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We consider the response of a gas in a microchannel to instantaneous (small-
amplitude) non-periodic motion of its boundaries in the normal direction. The
problem is formulated for an ideal monatomic gas using the Bhatnagar, Gross, and
Krook (BGK) kinetic model, and solved for the entire range of Knudsen (Kn) num-
bers. Analysis combines analytical (collisionless and continuum-limit) solutions with
numerical (low-variance Monte Carlo and linearized BGK) calculations. Gas flow,
driven by motion of the boundaries, consists of a sequence of propagating and reflected
pressure waves, decaying in time towards a final equilibrium state. Gas rarefaction is
shown to have a “damping effect” on equilibration process, with the time required for
equilibrium shortening with increasing Kn. Oscillations in hydrodynamic quantities,
characterizing gas response in the continuum limit, vanish in collisionless conditions.
The effect of having two moving boundaries, compared to only one considered in
previous studies of time-periodic systems, is investigated. Comparison between ana-
lytical and numerical solutions indicates that the collisionless description predicts the
system behavior exceptionally well for all systems of the size of the mean free path
and somewhat larger, in cases where boundary actuation acts along times shorter than
the ballistic time scale. The continuum-limit solution, however, should be considered
with care at early times near the location of acoustic wavefronts, where relatively
sharp flow-field variations result in effective increase in the value of local Knudsen
number. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866443]

I. INTRODUCTION

Continuum investigations of propagation of sound waves in a gas is a classical problem in fluid
dynamics, which has been studied extensively over the years.1 Inevitably, these studies are based on
the dual assumption that characteristic time and length scales of the problem are much larger than
the mean free time and mean free path of a gas molecule, respectively. In cases where one of these
conditions fails, continuum description breaks down and cannot be applied. Such conditions are
common, for example, in high-frequency sound (with frequency of the order of collision frequency),
or in micro-size and near-vacuum systems, where the physical length-scale is comparable to the
molecular mean free path. These and other applications have motivated the study of sound wave
propagation in rarefied gases.

Starting from the pioneering investigations of Greenspan2 and Meyer and Sessler3 in the 1950s,
theoretical and experimental studies on sound propagation in non-continuum conditions have evolved
throughout the second half of the 20th century and continued through to current research.4–17

Initially, theoretical investigations have concentrated on studying sound propagation in semi-infinite
geometries, where a moving boundary has acted as a “sound source” (e.g., Refs. 8, 11, and 14).
Later contributions have studied the problem in a confined setup, by adding a stationary boundary to
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act as a “resting receiver,” and examined the impact of sound-wave reflections.15–17 While the large
majority of works have considered the linearized problem of small-amplitude boundary motion,
few analyses have also examined the nonlinear regime of large-amplitude wave propagation (e.g.,
Ref. 18).

Common to all of the above works is the prescription of harmonic time-dependence of the
moving boundary velocity. Consequently, the system response was always assumed time-periodic,
and only the space variation of flow-field properties has been considered. Recently, Tsuji and Aoki19

have considered a nonlinear time-dependent problem of a passive plate-on-a-spring setup interacting
with a semi-infinite gas expanse. The work has concentrated on analyzing numerical discontinuities
appearing in the numerical solution for the probability density function, and quantified the decay
rate of plate oscillations due to gas-structure interactions. As this is the only occasion where time-
dependent acoustic equilibration has been investigated, much work is still needed to analyze the
approach to acoustic relaxation in a rarefied medium. The main purpose of the present contribution
is to extend previous investigations by analyzing the system response to arbitrary non-periodic
boundary actuation in a confined domain, both analytically and numerically. Specifically, this is
important for two main reasons: first, acoustic wave propagation does not necessarily result from
periodic boundary actuation, and it is of practical interest to analyze system response to non-periodic
excitation; second, such an investigation should reveal the transient response of the gas, and shed
light on the effect of gas rarefaction on relaxation processes.

We consider a linearized setup of a gas confined in an infinitely long microchannel and subject
to prescribed small-amplitude boundary actuation. Taking a non-periodic “bump-like” boundary
velocity profile, the system response is analyzed in the entire range of gas rarefaction conditions,
using the framework of kinetic theory of gases. In Sec. II, the general problem is formulated using
the Bhatnagar, Gross, and Krook (BGK) kinetic model20 of the Boltzmann equation. The problem
is analyzed analytically and numerically in Secs. III and IV. Results are presented and discussed in
Sec. V. Concluding comments are given in Sec. VI, where the effect of replacing the BGK model
with a different (hard-sphere) model of molecular interaction is discussed. Some technical details
are relegated to the Appendix.

II. PROBLEM STATEMENT

Consider a monatomic gas layer of uniform density ρ∗
0 confined between two parallel infinitely

long diffusely reflecting walls placed at x∗ = ∓L∗/2 (here asterisks denote dimensional quantities).
The gas is initially at rest and in thermodynamic equilibrium with the isothermal boundaries, which
are kept at a temperature T ∗

0 . At time t∗ ≥ 0, one or both walls move in the normal direction into the
gas layer according to a prescribed (arbitrary) small-amplitude profile,

εU∗
w± (t∗) = εU ∗

w±(t∗)x̂, (1)

with “plus” and “minus” signs corresponding to the motion of walls located at x∗ = −L∗/2 and
x∗ = +L∗/2, respectively. Here, ε � 1 so that total walls motion is small compared to L∗ and the
system description may be linearized about its initial equilibrium.

