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We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach
non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching mo-
tion. The near-field fluid-structure interaction problem is analyzed using potential
thin-airfoil theory, combined with a discrete vortex model to describe the evolution
of airfoil trailing edge wake. The leading order dipole-sound signature of the sys-
tem is investigated using Powell-Howe acoustic analogy. Compared with a pitching
rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil
acoustic field: at actuation frequencies close to the system least stable eigenfrequency,
elasticity amplifies airfoil motion amplitude and associated sound levels; however, at
frequencies distant from this eigenfrequency, structure elasticity acts to absorb system
kinetic energy and reduce acoustic radiation. In the latter case, and with increasing
pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an
elastic airfoil, owing to an ω

5/2
p increase of its direct motion noise component. Un-

like rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil
radiation is significant for all ωp. Remarkably, this contribution contains, in addition
to the fundamental pitching frequency, its odd multiple harmonics, which result from
nonlinear interactions between the airfoil and the wake. The results suggest that struc-
ture elasticity may serve as a viable means for design of flapping flight noise control
methodologies. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816295]

I. INTRODUCTION

Fluid-structure interactions, coupling the dynamics of thin elastic structures and ambient fluid
flow, have recently become the focus of a large number of studies.1, 2 Motivated by a variety of
natural and practical applications, these studies include investigations on flapping flag motion3, 4

and fish locomotion,5 as well as examination of paper flutter in commercial printing machines6 and
design of novel green-energy methodologies for energy harvesting of oscillating filaments.7 These
and others have combined into a series of theoretical and experimental works, analyzing various
aspects of near-field fluid-structure coupling phenomena and associated topics.

In parallel with studies on near-field interactions, consideration of far-field radiation from cou-
pled fluid-structure systems has also become a topic of growing interest.8 Yet, up until recently, these
studies were focusing mainly on rigid-body configurations, thus reducing the level of complexity
of problems involved by prescribing the dynamics of the structure. Increasing interest in sound
production processes in elastic-body setups, such as during palatal snoring9 and insect flight,10–12

has enforced progress in the field of vibroacoustics, analyzing far-field noise radiation resulting from
flow-induced body motions.

Early works on near-field thin-structure-fluid interactions have focused on determining the crit-
ical conditions and analyzing the supercritical behavior of a thin filament subject to uniform flow
(e.g., Refs. 13–15). Later on, boundary actuation16, 17 and incoming flow non-uniformities18, 19 have
been incorporated to investigate the dynamics of active flapping motion in uniform and non-uniform
flows. Counterpart vibroacoustic studies have followed to consider both unforced20 and forced21–23

setups, and evaluate the associated acoustic far-field. Notably, when analyzing the effect of flow
unsteadiness on near- and far-field dynamics, all of the above studies have applied various degrees
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of approximation. Modeling flow unsteadiness as a prescribed distribution of incoming vorticity,
Manela and Howe,18 Alben,19 and Manela21 have considered a linearized regime, where incom-
ing flow vorticity was weak enough so that it was convected with the mean flow. Specifically, the
convected vorticity was unaffected by the presence of the structure or by the topology of trailing
edge wake. Such an approximation effectively neglects any reaction of the solid body on fluid
vortex dynamics, yet such reaction clearly exists for any finite strength of incoming vorticity. This
approximation may be of particular significance in the context of sound-generation problems, where
variations in vortical motions are known to have a key effect on the system far-field radiation.8, 24

When coupled with leading edge actuation, the nonlinear fluid-structure interaction problem, in-
corporating the full reciprocal reactions of body motion on unsteady flow dynamics, has not been
considered.

In the few cases where flow vortex dynamics was analyzed, other simplifying assumptions were
made. Thus, Abou-Hussein et al.25 have studied the dynamics and sound radiation by a line vortex
passing past a rigid airfoil, but neglected the impact of trailing edge wake on vortex trajectory.
Similarly, Alben26 considered the near-field interaction of a flexible filament and a point vortex
but did not account for vorticity release due to filament trailing edge singularity. Recently, Manela
and Huang27 analyzed both incident vortex dynamics and trailing edge singularity for flow over an
airfoil, but considered only a rigid setup of a flapped profile.

