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The effect of structure permeability on the far-field radiation of a thin airfoil is studied.
Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions
are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out
using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and

prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied
to describe airfoil wake evolution. To assess the impact of penetrability, results are
compared to counterpart predictions for the sound of an impermeable airfoil. Considering
the finite-chord airfoil as “acoustically transparent”, the leading-order contribution of
surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow
conditions considered, porosity causes attenuation in outcome sound level. This is
accompanied by a time-delay in the pressure signal, reflecting the mediating effect of
permeability on the interaction of fluid flow with airfoil edge points. To the extent that
thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results
indicate on a decrease of � 10 percent and more in the total energy radiated by a
permeable versus an impermeable airfoil. This amounts to a reduction in system sound
pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing
effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law
to model the effect of material porosity is discussed in light of existing literature.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

When an air vehicle passes through unsteady flow conditions, commonly formed as incoming gust or local turbulence, in
either fixed-wing or flapping-flight setup, it experiences time variations in the aerodynamic forces acting on it. These
variations are inevitably radiated as sound waves, propagating into the far field through flow pressure fluctuations. Airfoil
aerodynamic noise contributes significantly to the sound radiation in this case, and to the noise generated by many other
aero-machinery structures, including wind turbines and engine fans. With nowadays increasing interest in controlling
sound generation for both civil (reduction of airport and wind farm noise pollution) and military (monitoring acoustic
signature) applications, it is important to study novel means by which airfoil aerodynamic noise may be efficiently sup-
pressed [1].
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In searching for an optimal method to minimize airfoil noise, owls are known to have the ability to maintain an almost
“silent” flight [2,3]. Considering the growing interest in using biomimetics to improve on engineering applications, it
therefore seems natural to study the methods by which owls control their flight acoustic radiation. It is now commonly
accepted that owls fly silently owing to main three reasons [2]: a leading edge comb of stiff feathers; a fringe of flexible
filaments at the feathers trailing edges; and a soft coating at the upper part of the wings. These features suggest that an
appropriate combination of airfoil elasticity, structure porosity and material non-homogeneity may result in considerable
decrease in flight aerodynamic noise. Focusing on ongoing efforts to analyze the impacts of the above on sound emission,
the present work seeks to study the separate effect of airfoil permeability on its far-field sound at unsteady flow conditions.

The theoretical problem of sound radiation by perforated materials was first treated by Ffowcs-Williams [4], who
examined the far-field radiation of turbulence interacting with a uniform array of circular orifices over an infinite plane.
Both acoustically “opaque” and “transparent” surfaces were considered, yielding leading monopole and dipole radiations,
respectively. Following works have focused on various planar geometries with different forms of structure perforations, and
included both theoretical [5–10] and experimental [11,12] investigations. Other configurations, such as acoustic liners [13],
sandwich panels [14] and circular cylinders [15,16], have also been considered. In common to all theoretical investigations,
the total radiation by a perforated surface was calculated based on detailed analysis of the sound emitted by a single cavity
interacting with the flow. In cases where an array of pores was considered, the results for the overall radiation were
obtained based on a number density parameter, indicating the number of surface pores per unit area. In a single work where
non�uniform perforation has been modeled [5], a comparison between uniform and non�uniform pore distributions
is made.

In a recent effort to develop novel noise-control methodologies for reducing fluid-structure interaction sound, a sequence of
studies have examined surface porosity as means for passive noise control in finite and semi-infinite transparent configurations. To
this end, Geyer et al. [17,18] experimented on the effect of porosity on the sound of an airfoil trailing edge interacting with a
turbulent boundary layer. Following works examined the impact of surface perforations in other natural [19] and engineering
[20,21] applications. Significant pressure level reduction was measured in some of the cases, and the dependence of sound
attenuation efficiency on specific details of surface treatment and perforation extent was tested. The above experimental studies
were accompanied by numerical and theoretical investigations. Thus, Bae and Moon [22] demonstrated the dampening effect of a
porous trailing edge in a flat plate setup using large-eddy simulations. Jaworski and Peake [23] considered the acoustic field of a
turbulent eddy interacting with a semi-infinite poroelastic plate using a Wiener-Hopf asymptotic technique. Khorrami et al. [24]
suggested porosity to control rotor tip-clearance-induced noise, and Liu et al. [25] examined the impact of perforated coating on the
sound of a tandem-cylinder setup.

While the above works are of valuable practical significance, the numerical efforts involved in the course of analysis are
rather demanding. It is therefore of interest to suggest a scheme that is significantly less expensive, yet physically mean-
ingful, as an alternative for studying the problem. The present work suggests such an approach, through incorporation of a
thin-airfoil-theory calculation for the near-field, and an acoustic-analogy-based scheme for the far-field. The near-field
solution is considerably less demanding than the computational-fluid-dynamics calculations applied in Refs. [22,24,25]; the
far-field calculation then uses the near-field description as a source term in a linearized acoustic-analogy formulation. In a
sense, the suggested approach takes advantage of previous studies [4,7,8,10], without necessitating exact geometrical
knowledge on structure perforations. This is realized through application of Darcy's law [26,27], according to which the
microscopic description of body permeability is replaced by an intrinsic functional relation. This enables study of non-
homogeneous porous media (where porosity is non-uniformly distributed along the surface), which was previously tackled
only in spherical shell and semi-infinite plate geometries [5].

An outline of the paper follows. We consider a two-dimensional model problem of a thin permeable airfoil subject to
leading-edge pitching actuation and incoming flow unsteadiness (incident vorticity). Low-Mach and high-Reynolds number
flow conditions are assumed, supporting application of a compact-body description for the acoustic problem. The near- and
far-field problems are formulated and analyzed in Section 2. The results, quantifying the effect of airfoil porosity on its
acoustic signature, are presented in Section 3. Concluding comments are given in Section 4. An assessment of the applic-
ability of Darcy's law formulation is made in the Appendix.
2. Problem formulation

Schematic of the problem is shown in Fig. 1. Consider a two-dimensional setup of a porous rigid airfoil of chord 2a. The
airfoil is immersed in uniform flow of speed U in the x1-direction. At time t¼0, sinusoidal leading-edge pitching actuation of
the form

∂ξ
∂x1

� �
x1 ¼ �a

¼ εp sin ωpt
� �

(1)

is commenced. Here, ξðx1; tÞ marks airfoil displacement in the x2-direction, εp⪡1 in accordance with a linearized formulation
(hereafter, overbears mark non-dimensional quantities), and ωp denotes the pitching frequency. Additionally, the airfoil is
subject to aerodynamic loading in the form of an incident line vortex of strength Γ, introduced at t ¼ 0 at a prescribed



Fig. 1. Schematic of the permeable-airfoil setup.
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upstream location. High Reynolds and low Mach number conditions are assumed, so that the near flow field may be
considered inviscid and incompressible. Compressibility effects are accounted for when analyzing the far radiated sound.