To render the problem dimensionless, we normalize position, velocity, and time by L∗, U ∗
th

= √
2R∗T ∗

0 (marking the mean thermal speed of gas molecules, with R∗ denoting the specific gas
constant), and acoustic time-scale t∗

a = L∗/U ∗
th , respectively. Density and temperature are scaled by

ρ∗
0 and T ∗

0 , respectively. In the framework of kinetic theory of gases, the gas state is described by
the velocity distribution function,

f (x, t, c) = F[1 + εφ(x, t, c)], (2)

wherein c = (cx , cy, cz) is the vector of molecular velocity, and F =π−3/2exp [−c2] is the equilibrium
Maxwellian distribution. Adopting the kinetic BGK model,20 and linearizing the problem about its
initial equilibrium, we obtain a linearized equation for φ(t, x, c),

∂φ

∂t
+ cx

∂φ

∂x
= 2√

π K n

[
ρ + 2cx u +

(
c2 − 3

2

)
T − φ

]
. (3)
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In (3), Kn denotes the Knudsen number,

K n = l∗/L∗, (4)

with l∗ marking the mean free path of a gas molecule. Density, x-direction velocity, and temperature
perturbations are denoted by ρ, u, and T, respectively, and are expressed via φ through the molecular-
velocity-space quadratures21

ρ(x, t) = 1

π3/2

∫ ∞

−∞
φ exp

[−c2
]

dc, (5)

u(x, t) = 1

π3/2

∫ ∞

−∞
cxφ exp

[−c2
]

dc, (6)

and

T (x, t) = 1

π3/2

∫ ∞

−∞

(
2

3
c2 − 1

)
φ exp

[−c2
]

dc. (7)

In accordance with the linearized form of equation of state for an ideal gas, pressure perturbation is
given by

p(x, t) = ρ(x, t) + T (x, t), (8)

where the pressure is normalized by ρ∗
0 R∗T ∗

0 . The problem is supplemented by imposing an initial
condition,

φ(x, t = 0−, c) = 0, (9)

together with linearized diffuse boundary conditions at the walls,

φ(x = ∓1/2, t, cx ≷ 0) = ρ±(t) + 2cxUw±(t). (10)

In (10), Uw±(t) are prescribed functions obtained from the scaled form of (1), and ρ±(t) are yet to
be determined. Equations (3)–(7), (9), and (10) complete the formulation of the problem analyzed
in the succeeding section.

III. ANALYSIS

The problem formulated in Sec. II is analyzed in the ballistic (Kn � 1, Sec. III A) and continuum
(Kn � 1, Sec. III C) limits. A general scheme for numerical solution at arbitrary Kn is constructed
in Sec. III B.

A. Ballistic flow limit

In the ballistic Kn � 1 limit of no molecular collisions, the linearized problem for φ consists of
the collisionless Boltzmann equation

∂φ

∂t
+ cx

∂φ

∂x
= 0, (11)

together with initial and boundary conditions (9) and (10). Taking the Laplace transform of (11) and
making use of (9) and (10) yield the solution

φ̂(s, x, cx ≷ 0, cy, cz) = [
ρ̂±(s) + 2cxÛw±(s)

]
exp

[
− s

cx

(
x ± 1

2

)]
, (12)

where s is the Laplace variable and ˆ denotes the Laplace transform of a function. By inversion of
(12), we obtain

φ(t, x, cx ≷ 0, cy, cz) = ρ±(t±) + 2cxUw±(t±), (13)
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where t± = t − (x ± 1/2)/cx. The fields ρ±(t) are determined by imposing no-penetration conditions
at the walls,

1

π3/2

∫ ∞

−∞
cxφ

(
x = ∓1

2

)
exp(−c2)dc = Uw±(t). (14)

Substituting (13) into (14), and following the derivation outlined in the Appendix, yield a pair of
coupled integral equations,

ρ+(t) − ρ−(0) exp

[
− 1

t2

]
−

∫ t

0

dρ−
dτ

exp

[
− 1

(t − τ )2

]
dτ =

√
πUw+(t) − 4

∫ t

0

Uw−(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ (15)

and

ρ−(t) − ρ+(0) exp

[
− 1

t2

]
−

∫ t

0

dρ+
dτ

exp

[
− 1

(t − τ )2

]
dτ =

−√
πUw−(t) + 4

∫ t

0

Uw+(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ, (16)

to be solved in conjunction with the initial conditions ρ±(0) = ±√
πUw±(0). Rewriting the problem

in terms of σ = ρ+ + ρ− and δ = ρ+ − ρ− results in two decoupled equations,

σ (t) −
∫ t

0

dσ

dτ
exp

[
− 1

(t − τ )2

]
dτ =

√
π

[
Uσ (0) exp

[
− 1

t2

]
+ Uσ (t)

]
+ 4

∫ t

0

Uσ (τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ (17)

and

δ(t) −
∫ t

0

dδ

dτ
exp

[
− 1

(t − τ )2

]
dτ =

√
π

[
Uδ(0) exp

[
− 1

t2

]
+ Uδ(t)

]
− 4

∫ t

0

Uδ(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ, (18)

supplemented by the initial conditions σ (0) = √
πUσ (0) and δ(0) = √

πUδ(0). Here, Uσ = Uw+
+ Uw− and Uδ = Uw+ − Uw− .

The above initial-value problems for σ and δ are solved numerically, for an arbitrary choice of
Uw± , using a simple Euler-type method. Towards this end, we formulate Eqs. (17) and (18) in the
general form

F(t) − k1

∫ t

0

dF

dτ
exp

[
− 1

(t − τ )2

]
dτ = G(t), (19)

with F(t) denoting either σ (t) or δ(t), and F(0) = k2 (constants k1 and k2 are determined from
Eqs. (17) and (18), respectively). Discretizing the time using a time-step series tn+1 = tn + 
t, we
make use of a linearized Taylor approximation,

F(tn+1) ≈ F(tn) +
(

dF

dt

)
tn


t, (20)

to carry out a time-step integration. To obtain an expression for (dF/dt)tn , we evaluate the integral
term in Eq. (19) via∫ tn

0

dF

dτ
exp

[
− 1

(tn − τ )2

]
dτ ≈(

dF

dt

)
t0=0

∫ t1

0
exp

[
− 1

(tn − τ )2

]
dτ + · · · +

(
dF

dt

)
tn−1

∫ tn

tn−1

exp

[
− 1

(tn − τ )2

]
dτ. (21)
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Substituting (21) into (19) and collecting terms yield an explicit expression for (dF/dt)tn ,(
dF

dt

)
tn

≈
G(tn+1) − F(tn) + k1

∑n−1
j=0

(
dF
dt

)
t j

∫ t j+1

t j
exp

[
− 1

(tn+1−τ )2

]
dτ


t − k1
∫ tn+1

tn
exp

[
− 1

(tn+1−τ )2

]
dτ

, (22)

which is then substituted into (20) to calculate F(tn+1). While the above scheme is accurate to only
first order (and thus facilitates numerical implementation), the comparison carried out in Sec. V
demonstrates its effectiveness in providing an accurate solution to Eqs. (17) and (18).