Following these studies, the objective of the present work is to investigate a more comprehensive
model for flapping-flight noise generation, where boundary actuation and flow inhomogeneity are
nonlinearly coupled with structure elasticity. By solving both near-field and far-field problems, we
aim at gaining more insight into the effect of fluid-structure interaction on the acoustic characteristics
of flapping flight and, in particular, clarify the role of elasticity on sound emission. The model problem
to be studied consists of a thin elastic airfoil at high Reynolds (potential) low Mach flow, subject to
both pitching actuation and incident line-vortex forcing. Both incident vortex and trailing edge wake
dynamics are modeled, and their total impact on the system acoustic properties is investigated.

This paper is organized as follows. In Sec. II, the near-field (hydrodynamic) and far-field
(acoustic) problems are formulated and analyzed. In Sec. III, numerical results are presented, and the
separate and combined effects of pitching, elasticity, and vortex dynamics are discussed. Concluding
comments are given in Sec. IV.

II. PROBLEM FORMULATION

A. Near-field theory

Schematic of the problem is given in Fig. 1(a). Consider a thin (zero thickness) elastic airfoil of
chord 2a and position denoted by ξ = ξ (x1, t). The airfoil is subject to uniform mean flow of speed
U in the x1-direction. At time t ≥ 0, small-amplitude leading edge pitching of the form(

∂ξ

∂x1

)
x1=−a

= ε̄p sin(ωpt) (1)

is applied, where ε̄p � 1 and ωp is the prescribed pitching frequency. During the same time, an
incident line vortex of strength � is released and interacts with the airfoil. It is assumed (and
later on verified) that airfoil deflection remains small at all times (|ξ | � a), so that the linearized
model for airfoil motion can be applied. Given the small angles of attack considered, leading edge
flow detachment is excluded, and fluid vorticity is allowed only at the incident vortex location and
along a trailing edge wake. Assuming small mean-flow Mach number, we treat the near-field flow
as incompressible and potential, and being affected by the localized distribution of vorticity. In
what follows we analyze the airfoil dynamics and associated fluid motion. Linearized thin-airfoil
theory is applied to study the near-field fluid-structure interaction problem. To evaluate the effect of
wing elasticity, our findings are compared with those obtained for a rigid-airfoil setup, presented in
Fig. 1(b). In this case, structure deflection is fully prescribed by the form of pitching actuation (1),
yielding

[ξ (−a ≤ x1 ≤ a, t)]rigid = ε̄p(x1 + a) sin(ωpt). (2)
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FIG. 1. Schematic of the (a) elastic and (b) rigid vortex-airfoil setups considered. In both cases, a thin airfoil is subject to
sinusoidal leading edge pitching, uniform mean flow of speed U in the x1-direction, and a passing line vortex of strength �.

We formulate an initial value problem, where at t = 0 the airfoil is aligned with the x1-axis
(ξ = 0), the incident vortex � is set into the flow, and leading edge actuation is commenced. The
initial vortex location is chosen sufficiently upstream of the airfoil (see Sec. II C) to approximate a
case where the vortex initially has a negligible impact on the near-field dynamics. In the following,
we denote the instantaneous vortex location and velocity by x�(t) and v�(t) = dx�/dt , respectively.

In accordance with potential thin-airfoil theory, the vortex interaction with structure end points
induces square-root singularities in the flow field at the airfoil leading and trailing edges. Trailing
edge singularity is regularized by application of the unsteady Kutta condition, which results in
additional release of vorticity at the airfoil trailing edge. We model the production of trailing
edge vorticity through the Brown and Michael equation,28, 29 which has been applied frequently to
approximate high Reynolds number vortex shedding from two-dimensional setups, both in studies
of near-field dynamics15, 16, 30 and sound emission31, 32 problems. According to this model, shedding
of vorticity is discretized into a sequence of concentrated line vortices whose position and strength
vary with time. At a given time, one vortex is being shed from the airfoil trailing edge, in the form of
a thin connecting sheet of infinitesimal circulation ending in a concentrated core of finite circulation
�n. The core strength changes with time according to the Kutta condition, while its position x�n is
governed by the Brown and Michael28, 29 formula. When the time derivative d�n/dt changes sign, the
vortex is detached from the thin sheet and propagates as a “free” line vortex with “frozen” (fixed)
circulation. Simultaneously, the shedding of the next vortex, �n+1, is initiated.