To model airfoil porosity, Darcy's law formulation is applied [26,27]. Structure penetrability is thus governed by an
intrinsic distribution of permeability, a mean representative of material porosity. For clarity of presentation, the distribution
is denoted by κhðx1Þ, where κ marks the permeability parameter and hðx1ÞA ½0;1� is the corresponding scaled distribution.
Vanishing values of h represent impermeable points along the chord. In the present thin-airfoil setup, the seepage velocity
vs through the structure is taken proportional to the pressure difference across it [28],

vs x1; tð Þ ¼ �κhðx1ÞΔp x1; tð Þ: (2)

In (2), vs is positive in the x2-direction, and Δp x1; tð Þ ¼ pu�pl marks the pressure difference between upper (pu) and lower
(pl) surfaces of the airfoil. Discussion on the applicability of Darcy's law formulation, traditionally used to analyze small
Reynolds number flows through porous media, follows in an Appendix.

In what follows, we investigate the effect of airfoil porosity on airfoil far acoustic signature. To this end, our findings are
compared with a reference case of a rigid impermeable airfoil subject to identical excitations. Formulations of the near- and
far-field problems are now described.

2.1. Near-field description

The small airfoil deflections prescribed by leading-edge actuation (1), together with high-Reynolds and low-Mach
conditions, allow for the application of potential thin airfoil theory approximation to describe the near flow field. Incor-
poration of the effect of porosity additionally assumes that seepage velocity is generally small compared with the uniform
mean speed, vsj j⪡U, which can be a posteriori verified. For the present rigid airfoil setup, the leading edge actuation (1) fixes
airfoil chord deflection in the x2-direction,

ξðx1; tÞ ¼ εpðx1þaÞ sin ðωptÞ; (3)

for all tZ0.
In line with the unsteady flow conditions considered, vortex shedding must occur at the airfoil surface. At the small

angles of attack assumed, the flow at the airfoil leading edge is regarded attached, and release of vorticity is allowed only at
the surface trailing edge. We make use of a discrete-vortex representation for the airfoil wake, where, at each time step, a
concentrated line vortex is released to the flow, with its strength fixed by the Kelvin theorem and the instantaneous time
change in airfoil circulation. As indicated by Saffman and Baker [29] and Sarpkaya [30] and references cited therein, discrete
models are generally sensitive to the initial locations and core modeling of the nascent vortex. Yet, to the extent that the
present small-amplitude setup is considered, our results indicate that the wake description is fully converged in both time
and space. At each time step Δt, the nascent point vortex is placed at a distance UΔt in the mean-flow direction from the
instantaneous position of the trailing edge. Once released, the trajectory of each wake vortex follows from a potential-flow
calculation, as formulated below (see Eq. (9)). According to our computations, decrease in the integration time step below
some minimum value (see Section 2.3) does not result in any visible changes in system near- and far-field descriptions, thus
indicating on scheme convergence.

Using thin-airfoil methodology, the airfoil is represented through its circulation distribution per unit length, γ x1; tð Þ.
Using complex notation and denoting the conjugate velocity of the potential flow-field by W zð Þ, the permeability condition
is given by

∂ξ
∂t
þU

∂ξ
∂x1

¼ � ImfW zð Þj�arx1 rag�vs; (4)

where vs is specified by Eq. (2), and

W zð Þ ¼U� i
2π

Γ

z�zΓ
þ
XN
k ¼ 1

Γk

z�zΓk

þ
Z a

�a

γ s; tð Þ ds
z�s

 !
: (5)
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At the airfoil surface

W zð Þj�arx1 ra ¼U� i
2π

Γ

x1�zΓ
þ
XN
k ¼ 1

Γk

x1�zΓk

þ γ s; tð Þ ds
x1�s

0
@

1
A; (6)

where the barred integral sign denotes a Cauchy principal value integral. In (4)–(6), z¼ x1þ ix2 marks the complex repre-
sentation of a point in the plane of motion, and zΓ and zΓk denote instantaneous locations of incident and kth trailing edge
vortices, respectively. The pressure jump Δp across the airfoil, required for the calculation of seepage velocity vs, is fixed by
the unsteady form of Bernoulli's equation,

Δp x1; tð Þ ¼ ρ0Uγ x1; tð Þþρ0
∂
∂t

Z x1

�a
γ s; tð Þ ds; (7)

where ρ0 denotes the fluid mean density.
Incident and wake vortices dynamics are coupled to the system through the right-hand side of the permeability con-

dition (4). The motions of incident and free wake vortices are governed by

dzΓ
dt

¼W�
Γ (8)

and

dzΓk

dt
¼W�

Γk
k¼ 1;2;…;Nð Þ; (9)

respectively. Here W�
Γ and W�

Γk
mark the complex conjugates of the conjugate velocities induced at the instantaneous

locations of incident and kth free wake vortices, respectively, with their self-singularities removed (cf. (5)),

WΓ zð Þ ¼U� i
2π

XN
k ¼ 1

Γk

zΓ�zΓk

þ
Z a

�a

γ x1; tð Þ dx1
zΓ�x1

 !
(10)

and

WΓk zð Þ ¼U� i
2π

XN
m ¼ 1
ma k

Γm

zΓk �zΓm

þ Γ

zΓk �zΓ
þ
Z a

�a

γ x1; tð Þdx1
zΓk �x1

0
@

1
A: (11)

The total system circulation is conserved by applying Kelvin's theorem,

ΓN ¼ �
XN�1

k ¼ 1

Γkþ
Z a

�a
γðx1; tÞ dx1

 !
; (12)

which fixes the strength of the nascent vortex ΓN.
Formulation of the initial-value problem is completed by imposing an initial location for the incident vortex,

zΓ t ¼ 0ð Þ ¼ zΓ0 ; (13)

as well as an initial state for the airfoil, prescribed by Eq. (3). To ensure regularization of the flow field at the airfoil trailing
edge, the unsteady Kutta condition,

γða; tÞ ¼ 0; (14)

is applied.
The near-field problem formulated above is solved numerically, where shedding of the first trailing vortex occurs at t¼0.

Details regarding the numerical procedure of solution are given in Section 2.3.

2.2. Acoustic-field description

Having formulated the near-field problem, we now turn to analyze the far-field radiation of the system, where the former
description serves as an effective “source term”. In the present low-Mach and high-Reynolds number setup, the acoustic field
is dominated by a dipole-type interaction between flow vorticity and the solid structure [31]. Surface porosity also affects the
far-field in the form of a dipole term, as the airfoil considered is assumed “acoustically transparent” [4].