Once solutions for σ (t) and δ(t) are obtained, ρ± are known (through ρ± = (σ ± δ)/2), and the
probability density function perturbation φ in (13) is found. Making use of φ, the O(ε) perturbations
of the hydrodynamic fields are computed by appropriate quadratures over the molecular velocity
space (see Eqs. (5)–(7)). Introducing

I n
± =

∫ t

0

(x ± 1/2)n+1

(t − τ )n+2
Uw±(τ ) exp

[
−

(
x ± 1/2

t − τ

)2
]

dτ

and J n
± =

∫ t

0

(x ± 1/2)n+1

(t − τ )n+2
ρ±(τ ) exp

[
−

(
x ± 1/2

t − τ

)2
]

dτ, (23)

the O(ε) density, x-component velocity and pressure perturbations are expressed as

ρ = 1√
π

[
J 0
+ − J 0

− + 2
(
I 1
+ − I 1

−
)]

, (24)

u = 1√
π

[
J 1
+ − J 1

− + 2
(
I 2
+ − I 2

−
)]

, (25)

and

p = 2

3
√

π

[
J 2
+ − J 2

− + J 0
+ − J 0

− + 2
(
I 3
+ − I 3

− + I 1
+ − I 1

−
)]

,

respectively. The temperature perturbation is obtained from the linearized gas equation of state (8),

T = p − ρ. (26)

B. Solution for arbitrary Knudsen numbers

For arbitrary values of Kn, the solution to the problem is obtained by taking the time-Fourier
transform of Eqs. (3)–(7), (9), and (10). Applying the Fourier transform of a function,

Q̄(ω) =
∫ ∞

−∞
Q(t) exp [−iωt] dt, (27)

to the system of equations yields the transformed equation,

cx
dφ̄

dx
+

(
iω + 2√

π K n

)
φ̄ = 2√

π K n

[
ρ̄ + 2cx ū +

(
c2 − 3

2

)
T̄

]
, (28)

together with the boundary conditions

φ̄(x = ∓1/2, ω, cx ≷ 0) = ρ̄±(ω) + 2cxŪw±(ω). (29)

The fields ρ̄±(ω) are determined by applying no-penetration condition at the walls, u(x = ∓1/2, t)
= Uw±(t), in the frequency domain. Making use of Eq. (29) in conjunction with the kinetic definition
(6) of macroscopic gas velocity, we obtain an integral expression for ρ̄±,

ρ̄±(ω) = ±√
πŪw±(ω) ∓ 2

π

∫
cx ≶0

cx φ̄(x = ∓1/2) exp
[−c2

]
dc. (30)
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Numerical solution for the boundary-value problem (28)–(30) follows the scheme outlined in
Ref. 15, and is recapitulated here for completeness. Defining

ψ̄1(x, ω, cx ) = 1

π

∫ ∞

−∞
φ̄ exp

[−c2
y − c2

z

]
dcydcz (31)

and

ψ̄2(x, ω, cx ) = 1

π

∫ ∞

−∞

(
c2

y + c2
z − 1

)
φ̄ exp

[−c2
y − c2

z

]
dcydcz, (32)

and carrying out appropriate cy and cz integrations of Eq. (28) yield a pair of coupled equations for
ψ̄1 and ψ̄2,

cx
dψ̄1

dx
+

(
iω + 2√

π K n

)
ψ̄1 = 2√

π K n

[
ρ̄ + 2cx ū +

(
c2

x − 1

2

)
T̄

]
(33)

and

cx
dψ̄2

dx
+

(
iω + 2√

π K n

)
ψ̄2 = 2√

π K n
T̄ , (34)

where the transformed hydrodynamic fields are expressed via ψ̄1 and ψ̄2 through

ρ̄(x, ω) = 1√
π

∫ ∞

−∞
ψ̄1 exp

[−c2
x

]
dcx , (35)

ū(x, ω) = 1√
π

∫ ∞

−∞
cx ψ̄1 exp

[−c2
x

]
dcx , (36)

and

T̄ (x, ω) = 1√
π

∫ ∞

−∞

(
2

3
c2

x − 1

3

)
ψ̄1 exp

[−c2
x

]
dcx + 2

3
√

π

∫ ∞

−∞
ψ̄2 exp

[−c2
x

]
dcx . (37)

Applying a similar procedure to Eq. (29) yields the required boundary conditions for ψ̄1,

ψ̄1(x = ∓1/2, ω, cx ≷ 0) = ρ̄±(ω) + 2cxŪw±(ω), (38)

and ψ̄2,

ψ̄2(x = ∓1/2, ω, cx ≷ 0) = 0, (39)

where the fields ρ̄±(ω) are given by

ρ̄±(ω) = ±√
πŪw±(ω) ∓ 2

π

∫
cx ≶0

cx ψ̄1(x = ∓1/2) exp
[−c2

x

]
dcx . (40)

Numerical solution to the above problem is further simplified by separating ψ̄1 into

