa
m

CðgÞ
X1
n¼1

anFmn � 2
o2

m

X1
n¼1

anCmn ¼ 0 (27)
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for m ¼ 1; 2; . . . ; where

Imn ¼

Z 1

0

zmðxÞz
0
nðxÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r
dx, (28)

Fmn ¼

Z 1

0

zmðxÞznðxÞ

ffiffiffiffiffiffiffiffiffiffiffi
1� x

x

r
dx, (29)

Cmn ¼

Z 1

0

zmðxÞznðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
dx. (30)

In accordance with Eq. (13) we assume exponential space and time dependence of the free vortex sheet,
and write

gðxv; tÞ ¼ Gðo=aÞ exp �iotþ i
o
2a

xv

h i
, (31)

where G denotes the frequency-dependent vortex sheet strength. From Eq. (9) we then have

Cðo=aÞ ¼

R1
1

xvffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

v � 1
p exp½�ioxv=2a�dxv

R1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xv þ 1

xv � 1

r
exp½�ioxv=2a�dxv

. (32)

The eigenfrequencies of self-excited motion are now calculated numerically by truncation of the
eigenfunction expansion (24) and the homogeneous system (27) at a suitably large value of n ¼ N, leading
to a dispersion relation of the form o ¼ oðk1; . . . ; kN ;m; aÞ and formulae for the ratios of the coefficients
a1; . . . ; aN . Writing o ¼ or þ ioi, in terms of its real and imaginary parts, we seek to describe the locus of the
neutral surface,

oiðk1; . . . ; kN ; m; a;orÞ ¼ 0, (33)

across which instability sets in. For clarity of presentation, in much of the following or is replaced by the
reduced frequency Or ¼ or=a, which is equivalent to normalizing the dimensional frequency by the inertial
scale U=L rather than Ub=L. We also note that when substituting oi ¼ 0, Eq. (32) becomes [12]

CðOrÞ ¼
H
ð2Þ
1 ðOr=2Þ

H
ð2Þ
1 ðOr=2Þ þ iH

ð2Þ
0 ðOr=2Þ

, (34)

and that G in Eq. (31), calculated by means of Eq. (6), is

GðOrÞ ¼ 4
iOrzð1Þ � z0ð1Þ

H
ð1Þ
1 ðOr=2Þ � iH

ð1Þ
0 ðOr=2Þ

, (35)

where H
ðjÞ
i are Hankel functions of the jth kind and ith order.

3.2. Numerical results

Note that in calculating the neutral surface (33) the eigenvalues kn for both fixed-free (� 3:93; 7:07; 10:21 . . .,
see Eq. (20)) and clamped-free (� 1:86; 4:69; 7:85 . . ., see Eq. (22)) conditions are invariant, and therefore only
the non-dimensional flag mass m and relative wind velocity a can be prescribed. Our results indicate that
excellent convergence of the numerical scheme is achieved when the series (24) is truncated at N�20 for all
chosen combinations of ðm; aÞ.

In the following we examine both the quasi-steady aerodynamic approximation [17] and the full solution of
the eigenvalue problem. The former considers the limit of a heavy flag (mb1) in a stiff wind (ab1), such that
b ¼ a=

ffiffiffi
m
p

is finite. Physically, this approximation neglects all unsteady terms in expression (10) for the
pressure jump, including the added mass contribution. This greatly simplifies the computations because
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CðgÞ ¼ 1 (see Eq. (32)), and therefore Eq. (27) yields

amð�o2 þ k4
mÞ þ 2b2

X1
n¼1

anImn ¼ 0. (36)

The quasi-steady problem is accordingly governed by the single parameter b and can be formulated as a linear
eigenvalue problem for o2.