We start with the equation of vortex sound [31],

1
c20

∂2

∂t2
� ∇2

 !
B¼ div Ω� vð Þ; (15)

where c0 marks the mean speed of sound, B¼ R
dp=ρþv2=2 denotes the fluid total enthalpy for homentropic flow (with p; ρ

and v marking fluid acoustic pressure, density and velocity magnitude, respectively), v is the fluid velocity, and Ω is the
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vorticity vector. The latter is composed of the discrete contributions of incident and wake vortices,

Ω¼ΩΓþΩΓk ; (16)

where

ΩΓ ¼ x̂3Γδ x�xΓðtÞð Þ and ΩΓk ¼ x̂3

XN
k ¼ 1

Γkδ x�xΓk ðtÞ
� �

; (17)

and δ denotes the Dirac delta function. In the far-field ( xj j-1)

B x; tð Þ � p x; tð Þ=ρ0; (18)

and we focus on finding the distant xj j-1 approximation for pðx; tÞ.
The problem for Bðx; tÞ is analyzed using a Green's function approach. Towards this end, we introduce a counterpart

problem for the Green's function G,

1
c20

∂2

∂t2
�∇2

 !
G x; yjt�t0ð Þ ¼ δ x�yð Þδ t�t0ð Þ; (19)

where x and y denote observer and point-source vector locations, respectively, and t0 marks the time instant of source
action. Taking account of the body surface, and with no loss of generality, we impose a Neumann-type boundary condition
of a vanishing normal derivative of G over the airfoil surface, ð∂G=∂ynÞairfoil ¼ 0. Multiplying Eq. (15) by G x; yjt�τð Þ, sub-
tracting Eq. (19) multiplied by B x; tð Þ, and integrating over the volume of fluid and time, we obtain an expression for Bðx; tÞ in
terms of the Green's function,

B x; tð Þ ¼ �
Z 1

�1
dτ
Z 1

�1
Ω� vð Þ∇Gd3yþ

Z 1

�1
dτ
I
airfoil

B
∂G
∂yn

þG
∂vn
∂τ

� �
dS yð Þ; (20)

where vn marks the component of fluid velocity normal to the airfoil. Applying the above-mentioned boundary condition for
Green's function, and making use of Eq. (18), we arrive at an expression for the far-field acoustic pressure,

p x; tð Þ � �
Z 1

�1
dτ
Z 1

�1
ρ0 Ω� vð Þ∇Gd3yþ

Z 1

�1
dτ
I
airfoil

ρ0G
∂vn
∂τ

dS yð Þ; (21)

at jxj-1.
We consider a case where the airfoil is acoustically compact, in which the characteristic size of the source zone (being the

airfoil chord length) is much smaller than the acoustic wavelength. Assuming an acoustic wave with frequency ω0 and
associated wavelength λ0 ¼ 2πc0=ω0, this is equivalent to requiring that a=λ0 ¼Mðω0a=2πUÞ⪡1, where M¼U=c0 is the mean-
flow Mach number. At the present low-Mach flow conditions, source compactness is therefore ensured when low to
moderate wave frequencies (in convective U=a units) are considered. The appropriate form for the two-dimensional
compact Green's function is then [31]

G x; y; t�τð Þ � x � Y
2π

ffiffiffiffiffiffiffiffi
2c0

p
xj j3=2

∂
∂t

Hðtr�τÞffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p
� �

; xj j-1; (22)

where tr 	 t� xj j=c0 denotes the acoustic retarded time and H is the unit step function. YðyÞ marks the Kirchhoff vector, which
components express flow potentials of unit flow over a thin flat airfoil in the y1- and y2-directions,

YðyÞ ¼ y1;Re � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1þ iy2
� �2�a2

q� �� �
; (23)

respectively.
Making use of the linear property of the far-field problem and the above form of the acoustic Green's function, the

acoustic pressure can be expressed as a superposition of “airfoil motion”, “seepage”, “incident vortex” and “wake” con-
tributions,

pðx; tÞ ¼ pξðx; tÞþpsðx; tÞþpΓðx; tÞþpwðx; tÞ; (24)

where

pξ x; tð Þ ¼ ρ0

Z 1

�1

I
airfoil

G x; y; t�τð Þ∂
2ξ

∂τ2
dS yð Þ dτ; (25)

ps x; tð Þ ¼ ρ0

Z 1

�1

I
airfoil

G x; y; t�τð Þ∂vs
∂τ

dS yð Þ dτ; (26)

pΓ x; tð Þ ¼ �ρ0

Z 1

�1

Z
V
ΩΓ � VΓð Þ � ∂G

∂y
x; y; t�τð Þ dS yð Þ dτ; (27)

and
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pw x; tð Þ ¼ �ρ0

Z 1

�1

Z
V
ΩΓk � VΓk

� � � ∂G
∂y

x; y; t�τð Þ dS yð Þ dτ: (28)

In (25)-(28), V denotes the fluid volume occupying all vortices, and VΓ and VΓk mark the velocity vectors of incident and
wake vortices, respectively. Substituting Eqs. (17), (22) and (23) into Eqs. (25)-(28) yields

pξ x; tð Þ ¼ ρ0 cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p
Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�y21

q ∂2ξ
∂τ2

y1; τ
� �

dy1; (29)

ps x; tð Þ ¼ ρ0 cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p
Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�y21

q ∂vs
∂τ

y1; τ
� �

dy1; (30)

pΓ x; tð Þ ¼ ρ0Γ sin θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

V ð2Þ
Γ ðτÞ dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p � ρ0Γ cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p V ð1Þ
Γ τð Þ∂Y2

∂y2
�V ð2Þ

Γ τð Þ∂Y2

∂y1

� �
xΓðτÞ

; (31)

and

pw x; tð Þ ¼
Xn
k ¼ 1

ρ0Γk sin θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

V ð2Þ
Γk
ðτÞ dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p �ρ0Γk cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0 xj j

p ∂
∂t

Z tr

�1

dτffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p V ð1Þ
Γk

τð Þ∂Y2

∂y2
�V ð2Þ

Γk
τð Þ∂Y2

∂y1

� �
xΓk ðτÞ

 !
: (32)

In (31)-(32), V ðjÞ
Γ and V ðjÞ

Γk
mark the incident and kth wake vortex velocity components in the xj-direction, respectively. The

angle θ indicates the far-field observer's directivity, and is measured relative to the x2-axis in the clockwise direction. Thus,
the cos θ¼ x2= xj j and sin θ¼ x1= xj j terms in (29)-(32) correspond to “lift” and “suction” dipole-type radiations. Incident
and wake vortex sound include both lift and suction dipoles, reflecting vortices velocity components in the y1- and the y2-
direction, respectively. Airfoil motion and seepage velocity radiations, however, contain only a lift component, and thus
vanish along the mean-flow (θ¼ π=2) direction.