A shortcoming in the Brown and Michael model has been indicated by several authors (e.g.,
Refs. 33 and 34). Specifically, it was found that a spurious dipole is induced when using the original
formulation, resulting from the time dependence of the circulation of the growing vortex. Conse-
quently, corrections to the formula have been proposed to account for vortex shedding phenomena
in stationary-structure systems. Yet, usage of any of these formulas in the present study would not
be consistent with the moving-body setup considered. Instead, we formulate the problem in terms of
the original equation. In a previous study of a non-stationary flapped-airfoil setup,27 a comparison
has been made between the predictions of the original and Howe’s emended form34 of the formula.
The analysis has indicated that only small quantitative differences appear between the results. We
therefore expect that no qualitative effects should occur due to the present use of the original equa-
tion, which is still considered a common model for describing vortex shedding phenomena from
rigid- and elastic-structure configurations, for both near-field15, 16, 30 and acoustic31, 32 investigations.

Making use of thin-airfoil methodology, the airfoil is represented by distribution of circulation
γ a(x1, t) (−a ≤ x1 ≤ a) per unit length. To specify γ a(x1, t), a no-penetration condition on the
structure is imposed. In complex-variable notation, this condition is given by

∂ξ

∂t
+ U

∂ξ

∂x1
= Im

{
i

2π

[
−
∫ a

−a

γa(s, t)ds

x1 − s
+ �

x1 − z�

+
n∑

k=1

�k

x1 − z�k

]}
, (3)

where z = x1 + ix2 is a complex representation of a point in the plane of motion, and z� and z�k mark
locations of incident and kth trailing edge vortices, respectively. The barred integral sign denotes a
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principal value integral. The airfoil displacement ξ (x1, t) is governed by the linearized equation

ρs
∂2ξ

∂t2
+ E I

∂4ξ

∂x4
1

= 
p(x1, t), (4)

balancing structure inertia, bending stiffness, and fluid loading terms. In (4), ρs marks airfoil mass
per unit area, and EI denotes structure bending stiffness. On the right-hand side, 
p = p− − p+ marks
fluid pressure jump between airfoil lower (p−) and upper (p+) surfaces. Making use of Bernoulli’s
equation, 
p is related to γ a(x1, t) through


p(x1, t) = −ρ0

(
∂

∂t

∫ x1

−a
γa(s, t)ds + Uγa(x1, t)

)
, (5)

where ρ0 denotes the mean fluid density.
Equations (3)–(5) are coupled to the incident and trailing edge vortices dynamics through the

right-hand side of Eq. (3). The motion of the incident vortex � is governed by

dz�

dt
= W ∗

�, (6)

where an asterisk marks the complex conjugate of a complex number, and

W� = U − i

2π

(∫ a

−a

γa(x1, t)dx1

z� − x1
+

n∑
k=1

�k

z� − z�k

)
(7)

is the conjugate velocity induced at the instantaneous vortex location, after removing its self-
singularity. Similarly, motions of the �1, . . . , �n−1 “frozen” trailing edge vortices are governed by

dz�k

dt
= W ∗

�k
, (8)

with k = 1, . . . , n − 1, and

W�k = U − i

2π

⎛⎜⎜⎜⎝
∫ a

−a

γa(x1, t)dx1

z�k − x1
+

n∑
m=1
m �=k

�m

z�k − z�m

+ �

z�k − z�

⎞⎟⎟⎟⎠ . (9)

Following the above discussion, the time-varying strength and position of the nth trailing edge vortex
are governed by the Brown and Michael equation,28, 29 which takes the form

dz�n

dt
+ (z�n − zTE)

1

�n

d�n

dt
= W ∗

�n
. (10)

In addition, we impose the Kelvin theorem

�n(t) = −
∫ a

−a
γa(x1, t)dx1 −

n−1∑
k=1

�k, (11)

ensuring that the total system circulation (excluding the incident vortex) vanishes at all times. In
(10), W ∗

�n
is given by Eq. (9) with k = n, and zTE marks the complex-variable location of the trailing

edge.
The nonlinear system of Eqs. (3)–(11) is solved in conjunction with an initial condition for the

vortex location

z�(t = 0) = z�0 , (12)

together with boundary conditions on the airfoil end points. Considering leading edge actuation
of the form (1) and free-end conditions at x1 = a, the boundary conditions applied at the airfoil
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upstream and downstream ends are

ξ (−a, t) = 0 ,

(
∂ξ

∂x1

)
(−a,t)

= ε̄p sin(ωt) ,

(
∂2ξ

∂x2
1

)
(a,t)

=
(

∂3ξ

∂x3
1

)
(a,t)

= 0. (13)

The formulation of the near-field dynamical problem is completed by imposing the unsteady Kutta
condition,

γa(a, t) = 0, (14)

requiring that the fluid velocity at the trailing edge is finite. We assume that the release of the
first trailing edge vortex starts at t = 0; the system evolution is then followed for t > 0 via
numerical integration. Details regarding the numerical procedure and problem scaling are given in
Sec. II C.