Fig. 2 illustrate the neutral surface (33) in (a) the ðm; aÞ plane and (b) the ðm;OrÞ plane. The solid lines
correspond to the full solution and the dashed curves denote the quasi-steady approximation. The thick and
thin curves in each part of the figure correspond, respectively, to the application of the fixed-free and clamped-
free boundary conditions. For each value of m there exists a critical value of the normalised wind speed
a ¼ U=Ub ¼ ac above which instability sets in. For all cases presented, the value of ac increases monotonically
with m, leading to the intuitive result that heavier flags require a stronger wind to flap. The critical reduced
frequency Orc

at which instability is excited can be found from the corresponding point in Fig. 2b. In both the
quasi-steady (dashed lines) and the full (solid lines) solutions this frequency decreases with m, indicating that
heavier flags start flapping at lower frequencies.

A remarkable result evident from Fig. 2a is the significant stabilizing effect of the fixed boundary condition
at the flag pole over the clamped case. Replacing the constraint of a vanishing angle of deflection at the pole
with one of zero curvature introduces natural modes of higher frequency (on ¼

ffiffiffiffiffi
kn

p
) and therefore more

difficult to excite. Consequently, the value of ac in the fixed-free case exceeds by the factor of three the
clamped-free value at a given m along most of the curve in the full solution and slightly less than that in the
quasi-steady approximation. The differences in the critical reduced frequency are less substantial, although
consistently higher values of Orc

are observed for the clamped flag.
The quasisteady approximation yields lower critical ac values in both the fixed-free and the clamped-free

cases. This is a consequence of the limit process that neglects the stabilizing effect of added-mass. Yet, this
approximation supplies a qualitative picture of the full solution. Our numerical calculation yields for the
critical quasi-steady contours in Fig. 2a the approximate formulae ac � 15:6

ffiffiffi
m
p
ðbc � 15:6Þ and ac � 5:99

ffiffiffi
m
p

ðbc � 5:99Þ corresponding, respectively, to the fixed-free and clamped-free cases. The latter differs
considerably from the corresponding result obtained by Argentina and Mahadevan [11], who found ac �

10:53
ffiffiffi
m
p

using a different numerical approach. The quasi-steady model is expected to agree quantitatively with
the full solution when m; ab1 and Or51. As can be seen from Fig. 2b, the latter condition is not satisfied at the
presented range of a, yielding the large discrepancies observed in Fig. 2a even for relatively large m and a. It is
only for considerably heavier flags that the quasi-steady approximation becomes a valid quantitative model.
4 8 12 16 20
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U
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4  8 12 16 20
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Fig. 2. The neutral surface in the (a) ðm; aÞ plane and the (b) ðm;OrÞ plane for the quasi-steady (dashed) approximation and full (solid)

problem. The bold and thin curves correspond, respectively, to the fixed-free and clamped-free conditions. The triangles indicate points

later referred to in Fig. 4.
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Fig. 3. The (a, c) first and (b, d) second modes of motion for the (a, b) fixed-free and (c, d) clamped-free conditions in the absence (dotted

lines) and quasisteady approximation (dashed and solid curves) of inertial fluid loading. The dashed lines correspond to neutrally stable

modes (b ¼ 5, o ¼ ð18:6; 51:2Þ in (a,b); b ¼ 2, o ¼ ð6:3; 22:5Þ in (c,d)) and the solid lines describe the unstable waves occurring at the onset

of instability (b ¼ 15:6, o ¼ 54:9 in (b); b ¼ 5:99, o ¼ 22:5 in (d)). In the absence of fluid inertia, the frequencies corresponding to the low-

order modes (dotted lines) are ð15:4; 50:0Þ in (a,b) and ð3:45; 22:0Þ in (c,d), respectively.
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To gain further insight into the mechanism of transition to instability, we show in Fig. 3 the dependence of
the low-order modes on the single parameter b in the quasi-steady approximation. Parts (a,b) of the figure
correspond to the fixed-free problem and parts (c,d) are for the clamped-free case. The first and second modes
of motion are given in parts (a, c) and (b, d), respectively. The dashed lines correspond to the stable sub-
critical modes for some bobc, while the solid lines (in parts (b,d)) are the unstable modes for b ¼ bc

(numerical values are given in the figure caption). The dotted curves in each figure correspond to the low-order
modes in the absence of inertial fluid loading (see Eqs. (19) and (21)).