Calculation of the far-field pressure components is carried out numerically, using the near-field solution in Section 2.1.
The only component that can be obtained in a closed form is pξ, which, by substituting Eq. (3) into (29) and taking a long-
time limit, yield

pξ x; tð Þ � �
ffiffiffi
π

p
ρ0a3 cos θ

4
ffiffiffiffiffiffiffiffiffiffi
c0 xj jp εpω

5=2
p cos ðωptrÞþ sin ðωptrÞ
� �

; tr⪢ω�1
p : (33)

This indicates on a power increase in airfoil motion sound with increasing pitching frequency (�Oðω5=2
p Þ), as reported in

Ref. [32].

2.3. Scaling and numerical analysis

To obtain a numerical solution, the dimensional problem formulated in Sections 2.1 and 2.2 is non-dimensionalized using
a, U, a=U, ρ0U

2 and 2πaU for the length, velocity, time, pressure and vortices circulation, respectively. The non-dimensional
form of the penetration condition (4) then becomes

∂ξ
∂t

þ ∂ξ
∂x1

¼ Re
Γ

x1�zΓ
þ
XN
k ¼ 1

Γk

x1�zΓk

( )
þ γ ðs; t Þ ds

x1�s
þ2πεsh x1ð Þ γ x1; t

� �þ ∂
∂t

Z x1

�1
γ s; t
� �

ds

 !
; (34)

where εs ¼ ρ0κU⪡1 denotes the non-dimensional magnitude of the permeability coefficient. To facilitate formulation, a
change of variables x1 ¼ � cos ϕ is introduced, and airfoil circulation distribution γ ðϕ; t Þ is expanded in a Fourier sine series

γ ϕ; t
� �¼ A0 t

� �1þ cos ϕ

sin ϕ
þ
XL
l ¼ 1

Al t
� �

sin lϕ; (35)

which identically satisfies the Kutta condition (14). Calculation of the time-dependent Fourier-series coefficients Al

l¼ 1;…; Lð Þ is accomplished by grid discretization of the airfoil chord at L grid points, and imposition of the penetration
condition at each point. Scheme convergence is validated through a gradual increase in the number of series terms, to an
extent where further increase in L has a vanishing effect on the results (≲0:1 percent), typically at L¼100.

Following the above-introduced scaling, the non-dimensional parameters governing the dynamical problem are

εs; εp; ωp ¼
ωpa
U

; Γ and zΓ0 ¼
zΓ0

a
; (36)

specifying the scaled permeability and pitching amplitudes, pitching frequency, and incident vortex strength and initial
location, respectively. The problem is also governed by hðx1Þ, the specific form of airfoil permeability distribution, to be fixed
below (see Eq. (43)). For a given choice of problem parameters, the near-field problem is integrated in time using a fourth-
order Runge-Kutta algorithm. A time-step of Δt ¼ π=400ωp was found sufficient for convergence of results for a pitching
airfoil in steady flow conditions (Γ ¼ 0). In the case of a stationary airfoil in unsteady flow conditions (Γa0), Δt ¼ π=400
ensured convergence.
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Applying the same non-dimensionalization to the acoustic problem, the normalized form of the acoustic pressure
becomes

p x ; t
� �¼

ffiffiffiffiffiffiffiffiffi
M
8jxj

s
Πtot t r

� �¼
ffiffiffiffiffiffiffiffiffi
M
8 x
		 		

s
Πξðt rÞþΠsðt rÞþΠΓðt rÞþΠwðt rÞ
� �

; (37)

where
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Πs t r
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π
cos θ

∂
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and
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Late-time evaluation of Πξ (cf. (33)) yields

Πξ t r
� �� �

ffiffiffi
2
π

r
cos θεpω

5=2
p cos ðωpt rÞþ sin ðωpt rÞ
� �

; t r⪢ω�1
p : (42)

Results for the acoustic field are presented in terms of the acoustic “kernels” Πtot, Πξ, Πs, ΠΓ and Πw. In addition to the above
parameters, the acoustic pressure is also governed by the observer far-field directivity, θ¼ arccosðx2= xj jÞ.
3. Results

To study the effect of airfoil permeability on its far-field radiation, we focus on a case where

hðx1Þ ¼ 0:5þ0:5 tanhð4x1Þ: (43)

This represents a smoothly varying permeability distribution function, having a vanishing value at the airfoil leading edge,
and monotonically increasing to a maximum at its trailing edge (see Figs. 2b and 5b). Our calculations indicate that the
Fig. 2. Near-field characteristics of a permeable airfoil in steady flow (Γ ¼ 0) pitching at ωp ¼ 5. (a) Time-variation of total airfoil circulation for an
impermeable airfoil (εs ¼ 0, solid line) and permeable airfoils with εs ¼ 0:05 (red line) and εs ¼ 0:1 (dashed curve). The thin solid horizontal line shows line
of zero circulation, for reference. (b) Instantaneous streamline map at time t ¼ 0:625T for the case εs ¼ 0:1. The bold solid line indicates airfoil position, and
red and blue dots mark instantaneous locations of wake vortices with positive and negative circulations, respectively. The dashed curve shows airfoil
permeability distribution, hðx1Þ (right vertical axis). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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results obtained remain qualitatively similar when varying the distribution function to other monotonically increasing
functions, and we therefore skip further discussion on this effect.

To present our findings, we consider separate cases of an actuated airfoil in a steady flow, Γ ¼ 0 (Section 3.1), and a
stationary airfoil in an unsteady flow, εp ¼ 0 (Section 3.2). In both cases, the effect of airfoil permeability is studied through
varying the value of permeability amplitude parameter εs. A comparison with a reference case of an impermeable airfoil,
εs ¼ 0, is made.

3.1. Actuated airfoil in steady flow

To investigate the near- and far-field impact of airfoil permeability in steady pitching flight, we fix the pitching amplitude
at εp ¼ 0:01 and inspect the effect of varying the pitching frequency ωp and permeability parameter εs on the results. For the
initial-value problem considered, the system exhibits initial transient behavior in response to the leading-edge actuation (1).
In what follows we focus only on the “late-time” periodic response of the system, achieved at t⪢ω�1

p , practically after only
few pitching periods. Following results are presented over a time interval of a pitching period, 0rtrT , where T ¼ 2π=ωp.

Fig. 2 examines the effect of permeability on the near-field characteristics of an airfoil in steady flow actuated at ωp ¼ 5.
In Fig. 2a, the effect of permeability on total airfoil circulation,

Γaðt Þ ¼
Z 1

�1
γ ðs; t Þ ds;

is shown. In Fig. 2b, instantaneous streamline and vortical map of a permeable airfoil is presented. For reference, the dashed
line in Fig. 2b shows airfoil permeability profile, hðx1Þ, as specified in Eq. (43).

Structure permeability is known to reduce the aerodynamic efficiency of an airfoil, as demonstrated by Iosilevskii [28]. It
is therefore expected that higher permeability values are accompanied by lower airfoil circulations, which correspond to
decreasing lift forces. Such is the result shown in Fig. 2a, where decreasing amplitudes in Γa are obtained for an actuated
airfoil with increasing permeability coefficient. The results also indicate on a phase-shift in circulation maxima and minima
times caused by airfoil permeability. Since release of trailing edge vorticity is directly affected by changes in airfoil circu-
lation, counterpart phase lag between release of positive and negative trailing vorticity is also viewed between airfoils with
different permeability coefficients. This reflects on the predictions of airfoil wake noise, to be presented in Fig. 3.