ψ̄1 = ψ̄1a + ψ̄1b , (41)

where ψ̄1a satisfies

cx
dψ̄1a

dx
+

(
iω + 2√

π K n

)
ψ̄1a = 0, (42)

with boundary conditions

ψ̄1a (x = ∓1/2, ω, cx ≷ 0) = ρ̄a± (ω) + 2cxŪw±(ω), (43)

and

ρ̄a± (ω) = ±√
πŪw±(ω) ∓ 2

∫
cx ≶0

cx ψ̄1a (x = ∓1/2) exp
[−c2

x

]
dcx , (44)
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and ψ̄1b satisfies

cx
dψ̄1b

dx
+

(
iω + 2√

π K n

)
ψ̄1b = 2√

π K n

[
ρ̄ + 2cx ū +

(
c2

x − 1

2

)
T̄

]
, (45)

with conditions

ψ̄1b (x = ∓1/2, ω, cx ≷ 0) = ρ̄b± (ω), (46)

and

ρ̄b± (ω) = ∓2
∫

cx ≶0
cx ψ̄1b (x = ∓1/2), exp

[−c2
x

]
dcx . (47)

The solution for ψ̄1a can be expressed in a closed form,

ψ̄1a = [
ρ̄a± (ω) + 2cxŪw±(ω)

]
exp

[
− x ± 1/2

cx
z

]
, cx ≷ 0, (48)

where z = iω + 2/(π1/2Kn), and

ρ̄a± (ω) = ±1

1 − 4S2
1 (z)

[
Ūw±(ω)

(√
π + 8S1(z)S2(z)

) − 2Ūw±(ω)
(√

π S1(z) + 2S2(z)
)]

. (49)

In (49),

Sn(z) =
∫ ∞

0
pn exp

[
− z

p
− p2

]
dp.

It is worthwhile to note that the ballistic-flow solution, derived independently in Sec. III A using a
Laplace-transform technique, can be calculated from taking the inverse Fourier transform (see (50))
of ψ̄1a in (48) in the limit Kn →∞. Yet, apart from being more efficient for numerical implementation,
the Laplace-transform approach has the advantage of not requiring explicit knowledge of the Fourier
transform of the actuating signal Uw±(t).

The frequency-domain solution is completed via numerical integration of the problems for ψ̄1b

and ψ̄2. Towards this end, Eqs. (34)–(37), (39), and (45)–(47) are rewritten in a central difference
scheme, with Nx × Ncx grid points distributed uniformly along x ∈ [ − 0.5, 0.5] and non-uniformly
along cx ∈ ( − ∞, ∞) directions. A coupled set of 2Nx Ncx non-homogeneous algebraic equations
for ψ̄1b and ψ̄2, together with 3Nx equations defining ρ̄, ū, and T̄ , collate into a sparse system of
equations. Our calculations indicate that, to achieve a converged result within a 1% error, a choice
of Nx = Ncx = 256 grid points is sufficient. For a given combination of Kn and ω, the system of
equations was solved efficiently in a few minutes run on a standard laptop machine.

Once wall motion actuations Uw±(t) are prescribed, the frequency-domain solution is ob-
tained for each component contained in Ūw±(ω). After calculation of all Fourier components, the
time-domain solution is computed via an inverse Fourier transform,

Q(t) = 1

2π

∫ ∞

−∞
Q̄(ω) exp [iωt] dω. (50)

In cases where the Fourier spectrum of the signal is infinite (as in the case analyzed in Sec. V), the
spectrum is discretized and truncated to enable numerical solution. Accuracy of results is validated
in Sec. V through comparison with other methods of solution.

C. Continuum limit

While the solution in the continuum limit of Kn � 1 can be obtained by application of the general
scheme in Sec. III B at low Knudsen numbers, we make use of a continuum-limit model, based on
the continuum (Navier-Stokes-Fourier) equations and modified (“slip-flow”) boundary conditions,
to obtain independent results. In addition to deriving semi-analytical predictions, comparison of the
continuum-limit analysis with the general numerical solution will serve to test the limits of validity
of the continuum description in the present problem.
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Starting with the full set of normalized continuum equations (non-dimensionalized using the
scales introduced in the beginning of Sec. II), and linearizing about the initial equilibrium state,
we obtain the balances of mass, momentum and energy for the O(ε) density, normal velocity, and
temperature perturbations,

∂ρ

∂t
+ ∂u

∂x
= 0 , (51)

∂u

∂t
= −1

2

(
∂ρ

∂x
+ ∂T

∂x

)
+ 4K̃ n

3

∂2u

∂x2
, (52)

and

∂T

∂t
= γ K̃ n

Pr

∂2T

∂x2
− (γ − 1)

∂u

∂x
. (53)

Here K̃ n = ν∗/U ∗
th L∗ is the modified Knudsen number with ν∗ denoting the mean kinematic

viscosity of the gas. The modified Knudsen number is related to Kn through

K̃ n = ν∗

U ∗
thl∗

K n, (54)

where ν∗/U ∗
thl∗ = √

π/4 for a BGK gas.22 In (53), γ and Pr mark the ratio of specific heats and
Prandtl number, respectively, with γ = 5/3 and Pr = 1 for a BGK gas. Equations (51)–(53) are
supplemented by the boundary conditions

u = Uw±(t) and T = ±ξ
∂T

∂x
at x = ∓1/2, (55)

imposing impermeability and specifying the magnitude of temperature jump at the walls. The
latter is determined by the value of temperature gradient at the boundaries and a temperature-jump
coefficient, ξ = ζKn, where ζ = 1.3

√
π/2 for a BGK gas.22

Similarly to the analysis carried out in Sec. III B, we apply the Fourier transform (27) to
Eqs. (51)–(55). This yields a system of ordinary equations

iωρ̄ + ū′ = 0, (56)

iωū = −1

2

(
ρ̄ ′ + T̄ ′) + 4K̃ n

3
ū′′, (57)

iωT̄ = 5K̃ n

3
T̄ ′′ − 2

3
ū′, (58)

accompanied by the boundary conditions

ū = Ūw±(ω) and T̄ = ±ξ T̄ ′ at x = ∓1/2, (59)

where primes denote differentiations with x. The density and velocity perturbations can be eliminated
using