Our numerical calculations invariably yield real values for the eigenfrequencies in the sub-critical conditions
of the quasi-steady solution. The corresponding modes are real functions for all bobc (dashed curves). At this
sub-critical stage, we observe that the eigenfunctions are similar to their respective natural modes in the
absence of inertial fluid loading (dotted lines). With increasing bobc, the lowest eigenvalues (or ¼ 18:6; 6:3 in
the fixed-free and clamped-free cases, respectively) increase while their associated modes (dashed curves in
parts (a, c)) change form. At the same time, the higher second eigenvalue varies only slightly. At the critical
value b ¼ bc the first two eigenvalues collide on the real axis and split, leading to a resonance type of instability
[18] manifested as a standing wave of increasing amplitude. For b4bc, one of the modes becomes unstable,
with a positive imaginary part and a non-vanishing real part. It is worthwhile to note the considerable
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differences between the modes in the fixed-free and clamped-free cases: although the qualitative mechanism of
instability is similar in both cases, the impact of the different boundary conditions is clearly visible.

The description above may be valid for very heavy flags. The state of affairs changes considerably, however,
when m�Oð1Þ, for which it is necessary to solve the complete eigenvalue problem. To illustrate this, Fig. 4
presents the unstable modes of motion for the complete problem at the onset of instability for the fixed-free
(Fig. 4a) and clamped-free (Fig. 4b) conditions. The critical behaviour is shown for the case m ¼ 1, indicated
by triangles in Fig. 2. Once again, the differences in the mode shapes for the different cases are evident. Unlike
in the quasi-steady approximation, the sub-critical behaviour of the flag (i.e., when aoac for fixed m) is stable:
all eigenvalues lie in the lower half of the complex plane and the corresponding eigenfunctions contain both

real and imaginary parts. At a ¼ ac, the lowest eigenmode becomes neutrally stable with oi ¼ 0. The solid and
dashed lines in the figure correspond to the real and imaginary parts of this mode, respectively, which may also
be interpreted as the respective shapes of the flag at t ¼ 2ps=or and t ¼ ðp=2þ 2psÞ=or, with s ¼ 0; 1; 2; . . . :
For a4ac, flutter instability occurs, yielding convecting waves of increasing amplitude.

4. The acoustic radiation

In this section we revert to dimensional coordinates for better clarity of presentation. Asterisks, attached to
dimensional quantities in Section 2, are omitted for brevity.

The acoustic pressure is given in the linearised approximation at high Reynolds numbers by [19]

paðx; tÞ ¼ pa1
ðx; tÞ þ pa2

ðx; tÞ

¼ r0
q
qt

Z 1
�1

I
S

vnðy; tÞGaðx; y; t� tÞdSðyÞdt� r0

Z 1
�1

Z
V

ðx�UÞ 	 rGaðx; y; t� tÞd3ydt, (37)

where S is the surface of the flag, vnðy; tÞ its normal velocity directed into the fluid and Gaðx; y; t� tÞ the
acoustic Green’s function having vanishing normal derivative on the undisturbed flag. The first integral,
pa1
ðx; tÞ, is the pressure contribution due to the flag motion; pa2

ðx; tÞ, given by the second integral, is the
pressure produced by the wake. V denotes the fluid region occupied the wake, x is the vorticity and U is the
mean stream velocity.

When the frequency of the oscillations is small enough that the flag is acoustically compact, the compact
approximation [19]

Gaðx; y; t� tÞ ¼
1

4pjX� Yj
d t� t�

jX� Yj

c0

� �
(38)



ARTICLE IN PRESS
A. Manela, M.S. Howe / Journal of Sound and Vibration 321 (2009) 994–1006 1003
may be applied to evaluate the far-field acoustic radiation. Here XðxÞ and YðyÞ denote the Kirchhoff vectors for
the flag and c0 is the speed of sound. Substitute Eq. (38) into the integral for pa1