The streamline and vortical map presented in Fig. 2b shows a time snapshot of the near-field flow at time t ¼ 0:625 T ,
when the airfoil is displaced half-way below its unperturbed state (see Eq. (3)). At this time instant, flow streamlines are
seen to penetrate the airfoil, partially owing to its actuation-induced velocity, but also due to its permeability. The oscillatory
trailing edge wake is composed of vortices having positive and negative circulations, balancing, at each time instant, the
transitory value of airfoil circulation and sum of circulations of all previously released vortices (see Eq. (12)). A similar
qualitative result was obtained in the case of an impermeable airfoil, and is skipped here for brevity.

Traversing to the far-field radiation of the system, Fig. 3 describes the acoustic signature of permeable and impermeable
airfoils at the same ωp ¼ 5 conditions considered in Fig. 2. Results focus on the lift ðθ¼ 0Þ dipole contribution, and display
data in terms of the radiation kernels (37)–(41). Typically, the suction dipole is one order of magnitude (or more) smaller
than the lift component, and is therefore not discussed in separate.

Starting with Fig. 3a, the motion sound component (Πξ, solid line) is common to all cases, permeable or not. The seepage
dipole then adds only to the permeable airfoil radiation, and increases in amplitude with increasing εs. Notably, the seepage
component acts in a nearly opposite phase to the motion dipole, tending to reduce direct motion sound. This can be
physically rationalized, as our calculations indicate that while a permeable section of the airfoil translates in the positive x2-
direction, it induces a seepage velocity in the negative x2-direction, and thus reduces the total normal-to-surface fluid
velocity at the surface, together with its accompanying acoustic signal. A similar sound-reducing effect of permeability is
observed in Fig. 3b, where the wake dipole contribution Πw is compared between impermeable and permeable airfoils.
According to Kelvin's theorem (Eq. (12)), the total wake circulation amounts to the total airfoil circulation (in a negative
sign). The reduction in wake sound amplitude is therefore attributed to the smaller rate of trailing-edge vorticity generated
at larger values of εs, as supported by the results in Fig. 2a. Also supported by Fig. 2a is the phase shift in acoustic wave
maxima and minima, obtained between different values of εs. The total sound radiation, presented in Fig. 3c, shows the total
sum of motion, seepage and wake noise components, and demonstrates the general attenuating effect of airfoil permeability
on the radiated sound amplitude in the x2-direction. In terms of sound pressure level, the difference in the maximum value
of Πtot between impermeable and permeable airfoil with εs ¼ 0:1 amounts to a 3.1 dB reduction in the permeable case.

To account for sound radiation in all directions, Fig. 3d presents the effect of airfoil permeability on the system acoustic
power,

Pacous t r
� �¼ Z 2π

0
Π2

tot t r ; θ
� �

dθ; (44)

defined, in a non-dimensional form, by an integral on the square of the total radiation (37) over a large-radius ð x
		 		-1Þ

circle. Having incorporated the effects of lift and suction dipoles into Pacous, the results in Fig. 3d reiterate on the
sound-dampening effect of airfoil permeability, in terms of both acoustic pressure maxima and total radiation, as reflected
by the decrease in area below the curves with increasing εs.



Fig. 3. Far-field radiation of a permeable airfoil in steady flow (Γ ¼ 0) pitching at ωp ¼ 5. (a) Direct motion noise Πξ (solid line) and seepage sound Πs in the
normal x2-direction at εs ¼ 0:05 (red curve) and εs ¼ 0:1 (dashed line). (b and c) Wake sound (b) and total radiation (c) in the x2-direction for airfoils with
εs ¼ 0 (solid lines, impermeable airfoil), 0.05 (red lines), and 0.1 (dashed curves). (d) System acoustic power for airfoils with εs ¼ 0 (solid line, impermeable
airfoil), 0.05 (red line), and 0.1 (dashed curve). Thin horizontal lines in (a–c) mark lines of zero pressure, for reference. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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The effect of pitching frequency on the system far-field radiation is now discussed. Towards this end, we introduce the
system total sound energy,

P⋆
acous ¼

Z t f

t i
PacousðτÞ dτ; (45)

measuring the total sound radiated by the system during a time interval t rA ½t i; t f �. Fig. 4 presents the variation with
pitching frequency ωp of the ratio between total sound energy of permeable and impermeable airfoils, P⋆

acous=P⋆;ε s ¼ 0
acous ,

during a fixed time interval, t rA ½11;20�. The time interval of integration is chosen equal for all frequencies, to enable
comparison between results at different values of ωp. From the observer point of view, it appears reasonable to consider a
fixed time-frame as a basis for comparison, as the difference in pitching conditions should not affect the time duration of
external observation.

Common to all curves in Fig. 4 is a monotonic decrease in P⋆
acous=P⋆;εs ¼ 0

acous with increasing frequency. This reflects on an
increase in the sound-attenuating effect of permeability, at fixed εs, with increasing ωp. Thus, even for a relatively low
εs ¼ 0:025 value of the permeability coefficient, the total sound energy of a reference impermeable airfoil is reduced by more
than 10 percent at ωp ¼ 5. The effect becomes more pronounced with growing εs. At the highest εs ¼ 0:1 value examined, the
relative reduction in sound energy exceeds 45 percent for ωp ¼ 5. In view of the ω5=2

p increase in airfoil motion noise
component in the case of an impermeable airfoil (see Eq. (42)), this sound-reduction mechanism may prove of practical
importance.



Fig. 5. Near-field characteristics of a stationary (εp ¼ 0) airfoil in unsteady (Γ ¼ 0:2) flow. (a) Time-variation of total airfoil circulation during vortex passage
above airfoil. Solid and dashed lines mark airfoils with εs ¼ 0 (impermeable) and εs ¼ 0:1, respectively. Vertical dash-dotted lines confine the time interval
during which the vortex passes above the airfoil. Thin horizontal line marks line of zero circulation, for reference. (b) Instantaneous streamline map at time
t ¼ 20:8 for the case εs ¼ 0:1. Bold solid line indicates airfoil position, and red and blue dots mark locations of wake vortices with positive and negative
circulations, respectively. The dashed curve shows airfoil permeability distribution, hðx1Þ (right vertical axis). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. Effect of pitching frequency ωp on the ratio between system total sound energy P�
acous for permeable and impermeable airfoils. Dash-dotted, solid

and dashed lines mark results for airfoils with εs ¼ 0:025;0:05 and 0.1, respectively. In all cases, the total sound energy is calculated over a time interval of
t rA ½11;20� (see Eq. (45)).
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3.2. Stationary airfoil in unsteady flow

Considering the effect of airfoil permeability on the near- and far-field properties of a non-actuated structure, we fix the
incident vortex strength to Γ ¼ 0:2 and set εp ¼ 0 (see Eq. (36)). Formulation of the initial-value problem is obtained by
prescribing the initial location of the incident vortex, zΓ0 ¼ �20þ0:2i, sufficiently upstream of the airfoil to capture the
entire process of vortex–airfoil interaction. Following results investigate on the impact of εs on the interaction of incoming
flow unsteadiness with the structure.