ρ̄ = i

ω
ū′ , ū = −5K̃ n

2ω

(
1

2ω
+ 4iK̃ n

3

)
T̄ ′′′ −

(
2K̃ n − 5i

4ω

)
T̄ ′ (60)

to yield a single equation for the temperature,

5K̃ n

3

(
4K̃ n

3
− i

2ω

)
T̄ ′′′′ −

(
3iωK̃ n + 5

6

)
T̄ ′′ − ω2T̄ = 0, (61)

which should be solved in conjunction with the four boundary conditions

−5K̃ n

2ω

(
1

2ω
+ 4iK̃ n

3

)
T̄ ′′′ −

(
2K̃ n − 5i

4ω

)
T̄ ′ = Ū±(ω) and

T̄ = ±ξ T̄ ′ at x = ∓1/2 . (62)
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The characteristic polynomial of Eq. (61) has four distinct roots:

r1,2(ω) = ±
⎡⎣−a1 +

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

and r3,4(ω) = ±
⎡⎣−a1 −

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

, (63)

where a0, a1, and a2 are the coefficients multiplying T̄ , T̄ ′′, and T̄ ′′′′ in (61), respectively. The
solution for the temperature perturbation is given by

T̄ (x, ω) =
4∑

k=1

Ck(ω) exp [rk(ω)x] , (64)

where the constants of integration Ck are determined by the boundary conditions (62). Expressions
for the Fourier-transformed density and velocity perturbations now follow from substitution of
Eq. (64) into Eq. (60). The time-domain solution is obtained by taking the real part of the inverse
Fourier transform (50) of each of the transformed hydrodynamic fields.

IV. LVDSMC SCHEME

The methods described in Sec. III were validated using the low-variance deviational simulation
Monte Carlo (LVDSMC) method,23 which is able to capture near equilibrium flows at a greatly
reduced computational cost compared to the standard direct simulation Monte Carlo (DSMC)
method,24 and without introducing approximations. The original LVDSMC method was developed
for hard-sphere collisions,25 but variants exist for both BGK26–28 and variable hard sphere28, 29

collisions. In this work, we make use of a recent mass-conservative version which features zero time
step error in the collision step; the BGK version with these features is documented in Ref. 28. The
mass-conservative formulation28, 29 eliminates random walks in the hydrodynamic variables without
a need for large numbers of computational particles, as was required by earlier methods. Below is a
brief outline of the computational method and a description of how it was extended to treat moving
boundaries.

The LVDSMC method presented here solves the BGK model equation by decomposing the
velocity distribution f = f 0 + f d into a reference equilibrium, here taken to be f 0 = F, and a
deviation from equilibrium f d simulated by signed particles, representing positive and negative
deviations from the reference state. The resulting equation for f d (assuming one-dimensional flow
and zero body forces) is

∂ f d

∂t
+ cx

∂ f d

∂x
= 2√

π K n

(
f loc − f 0

) − 2 f d

√
π K n

, (65)

where f loc is the local equilibrium (Maxwell-Boltzmann) distribution based on local hydrodynamic
properties. Note that the advection part in Eq. (65) is identical with the original Boltzmann equation,
and thus deviational particles are advected along velocity trajectories as in the standard DSMC
procedure. The collision part is simulated by creating new deviational particles through sampling
the distribution 2

(
f loc − f 0

)
/
(√

π K n
)

and deleting existing particles from f d; this deletion step
is the key to providing stability of the method by countering an unbounded increase in the number
of particles in simulation.

Enforcement of the moving boundary condition is accomplished in two steps, the first of
which is the standard LVDSMC technique28, 29 simplified for diffuse reflections. At the boundaries
x = ∓1/2, the distribution function for cx ≷ εUw± is

f d = ρ
re f l
B φB + (

ρ
gen
B φB − f 0) , (66)

where φB = π−3/2 exp
(−(cx − εUw±)2 + c2

y + c2
z

)
. The first term in Eq. (66) represents particles

which strike the boundary and reflect diffusely, in a standard DSMC procedure, where the velocity of
the particle is sampled from the fluxal boundary distribution ±(cx − εUw±)φB , which maintains the
initial sign of the particle. Implementing the second term in Eq. (66) requires sampling deviational
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particles from the distribution ±(cx − εUw±)
(
ρ

gen
B φB − f 0

)
, where ρ

gen
B is determined from mass

conservation,

ρ
gen
B = −

∫
cx ≶εUw±

(cx − εUw± ) f 0d3c∫
cx ≷εUw±

(cx − εUw±)φBd3c
. (67)

A second step is required in the enforcement of the deviational boundary condition during the
wall movement. For a time step δt the domain contracts (expands) by ε

(
Uw+ − Uw−

)
δt , resulting

in removal (addition) of the underlying equilibrium state f0 in the region. To correct for this, and to
restore the correct reference state in the region, additional particles are introduced at the boundary
via the fluxal distribution εUw±δt(cx − Uw±)φB , where we have used the fact that the dimensionless
reference distribution has unit density. Explicit mass conservation for this step is enforced by tracking
a mass residual at each boundary, defined as the sum of the differences between the mass of generated
particles and the exact mass changes ±εUw±δt , for all time steps up to the current time. The number
of generated particles is chosen to minimize the absolute value of the residual at each boundary,
ensuring that the mass is conserved to nearest integer particle count. Mass conservation for all other
steps is enforced using established procedures described in Refs. 28 and 29.

Hydrodynamic properties are evaluated by summing appropriate moments of the deviation
particles in each cell and normalizing by the volume. Since the absolute movements of boundary
surfaces were small, only the cells adjacent to the boundaries were dynamically resized, rather than
requiring a dynamic remesh of the entire domain.