ðx; tÞ and expand to first order
in Y as jXj�jxj ! 1, to obtain

pa1
ðx; tÞ �

r0
4pjxj

q
qt

I
S

vn y; t�
jxj

c0

� �
dSðyÞ

þ
r0xj

4pc0jxj
2
	
q2

qt2

I
S

vn y; t�
jxj

c0

� �
Y jðyÞdSðyÞ. (39)

The first integral, representing a monopole, vanishes because the volume of the flag is constant. The acoustic
far-field is therefore of dipole type, determined by the second integral. We approximate YðyÞ by the Kirchhoff
vector for a strip of unit width

Yðy1; y2Þ ¼ y1;Re �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1 �

L

2
þ iy2

� �2

�
L

4

s2
4

3
5; y3

0
@

1
A, (40)

where y1; y2; y3 are the components of the y-vector in the streamwise ŷ1, flapping ŷ2 and spanwise ŷ3 directions,
respectively. Along the flag y2 ¼ �0, dS ¼ dy1dy3, 0py1pL and 0py3pl. In addition,

vnðy1; t;oÞ ¼ 
io exp½�iot�
X1
n¼1

anznðy1Þ at y2 ¼ �0

(see (24)). Writing x2 ¼ jxj cos y (with 0pypp indicating the observer direction), we find

pa1
ðjxj; y; t;oÞ

r0U2
�M

l cos y
2pjxj

exp �io t�
jxj

c0

� �� �
F1ðoÞ; jxj ! 1, (41)

where M ¼ U=c051 is the mean stream Mach number and

F1ðoÞ ¼ i
o
U

� �3X1
n¼1

an

Z L

0

znðy1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ðL� y1Þ

p
dy1

¼ i
oL

U

� �3X1
n¼1

an

Z 1

0

znðȳ1Þ

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȳ1ð1� ȳ1Þ

p
dȳ1. (42)

To calculate pa2
ðx; tÞ, write

x ¼ gðy1; tÞdðy2Þŷ3; U ¼ U ŷ1; 0py3pl (43)

to obtain

pa2
ðx; tÞ ¼ �r0U

Z 1
�1

I
S

gðy1; tÞ
qGa

qy2

ðx; y; t� tÞdS dt, (44)

where S denotes the surface of the wake (y2 ¼ �0, 1py1o1 and 0py3pl).
Substituting (38) in conjunction with (31) and (40) into (44) and following a procedure similar to the one

outlined above for pa1
ðx; tÞ, yields

pa2
ðjxj; y; t;oÞ

r0U
2

�M
l cos y
2pjxj

exp �io t�
jxj

c0

� �� �
F 2ðoÞ, (45)
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where

F2ðoÞ ¼ i
oGðoÞ

U2

Z 1
L

qY 2

qy2

� �
y2¼0

exp½ioy1=2U �dy1

¼ i
oL

U

GðoÞ
U

Z 1
1

ȳ1 � 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȳ1ðȳ1 � 1Þ

p exp½ioLȳ1=2U �dȳ1

¼ �
ip
4

oL

U

GðoÞ
U

exp½ioL=4U �H
ð1Þ
1 ðoL=4UÞ. (46)

The total far-field pressure for a compact flag is therefore approximated to first order by the dipole field

paðjxj; y; t;oÞ �M
l cos y
2pjxj

exp �io t�
jxj

c0

� �� �
F ðoÞ; jxj ! 1, (47)

where F ¼ F1 þ F 2 is given by the sum of Eqs. (42) and (46).
The frequency dependence of F1, F2 and F at the onset of instability (where oL=U ¼ Or) are illustrated in

Fig. 5 for the two cases of (a, c) fixed-free and (b, d) clamped-free conditions. The solid and dashed curves
correspond to the real and imaginary parts of the functions and the dash-dotted lines show the quasisteady (real)
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Fig. 5. The functions (a,b) F1 (thick lines), F2 (thin curves) and (c, d) F at the onset of instability in the (a, c) fixed-free and (b,d) clamped-

free cases. The solid and dashed curves correspond to the real and imaginary parts of the functions and the dash-dotted lines describe the
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solution. The amplitude of the acoustic pressure increases with the critical reduced frequency Orc
. Recalling that