Fig. 5 describes the effects of airfoil permeability on its near-field characteristics in the vortex-excited case. In parallel
with Fig. 2, Fig. 5a presents time-variation of total airfoil circulation during vortex passage above the structure, and Fig. 5b
shows instantaneous streamline and vortical map of the system at time t ¼ 20:8. To clarify presentation, the time interval
during which the incident vortex passes above the airfoil is delineated by vertical dash-dotted lines in Fig. 5a. This time
interval varies only slightly between the different values of εs considered.



Fig. 6. Far-field radiation in the normal x2-direction for a stationary (εp ¼ 0) airfoil in unsteady flow (Γ ¼ 0:2). (a) Seepage noise component Πs. (b) Sum of
wake and incident vortex contributions, ΠwþΠΓ . (c) Total radiation, Πtot . In all parts, solid, red and dashed curves mark data for airfoils with εs ¼ 0;0:05
and 0.1, respectively. Vertical dash-dotted lines confine the time interval during which the vortex passes above the airfoil. Thin horizontal lines mark lines
of zero pressure, for reference. The inset in (c) shows a zoom into the total signature in the proximity of trailing edge time.
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In Fig. 5a, the effect of structure permeability on airfoil circulation appears minor, yet consistent in that the overall
Γa-variation is smaller in the permeable case, and is shifted to slightly later times (cf. Fig. 2a). In the streamline map of
Fig. 5b, structure permeability is reflected via the streamlines penetrating the airfoil at its lower surface close to the trailing
edge. At the time instant t ¼ 20:8 presented, the incident vortex is located at ðx1; x2Þ � ð1:2;0:25Þ, distorting the streamlines
in its vicinity according to its induced velocity. The shedding of vorticity consists of trailing vortices with negative circulation
(marked in blue). This is in line with the Kelvin theorem (12) and the instantaneous variation in airfoil circulation, which is
monotonically increasing (see Fig. 5a). Notably, the passage of incident vortex above the airfoil edge distorts the location of
trailing vortices, by applying an upward “bent” to the wake form. This is caused by the nonlinear interactions between
vortices trajectories, formulated in Section 2.1, and affects the system acoustic far field, as discussed below

The impact of airfoil permeability on its far-field properties in the unsteady case is described in Fig. 6. Focusing on the
lift-dipole component, Figs. 6a and 6b present separate contributions of seepage (Πs) and wake and incident vortices
(ΠwþΠΓ) to the airfoil signature, respectively. Fig. 6c describes the total lift dipole of the system, Πtot. The contribution of
direct airfoil motion noise, Πξ, is obviously missing in this case, as the structure is stationary.

Starting with Fig. 6a, we find that Πs, non-existing in the impermeable case, increases in magnitude with increasing εs.
For a given value of εs, the seepage noise component becomes maximal (in absolute value) at incident vortex leading- and
trailing-edge times, marked by the left- and right-hand vertical dash-dotted lines, respectively. This is since, at these times,
the interaction of the vortex with the airfoil is most intense, causing extremal values in the seepage velocity vs and its time
derivatives. Moving to the total vortex sound contribution in Fig. 6b, we observe that the signal is nearly unaffected by airfoil
permeability at times prior to trailing-edge time. Yet, a sound-attenuating effect (opposite to the sound magnifying effect in
Fig. 6a) of permeability is seen at trailing-edge time, indicating that permeability dampens the aerodynamic loading induced
by the incident vortex interaction with airfoil edge.



Fig. 7. Far-field radiation for a stationary (εp ¼ 0) airfoil in unsteady (Γ ¼ 0:2) flow. (a) Comparison between acoustic power of impermeable (εs ¼ 0, solid
line) and permeable (ε ¼ 0:1, dashed curve) airfoils. Vertical dash-dotted lines confine the time interval during which the vortex passes above the airfoil.
(b) Effect of permeability parameter εs on the ratio between system total sound energy P�

acous for permeable and impermeable airfoils. The total sound
energy in each case is calculated over a time interval of vortex passage between x1 ¼ �5 and x1 ¼ 5 (see Eq. (45)).
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Summing Figs. 6a and 6b to obtain Fig. 6c it is found that, although the seepage pressure is much smaller in magnitude
compared with vortex sound, it has a visible effect on the total radiation. Thus, at leading-edge time, seepage sound acts to
reduce vortex sound, causing a slight attenuation in the maximum pressure level right to the first dash-dotted line. At
trailing-edge time (zoomed in the inset in Fig. 6c), the attenuating effect of permeability is caused mainly by the reduction in
vortex sound observed in Fig. 6b. A time phase-shift effect of εs, reminiscent of the time-shift found for an actuated airfoil in
Fig. 3, is also visible in the total signal.

To conclude the discussion on the effect of permeability in the unsteady case, Fig. 7 presents results for the acoustic
power and total sound energy of the system. Fig. 7a compares between the acoustic power of impermeable and permeable
airfoils. Fig. 7b describes the impact of εs on the ratio between the total sound energy P�

acous for permeable and impermeable
airfoils. For the calculation of P�

acous, the time interval taken was the time during which the incident vortex passes between
x1 ¼ �5 and x1 ¼ 5 (see Eq. (45)), so that the core effect of near vortex–airfoil interaction is taken into account.

In line with the results in Fig. 6, the data in Fig. 7a reconfirms that permeability dampens sound levels at all times,
particularly during leading- and trailing-edge interactions. The continuous effect of increasing εs is presented in Fig. 7b,
where a monotonic (nearly linear) decrease in P�

acous is found. Specifically, the decrease amounts to slightly more than 12
percent for εs ¼ 0:1. This result, combined with the findings in Fig. 4 for an actuated airfoil, quantitates the overall impact of
permeability on the far-field pressure level of the system, according to the present model.
4. Conclusion

We studied the effect of structure permeability on the far-field radiation of a thin airfoil. Considering low-Mach and high-
Reynolds number flow, the near- and far-field descriptions were investigated at flapping-flight and unsteady flow condi-
tions. Analysis was carried out based on thin-airfoil theory and compact-body calculations for the hydrodynamic and
acoustic fields, respectively. Airfoil porosity was modeled using Darcy's law, governed by a prescribed distribution of surface
intrinsic permeability. Considering the finite-chord airfoil as “acoustically transparent”, the leading-order contribution of
surface porosity was obtained in terms of an acoustic dipole, and the total acoustic signature was compared with that of an
impermeable airfoil. It was shown that, at all flow conditions considered, porosity attenuates the outcome sound level. This
is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of
fluid flow with airfoil edge points. The results indicate on a decrease of � 10 percent and more in the total energy radiated
by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above
when considering pitching flight conditions, where the sound-reducing effect of the seepage dipole ps becomes dominant.