V. RESULTS

While the analysis described in Secs. III and IV can be applied to any small-amplitude motion
of the boundaries, we focus here on a particular case of “bump-like” actuation,

Uw±(t) =
{±1, 0 ≤ t ≤ tb

0, otherwise
, (68)

in which tb governs the bump duration and is taken tb = 0.1 (in acoustic-time units, L∗/U ∗
th). By

choosing the profile (68), we aim at analyzing the gas response to instantaneous (short-time) non-
periodic forcing, in which both boundaries act as sound generators. The mirror-like motion of the
boundaries facilitates numerical calculation by requiring solution for only half of the gas domain (and
then applying symmetry properties to obtain the system behavior at the other half of the channel).
This is particularly useful for carrying out LVDSMC calculations, which become computationally
expensive for simulating flows at low Knudsen numbers. In the following, we compare our analytical
results in the ballistic and continuum limits with numerical solutions based on the linearized BGK
equation and LVDSMC scheme.

Figures 1 and 2 present time variations of the density, velocity, temperature, and pressure
perturbations for Kn = 5 (Fig. 1) and Kn = 0.02 (Fig. 2) at fixed locations (x = −0.4 and x = −0.2)
along the gap. Each figure shows comparison between the analytical approximation (being the
ballistic-limit solution in Fig. 1 and the continuum-limit solution in Fig. 2) and numerical LVDSMC
(crosses) and linearized BGK (circles) solutions. In general, the agreement between all sets of results
is very good at almost all times, supporting use of each of the independent schemes at the chosen
Knudsen numbers. Given the vastly different methods of solution applied, we find this agreement
gratifying.

Starting with the large-Kn case (Fig. 1), we observe that at early times there exists an initial time
interval, 
tr, during which all perturbations equal zero. This “retarded time” interval reflects the
time it takes the moving-wall signal to reach the point in space where perturbations are measured.
Naturally, 
tr is larger for x = −0.2 than for x = −0.4, as the former is located further away from
the walls. Recalling that the time is scaled by the acoustic time scale L∗/U ∗

th , and focusing on the
instant in time when the wavefront first reaches the measurement point, we find that the disturbance
initially propagates from the wall at the mean thermal speed.30 A similar result was found for the
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FIG. 1. Time variations of (a) density, (b) velocity, (c) temperature, and (d) pressure perturbations for Kn = 5 and the indicated
fixed locations x = −0.4 and x = −0.2 along the gap. Solid lines, crosses, and circles denote analytical (collisionless),
LVDSMC, and linearized BGK solutions, respectively.
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gas response to instantaneous boundary heating.31 Generally, the motion of each boundary at early
times (t � 1) affects only its immediate vicinity, and the total system behavior can be viewed as a
superposition of the local gas responses to two walls interacting with a semi-infinite medium.

As the signal wavefront passes a point in space, all hydrodynamic perturbations exhibit a
local sharp increase in their magnitudes, followed by a later decrease. While density and pressure
perturbations remain positive at all times, it is interesting to note that the temperature perturbation
becomes negative close to the boundary after first passage of the wavefront (see the curve pertaining
to x = −0.4 in Fig. 1(c) for 0.2 � t � 0.5). With increasing time, the mutual effects of both walls are
reflected at each point in the gas domain. Thus, the minima of negative velocities observed in Fig. 1
b at t ≈ 0.6 originate from the motion of the wall at x = 0.5 in the negative-x direction. At later times,
the gas approaches its new equilibrium state through a series of decaying waves propagating across
the gap. For the present case of two isothermal walls displaced a tb-distance into the gas domain (in
εL∗ units) after the bump, the new equilibrium state is given by uniformly vanishing temperature
and velocity perturbations, together with steady-state density and pressure perturbations given by

ρ(t → ∞) ≈ p(t → ∞) ≈ 2tb. (69)

These steady-state values, resulting from the reduction in channel width from L∗ to L∗(1 − 2tbε)
owing to walls motion, are clearly recovered in the late-time behavior in Fig. 1. Remarkably, the
new equilibrium state is achieved shortly after t ≈ 1, which corresponds to approximately one-fifth
of the mean free time for the present choice of Kn = 5. Given the short relaxation process, it is
indeed expected that the collisionless analysis should predict the exact numerical solution well. To
this end, the small-amplitude rapid oscillations visible in the linearized BGK solution at late times,
reflect only numerical discretization of the inverse Fourier transform calculation, and vanish with
increasing the number and range of frequency components included in the integration.

Traversing to the low-Kn case presented in Fig. 2, we observe several qualitative differences
between the system behavior at collisionless and continuum-limit conditions. Perhaps the most
visible difference is in the oscillatory behavior of the system at small Kn, being much weaker at
high-Kn flow conditions. This is accompanied by extension in equilibration time with decreasing
Kn, being t � 10 (outside the time interval presented in the figure) for Kn = 0.02. Oscillations
period approximately equals unity, reflecting the time it takes for a disturbance to propagate across
the gap (see discussion of Fig. 1). With increasing t, oscillations amplitude decays owing to viscous
dissipation effects. Similarly to Fig. 1, negative values of the temperature perturbation are observed
at early times close to the wall, after passage of first and second wavefronts.