Orc
itself increases when the flag is lighter (see Fig. 2b), it follows that heavier flags are less noisy than light flags

at the onset of motion. There are no significant differences in the overall acoustic amplitudes between the fixed-
free and clamped-free cases. However, the wake term, F2, is significantly larger than the irrotational flag motion
term, F 1, for all values of Or (Fig 5a,b). Hence, the inclusion of the circulatory pressure jump (8) and the
application of the Kutta condition (6) in our model is vital for the calculation of the far-field radiation. The
quasi-steady approximation is close to the complete solution only for small frequencies, where the acoustic
radiation becomes negligible and ab1. These conditions are indeed in agreement with the above-mentioned
limitations of this approximation (see Section 3.2), expected to be valid only for very heavy flags.
5. Concluding remarks

We have presented a linear theory for the two-dimensional motion and sound production of an unforced
elastic flag in nominally uniform high Reynolds number flow. The analysis permits the calculation of motion
and sound production at the very onset of instability, but it cannot determine the resulting final states. Such
predictions require consideration of a full nonlinear model, of the type suggested in Refs. [13,14]. In addition,
three-dimensional ‘‘edge effects’’ of the flag motion have not been considered. These are important when the
flag aspect ratio l=L becomes finite. Argentina and Mahadevan [11] have used an approximate calculation to
demonstrate that decreasing l=L results in fluid loading rescaling which, in turn, stabilises the reference state.
Although their calculation was limited to a clamped-free flag, it seems reasonable that a similar trend will be
followed in the fixed-free case. A similar study of three-dimensional effects on the acoustic field may require a
detailed calculation of the vorticity distributions along the edges of the flag in the spanwise direction.

In addition to the neglect of nonlinear and three-dimensional effects, the main drawback of our theory is the
use made of Eq. (3) to describe the inertial pressure jump across the flag. Essentially, this approximation
neglects the curvature (Oðq2x=qx2Þ) and time rate of change of the local flag deflection angle (Oðq2x=qxqtÞ), as
well as higher-order terms. A more general treatment would involve the use of a non-local representation of
the potential, requiring integration over the whole flag.

Our use of hypothesis (3) follows the simplified model proposed by Theodorsen [12] and applied recently by
Argentina and Mahadevan [11] to study the onset of motion and sound production for different choices of
boundary conditions. The results obtained indicate that a flag that is merely fixed at its pole is considerably
more stable than one that is clamped. In the quasi-steady limit of a very heavy flag, instability sets in as a
resonance (standing wave of increasing amplitude), while lighter flags exhibit flutter (convective) instability. At
the onset of flag motion the dipole-type acoustic far-field of a compact flag is dominated by wake sources. The
application of the Kutta condition is therefore of crucial importance in determining the sound. Light flags,
characterised by high critical frequencies, are predicted to produce more sound than heavy flags.

In practice the flag motion is likely to be significantly different from the simple homogeneous model
studied here and in most previous investigations because of the neglect of ‘‘forcing’’ by discrete vortex
structures shed quasi-periodically from the flag pole and convected in the mean stream over the surfaces of the
flag. For a pole of diameter D in a mean stream U, the characteristic frequency of vortex shedding
satisfies o�D=U � 0:4p � 1:25. The resulting flag oscillations at this frequency accordingly correspond to
Or � o�L=U � 1:25L=Db1, very much larger than the typical homogeneous flag stability frequencies of Fig. 2.
This suggests that the much more rapid effects of external forcing on the flag by flag-pole vortex shedding are
likely to destroy the delicate equilibrium between bending stiffness and inertia needed for the validity of the
homogeneous stability theory. It may be, therefore, that weak effects of flag stiffness (and also of drag-induced
tension) become negligible and that the actual motion of a flag in a stiff breeze is due to a balance between the
influence of shed vorticity from the flag pole and the combined effects of flag and fluid-loading inertia.
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