Perhaps the main approximation made through the analysis, apart from relying on thin-airfoil theory and considering
compact-body conditions, was in applying Darcy's law to model structure permeability. This assumes that the Reynolds
number based on surface permeability and pore flow velocity does not exceed unity, and that the characteristic time-scale of
porous effects is shorter than the aerodynamic scale. It is verified in the Appendix that such conditions may be feasibly
assumed. Having based our calculations on Darcy's model, the scheme of solution does not necessitate exact geometrical
knowledge on structure perforations, and only requires an average macroscopic description in terms of intrinsic porosity
distribution. This may be considered advantageous over previous studies on porous-body radiation [4,7,8,10], where such
detailed information has limited analysis to only homogeneous pore arrays. While a single example of a non-homogeneous
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distribution was considered here (see Eq. (43)), our scheme can be readily applied to study any other distribution that agrees
with model assumptions.

A desirable verification of our results may be obtained by means of computational aeroacoustics (CAA) calculations.
Within the context of complex fluid–structure interactions with perforated materials, such investigations are considerably
resource-demanding and difficult to carry out. This is perhaps the reason for the small number of numerical analyses
appearing in literature on this topic [22,33], among which only Ref. [22] applies the macroscopic Darcy's and Ergun's for-
mulations. In this respect, the purpose of the present work is to apply a similar macroscopic approach to evaluate the far-
field sound of a permeable airfoil via a compact Green's function formulation. The challenging task of numerical validation
of our results by means of CAA calculations is not in the scope of the present contribution, and is considered it as a topic for
future study.

Recalling the challenge in studying the silent flight of owls [2], it is of interest to consider the combined effects of airfoil
porosity and elasticity on flight aerodynamic sound. While the separate effect of elasticity has been previously considered
(e.g., [32]), a study on the near- and far-fields of a poroelastic airfoil possesses a particular challenge when seeking for
optimal conditions to reduce airfoil sound. This is since, even in the simplified thin-airfoil description, the near-field pro-
blem is nonlinear, indicating that the total impact of porosity and elasticity cannot be predicted by a simple superposition of
the two. A study on the combined noise-control problem is currently in progress.
Appendix A. Applicability of Darcy's law

The Appendix considers the limits of validity of Darcy's law formulation introduced in Eq. (2) for the present problem.
The limitations follow from both length- and time-scale considerations, and correspond to steady (uniform incoming flow
over a pitching airfoil) and unsteady (non-uniform flow over a stationary airfoil) formulations of the problem.

In its familiar notation, Darcy's constitutive law takes the form [26,27]

vs ¼ �k
μ
∇p; (A.1)

assuming a linear relation between fluid seepage velocity and pressure gradient, with a constant of proportionality of
1=r¼ k=μ. Here k and μ mark Darcy's conductivity coefficient and fluid dynamic viscosity, respectively, and r¼ μ=k denotes
the porous media resistivity [17],1. In general, Darcy's law is valid when the characteristic length- and time-scales of the
problem are large compared with their counterpart pore-level scales, k1=2 and k=ν, respectively, with ν denoting fluid
kinematic viscosity. Additionally, for the formulation to be effective, the Reynolds number based on pores permeability and
seepage velocity, Res ¼ vsk

1=2=ν, should be sufficiently small (Res≲Oð1Þ), reflecting the dominance of viscous effects within
the pores. At higher values of Res, Darcy's model becomes invalid, and should be replaced by a higher-order (quadratic in vs)
law, as suggested by Ergun and others [22,35,36]. Consideration of such a model, however, is not in the scope of the
present work.

Starting with the limitation on Res, it is required that vsk
1=2≲10�5 m2/s in air. For seepage velocities of order vs � 1 m/s

(corresponding to an order-of-magnitude higher flight velocities U, to maintain vs=U⪡1), this corresponds to k1=2≲10�5 m.
Referring to Table 1 in Ref. [17], this condition is equivalent to restricting r≳105 kg/m3 s, and is satisfied by various types of
synthetic foam materials.

For the infinitely thin porous structure treated in the present work, Darcy's law takes the form of Eq. (2),

vs x1; tð Þ ¼ �κhðx1ÞΔp x1; tð Þ; (A.2)

where the pressure gradient in (A.1) is replaced by the pressure jump across the airfoil, and κ¼ 1=rd relates the porous
media resistivity r with airfoil thickness d. The associated pore-level time-scale, ts ¼ k=ν¼ ρ0κd, is now compared with the
aerodynamic time-scale, ta, to specify the required conditions for ts⪡ta.

Making use of the non-dimensional notation εs ¼ ρ0κU (see (34) et seq.), ts is given by ts ¼ εsd=U. In a typical estimation
for most birds [37], d=U � 10�4 s, and the pore-level time-scale estimation becomes ts � 10�5 s for the largest value of
εs ¼ 0:1 considered. Traversing to the aerodynamic time-scale, it may vary between ta ¼ a=U and ta ¼ 1=ωp for the stationary
and non-stationary airfoil problems considered, respectively. These two time-scales are approximately the same, as only
ωpa=U � Oð1Þ values are considered in the flapping-airfoil case. Typically, ta ¼ a=U � 10�2 s for most birds [37], and thus the
condition ts=ta ¼ εsd=a⪡1 is met. In terms of porous media resistivity, the ts � 10�5 s estimation corresponds to r� 105 kg/
m3 s, in agreement with the value required to satisfy the low Reynolds number condition above.
1 Previous studies (e.g., [34]) have established relations between the microscopic (detailed pores geometry) and macroscopic Darcy's description in
several geometries, yielding formulae for the overall material resistivity in terms of pores configuration.