Comparing between the responses presented in Figs. 1 and 2, it appears that the Knudsen
number, governing the amount of collisions experienced by a molecule while passing through
the channel, can be viewed in the present context as a “damping coefficient”: at large values,
when molecular collisions are infrequent, equilibration is achieved almost instantaneously at times
O(L∗/U ∗

th), much shorter than the mean free time (∼ l∗/U ∗
th); however, when Kn � 1, equilibration

is obtained through extended oscillations, captured well by the continuum-limit solution. With
decreasing Kn, equilibration becomes more and more affected by the diffusive time scale L∗2/ν∗,
being 1/K̃ n longer than the acoustic scale (see Eq. (54)). Note that, while the analytical solution
is in close agreement with simulations at almost all times, significant discrepancies appear in
Fig. 2 at t < 1, particularly when perturbation wavefront passes through the measurement point
(observe the differences between results at the first maximum point in all fields in Fig. 2). Indeed, all
hydrodynamic fields exhibit sharp time-variations in the vicinity of perturbation wavefront, resulting
in a local decrease in the characteristic time-scale and subsequent increase in the equivalent value
of local Knudsen number (see Fig. 3). These discrepancies diminish in time, when the wavefront
flattens due to viscous dissipation effects. At early times, small differences are also observed in
Fig. 2 between linearized BGK and LVDSMC results, and are attributed mainly to a small inevitable
inaccuracy in LVDSMC data due to numerical discretization. A more refined LVDSMC calculation
would become considerably demanding for the present small value of Kn. In terms of validity of our
analytical scheme, our calculations indicate that the differences between continuum-limit and exact
(LVDSMC and linearized BGK) solutions vanish with decreasing Kn.
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FIG. 3. Effect of the Knudsen number on the variation of pressure perturbation: (a) comparison between time evolution in
the ballistic limit (Kn → ∞, solid line) and LVDSMC results for Kn = 0.5 (crosses) and Kn = 0.2 (circles) at x = −0.4;
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perturbation at the indicated times, for Kn = 0.05. Solid lines and crosses mark continuum-limit and LVDSMC data,
respectively.

To examine the limits of validity of the analytical approximations, Figure 3 studies the effect of
the Knudsen number on the time and space variations of the pressure perturbation. Figures 3(a) and
3(b) study the time evolution of pressure at a fixed point (x = −0.4), whereas Fig. 3(c) presents the
pressure space variation. Specifically, Fig. 3(a) compares the collisionless solution with LVDSMC
results for Kn = 0.5 and Kn = 0.2, and Fig. 3(b) compares the continuum-limit predictions with
LVDSMC data for Kn = 0.05 and Kn = 0.1. Figure 3(c) studies the case Kn = 0.05 and compares
the calculated space variation according to LVDSMC and continuum-limit schemes at times t = 0.5
and t = 1.

Starting with Fig. 3(a), we observe that the collisionless solution approximates the numerical
result reasonably well for Kn = 0.5, and, to a qualitative degree, even for Kn = 0.2. Yet, quantitative
discrepancies are clearly detected in both cases, resulting from the effect of molecular collisions,
which becomes non-negligible for Kn < 1 at t � O(1). Turning to Fig. 3(b), we find that the
differences between continuum-limit and exact numerical solutions increase with increasing Kn. As
noted in Fig. 2, these differences are most significant close to the maxima points, marking the times
when perturbation wavefront passes through the measurement location x = −0.4. For Kn = 0.1,
these discrepancies become of the order of 10% and more. It can therefore be concluded that, while
the collisionless solution predicts the system behavior markedly well up to Kn ≈ 1 and somewhat
less, more care should be taken when applying the continuum-limit description to analyze the system
behavior in the vicinity of perturbation wavefront.

To further illustrate the last observation, the space variations of pressure perturbation presented
in Fig. 3(c) show that the maximum discrepancies between approximate (continuum-limit) and
numerical solutions appear at wavefront locations. Recalling that the wavefront propagates at the
mean thermal speed, it is located at the middle of the gap x ≈ 0 when t = 0.5, and at x ≈ ±0.5 (close
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to the boundaries) when t = 1. Indeed, the largest discrepancies are observed at these locations
in the respective curves. Given this cause for breakdown of the continuum description, it is yet
satisfactory that the continuum-limit approximation provides a reasonable prediction for the overall
system behavior at non-vanishing Knudsen numbers.

To complete the presentation of results, Figure 4 studies the effect of having two moving walls
(as prescribed in Eq. (68)), by comparing the present results for velocity (Fig. 4(a)) and pressure
(Fig. 4(b)) perturbations at x = −0.4, with those obtained when having only one moving wall,

Uw+(t) =
{

1 , 0 ≤ t ≤ tb

0 , otherwise
, Uw−(t) ≡ 0, (70)

with tb = 0.1. The two setups are compared for Kn = 0.1, and for each case, both LVDSMC and
linearized BGK results are presented. Again we note that the numerical solutions are in very good
agreement, in support of their accuracy.

At early times (t � 0.5), we observe that the two solutions are identical. Indeed, the only signal
affecting the gas at x = −0.4 at these times, is the one generated by the moving wall at x = −0.5,
common to both setups. The effect of distant wall actuation becomes significant at later times, where
the two solutions differ, reflecting pressure wave propagation from x = 0.5 in the two-moving-wall
case (see the non-monotonic variation for Uw− = −Uw+ at 0.5 � t � 1.5 in both Figs. 4(a) and 4(b)).
At late times, the two systems approach different equilibrium states, as the steady state pressure for
the Uw− = 0 system is p(t → ∞) ≈ tb = 0.1 (cf. Eq. (69)). Equilibration time was found similar in
both cases.