M. Weidenfeld, A. Manela / Journal of Sound and Vibration 375 (2016) 275–288288
References

[1] O. Zaporozhets, V. Tokarev, K. Attenborough, Aircraft Noise, Taylor and Francis, New York, 2011.
[2] R.R. Graham, The silent flight of owls, Journal of the Royal Aeronautical Society 286 (1934) 837–843.
[3] E. Sarradj, C. Fritzsche, T. Geyer, Silent owl flight: bird flyover noise measurements, AIAA Journal 49 (2011) 769–779.
[4] J.E. Ffowcs Williams, The acoustics of turbulence near sound-absorbent liners, Journal of Fluid Mechanics 51 (1972) 737–749.
[5] M.S. Howe, On the added mass of a perforated shell, with application to the generation of aerodynamic sound by a perforated trailing edge, Pro-

ceedings of the Royal Society of London A 365 (1979) 209–233.
[6] M.S. Howe, The influence of vortex shedding on the diffraction of sound by a perforated screen, Journal of Fluid Mechanics 97 (1980) 641–653.
[7] P.A. Nelson, Noise generated by flow over perforated surfaces, Journal of Sound and Vibration 83 (1982) 11–26.
[8] M.S. Howe, Sound produced by turbulent flow over a perforated inlet, Journal of Sound and Vibration 139 (1990) 227–240.
[9] M.S. Howe, The damping of flexural and acoustic waves by a bias-flow perforated elastic plate, European Journal of Applied Mathematics 6 (1995)

307–328.
[10] M.S. Howe, Sound generated by turbulence and discrete vortices interacting with a perforated elastic plate in low-Mach-number flow, Quarterly

Journal of Mechanics and Applied Mathematics 50 (1997) 279–301.
[11] N.S. Dickey, A. Selamet, M.S. Ciray, An experimental study of the impedance of perforated plates with grazing flow, Journal of the Acoustical Society of

America 110 (2001) 2360–2370.
[12] S.H. Lee, J.G. Ih, K.S. Peat, A model of acoustic impedance of perforated plates with bias flow considering the interaction effect, Journal of Sound and

Vibration 303 (2007) 741–752.
[13] A.B. Bauer, R.L. Chapkis, Noise generated by boundary–layer interaction with perforated acoustic liners, Journal of Aircraft 14 (1977) 157–160.
[14] I.D. Abrahams, Sound radiation from a line forced perforated elastic sandwich panel, Journal of the Acoustical Society of America 105 (1999) 3009–3020.
[15] T. Takaishi, M. Ikeda, C. Kato, Effects of periodic holes on the suppression of aeroacoustic noise from a pantograph horn, ASME/JSME 2003 4th Joint

Fluids Summer Engineering Conference, Vol. 1, 2003, pp. 41–48.
[16] I. Yahathugoda, S. Akishita, Investigation on the effect of surface impedance for reducing aerodynamic sound from circular cylinder, JSME International

Journal B 47 (2004) 67–74.
[17] T. Geyer, E. Sarradj, C. Fritzsche, Measurement on the noise generation at the trailing edge of porous airfoils, Experiments in Fluids 48 (2010) 291–308.
[18] T. Geyer, E. Sarradj, C. Fritzsche, Porous airfoils: noise reduction and boundary layer effects, International Journal of Aeroacoustics 9 (2010) 787–820.
[19] K. Chen, Q. Liu, G. Liao, Y. Yang, L. Ren, H. Yang, X. Chen, The sound suppression characteristics of wing feather of owl (bubo bubo), Journal of Bionic

Engineering 9 (2012) 192–199.
[20] H. Hamakawa, K. Hosokai, T. Adachi, E. Kurihara, Aerodynamic sound radiated from two-dimensional airfoil with local porous material, Open Journal of

Fluid Dynamics 3 (2013) 55–60.
[21] C. Wang, L. Huang, Passive noise reduction for a contrarotating fan, ASME Journal of Turbomachinary 137 (2015) 031007.
[22] Y. Bae, Y.J. Moon, Effect of passive porous surface on the trailing-edge noise, Physics of Fluids 23 (2011) 126101.
[23] J.W. Jaworski, N. Peake, Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls, Journal of Fluid Mechanics 723 (2013)

456–479.
[24] M. Khorrami, L. Fei, M. Choudhari, Novel approach for reducing rotor tip-clearance-induced noise in turbofan engines, AIAA Journal 40 (2002)

1518–1528.
[25] H.R. Liu, M. Azarpeyvand, J.J. Wei, Z.G. Qu, Tandem cylinder aerodynamic sound control using porous coating, Journal of Sound and Vibration 334 (2015)

190–201.
[26] S.P. Neuman, Theoretical derivation of Darcy's law, Acta Mechanica 25 (1977) 153–170.
[27] R.E. Cunningham, R.J.J. Williams, Diffusion in Gases and Porous Media, Plenum Press, New York, 1980.
[28] G. Iosilevskii, Aerodynamics of permeable membrane wings, European Journal of Mechanics-B/Fluids 30 (2011) 534–542.
[29] P. Saffman, G. Baker, Vortex interactions, Annual Review in Fluid Mechanics 11 (1979) 95–122.
[30] T. Sarpkaya, Computational methods with vortices—the 1988 Freeman scholar lecure, Journal of Fluids Engineering 11 (1989) 5–52.
[31] M.S. Howe, Theory of Vortex Sound, Cambridge University Press, Cambridge, 2003.
[32] A. Manela, On the acoustic radiation of a pitching airfoil, Physics of Fluids 25 (2013) 071906.
[33] S. Mendez, J.D. Eldredge, Acoustic modeling of perforated plates with bias flow for large-eddy simulations, Journal of Computational Physics 228 (2009)

4757–4772.
[34] J.B. Keller, Viscous flow through a grating or lattice of cylinders, Journal of Fluid Mechanics 18 (1964) 94–96.
[35] S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress 48 (1952) 89–94.
[36] A. Dybbs, R.V. Edwards, A new look at porous media fluid mechanics Darcy to turbulent, Fundamentals of Transport Phenomena in Porous Media 82

(1984) 199–256.
[37] C.J. Pennycuick, Predicting wingbeat frequency and wavelength of birds, Journal of Experimental Biology 150 (1990) 171–185.

http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref1
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref2
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref2
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref3
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref3
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref4
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref4
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref5
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref5
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref5
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref6
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref6
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref7
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref7
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref8
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref8
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref9
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref9
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref9
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref10
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref10
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref10
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref11
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref11
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref11
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref12
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref12
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref12
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref13
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref13
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref14
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref14
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref16
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref16
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref16
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref17
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref17
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref18
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref18
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref19
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref19
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref19
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref20
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref20
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref20
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref21
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref22
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref23
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref23
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref23
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref24
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref24
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref24
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref25
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref25
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref25
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref26
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref26
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref27
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref28
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref28
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref29
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref29
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref30
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref30
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref31
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref32
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref33
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref33
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref33
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref34
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref34
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref35
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref35
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref36
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref36
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref36
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref37
http://refhub.elsevier.com/S0022-460X(16)30019-0/sbref37

	On the attenuating effect of permeability on the low frequency sound of an airfoil
	Introduction
	Problem formulation
	Near-field description
	Acoustic-field description
	Scaling and numerical analysis

	Results
	Actuated airfoil in steady flow
	Stationary airfoil in unsteady flow

	Conclusion
	Applicability of Darcy's law
	References