VI. CONCLUSION

We studied the response of a gas in a microchannel to instantaneous non-periodic small-
amplitude boundary motion in the normal direction. The problem was formulated using the BGK
model,20 and solved for the entire range of Knudsen numbers, combining analytical and numerical
schemes of solution. System response to short time (compared to the ballistic time scale L∗/U ∗

th)
“bump-like” boundary actuation was analyzed, showing a sequence of propagating and reflected
pressure waves, decaying in time towards an equilibrium state achieved at late times. Gas rarefaction
was found to have a damping effect on the relaxation process, with the time required for equilibrium
shortening with increasing Kn. Oscillations in hydrodynamic quantities, characterizing gas response
in continuum-limit conditions, were shown to vanish in the collisionless limit. The effect of having
two moving boundaries, compared to only one considered in previous studies, was investigated,
demonstrating the added effect of having two sources of sound in the system. Comparison between
analytical and numerical solutions revealed that the collisionless description predicts the system
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behavior exceptionally well for all Kn � 1 and somewhat less. Yet, the continuum-limit solution
should be considered with care at early times near the location of acoustic wavefronts, where the
local scale characterizing flow-field variations becomes small and increases the effective value
of local Knudsen number. In spite of this limitation, and recalling the relative effort required in
obtaining numerical results, the analytical approximations are suggested as an efficient alternative
for predicting the overall system behavior. Practically, to obtain exact quantitative description of the
system response to short-time excitation, numerical solution is needed only at a narrow interval of
0.1 � Kn � 0.5 numbers, where collisionless and continuum-limit schemes break down (see Fig. 3).
In cases where boundary motion extends over longer periods of time (of the order of the ballistic time
scale and longer), the collisionless solution is expected to hold only at short times (t∗ � L∗/U ∗

th)
for systems with Kn ∼ O(1), while numerical solution will be needed to capture later-time system
evolution.

The analysis presented in this work is based on the BGK model of the Boltzmann equation.
The same model equation was adopted in previous studies on acoustic wave propagation (e.g.,
Refs. 4, 8, 9, 13, and 19), mainly owing to its relative simplicity, which facilitates derivation of
semi-analytical and numerical solutions. Yet, a well known deficiency of the model is that it does
not predict the correct value for the Prandtl number for a monatomic gas (unity instead of 2/3), and
therefore cannot yield the accurate coupling between gas dynamic and thermodynamic descriptions.
While this is generally true, we note that a key part of our analysis focuses on a collisionless-
flow problem, which formulation is independent of the chosen model of molecular interaction. In
addition, and as mentioned above, our findings indicate that when the input signal acts during a
time interval that is shorter than the ballistic time-scale, the collisionless-flow limit predicts the
entire system behavior remarkably well for Knudsen numbers as low as unity and somewhat smaller.
This indicates that the role of chosen model of molecular interaction in the present problem is not
dominant for a wide range of gas-rarefaction conditions.

To further investigate on the effect of chosen model of molecular interaction, Figure 5 presents
a comparison between the responses of BGK and hard-sphere gases to “bump-like” actuation, as
obtained using the continuum-limit scheme (see Sec. III C). The time variations of velocity and
pressure perturbations are presented at a fixed point (x = −0.4), for a system with Kn = 0.02.
Hard-sphere data are obtained by replacing the BGK entries in the model of Sec. III C by their hard-
sphere counterparts, Pr = 2/3, K̃ n ≈ 0.225K n and ξ ≈ 2.127Kn, respectively.22 As clearly observed
in both parts of the figure, only minor (qualitatively insignificant) differences appear between the
results. This supports the present application of the BGK model, as it is expected that the effect
of molecular interaction should be most dominant at small Knudsen numbers, where molecular
collisions are frequent. A similar conclusion can be drawn by carrying out a numerical solution based
on the LVDSMC scheme, readily available for a hard-sphere gas25 and other models of molecular
interaction.29 Regardless of the chosen model of molecular interaction, the main contribution of
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the present work is in presenting a general scheme for studying propagation of acoustic waves
in a confined domain, resulting from arbitrary (small-amplitude) boundary actuation. This is in
contrast with existing studies (excluding Ref. 19), which have hitherto considered system response
to harmonic actuation only.

Focusing on a case of non-periodic excitation, the present study quantifies the damping effect of
gas rarefaction on sound-wave propagation in a confined geometry. We find that while the relaxation
time at collisionless-flow conditions is ∼ O(L∗/U ∗

th), equilibration process extends over longer
times with decreasing Kn (cf. Figs. 1 and 2). This can be traced back to the ratio between advective
(∼ L∗/U ∗

th) and diffusive (∼L∗2/ν∗) time scales, governing relaxation processes in collisionless and
continuum conditions, respectively. A similar result was found in a previous set of studies, where
the thermoacoustic response of a gas to instantaneous (step-jump) change in the temperature of its
boundaries was analyzed.31, 32 It therefore appears of interest to investigate the combined effects
of thermal and mechanical excitations on the propagation of sound waves in a rarefied medium.33

Extension of the present theory to spatially two- and three-dimensional configurations may also be
considered, but will be based mainly on demanding numerical simulations, which are not in the
focus of the present contribution.

APPENDIX: DERIVATION OF EQS. (15) AND (16)

Substituting Eq. (13) into Eq. (14), and carrying out the cy and cz integrations, yield

ρ+(t) + 2
∫ −1/t

−∞
ρ− (t + 1/cx ) cx exp

[−c2
x

]
dcx =

√
πUw+(t) − 4

∫ −1/t

−∞
Uw− (t + 1/cx ) c2

x exp
[−c2

x

]
dcx (A1)

and

ρ−(t) − 2
∫ ∞

1/t
ρ+ (t − 1/cx ) cx exp

[−c2
x

]
dcx =

−√
πUw−(t) + 4

∫ ∞

1/t
Uw+ (t − 1/cx ) c2

x exp
[−c2

x

]
dcx . (A2)

Changing the variables in the integral terms in (A1) and (A2) to τ = t + 1/cx and τ = 1 − 1/cx,
respectively, leads to

ρ+(t) − 2
∫ t

0

ρ−(τ )

(t − τ )3
exp

[
− 1

(t − τ )2

]
dτ = √

πUw+(t) − 4
∫ t

0

Uw−(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ

(A3)

and

ρ−(t) − 2
∫ t

0

ρ+(τ )

(t − τ )3
exp

[
− 1

(t − τ )2

]
dτ = −√

πUw−(t) + 4
∫ t

0

Uw+(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ.

(A4)

Integration by parts of the integral terms on the left-hand sides of Eqs. (A3) and (A4) yields
Eqs. (15) and (16), respectively.
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