B. Far-field acoustic radiation

In the present small-amplitude, low-Mach, high-Reynolds-number flow setup, the far-field
(|x| → ∞) acoustic pressure is governed by the Powell-Howe acoustic analogy,8, 24(

1

c2
0

∂2

∂t2
− ∇2

)
p = ρ0

∂2ξ

∂t2
δ(x2) + ρ0∇ · (� × V) , (15)

where c0 is the speed of sound, δ is the Dirac delta function, V is the fluid velocity, and � is the
vector of fluid vorticity. The latter is given by the sum of

�� = x̂3�δ(x − x�(t)) and �w =
n∑

k=1

��k = x̂3

n∑
k=1

�kδ(x − x�k (t)), (16)

which mark the incident and trailing edge wake vorticities, respectively. Combining
Eqs. (15) and (16), the acoustic pressure can be decomposed into a sum of “airfoil motion,” “incident
vortex,” and “wake” contributions,

p(x, t) = pξ (x, t) + p�(x, t) + pw(x, t), (17)

where

pξ (x, t) = ρ0
∂

∂t

∫ ∞

0

∂ξ

∂τ

∮
Sξ

G(x, y, t − τ )dS(y)dτ, (18)

p�(x, t) = −ρ0

∫ ∞

0

∫
V�

(�� × V�) · ∂G

∂y
(x, y, t − τ )dydτ, (19)

and

pw(x, t) = −ρ0

n∑
k=1

∫ ∞

0

∫
V�k

(��k × V�k ) · ∂G

∂y
(x, y, t − τ )dydτ. (20)

In (18)–(20), Sξ is the airfoil surface, V� and V�k denote the fluid regions occupied by the incident
and trailing edge vortices, respectively, G(x, y, t − τ ) is the acoustic Green’s function having a
vanishing normal derivative on the undisturbed airfoil, and V� and V�k are the velocities of incident
and trailing edge vortices, respectively.

We consider a case where the airfoil is acoustically compact, in which the acoustic wavelength
is much larger than the airfoil chord. This is equivalent to the small-Mach assumption set for using
Eq. (15).24 Consequently, we apply the far-field two-dimensional compact Green’s function,24

G(x, y, t − τ ) ≈ x · Y

2π
√

2c0|x|
∂

∂t

{
H (tr − τ )√

tr − τ

}
, |x| → ∞ , (21)
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where Y(y) marks the Kirchhoff vector for the airfoil, and tr = t − |x|/c0 is the acoustic retarded
time. We approximate Y(y) by the Kirchhoff vector for an infinite strip,

Y(y) =
(

y1, Re

{
−i
√

(y1 + iy2)2 − a2

})
. (22)

Starting with the evaluation of pξ (x, t), substitute (21) into (18) to yield

pξ (x, t) ≈ ρ0 cos θ

π
√

2c0|x|
∂2

∂t2

∫ tr

0

dτ√
tr − τ

∫ a

−a

√
a2 − y2

1

∂ξ

∂τ
(y1, τ ) dy1, (23)

where cos θ = x2/|x| indicates the observer direction. In the simplified case of a rigid pitching airfoil
depicted in Fig. 1(b),

[∂ξ/∂t]rigid = ε̄pωp(x1 + a) cos(ωpt)

(see (2)), and the integral expression in (23) can be calculated explicitly for long times, yielding

[pξ (x, t)]rigid ≈ −
√

πρ0a3 cos θ

4
√

c0|x| ε̄pω
5/2
p

[
cos(ωptr ) + sin(ωptr )

]
, tr � ω−1

p . (24)

The long time limit in (24) is required for calculation of the time integral, and becomes valid, in
practice, already after few pitching periods of the airfoil.

To evaluate p� , substitute (21) together with (16) into (19) to obtain

p�(x, t) ≈ ρ0� sin θ

2π
√

2c0|x|
∂

∂t

∫ tr

0

V (2)
� (τ )dτ√

tr − τ

− ρ0� cos θ

2π
√

2c0|x|
∂

∂t

∫ tr

0

(
V (1)

� (τ )
∂Y2

∂y2
− V (2)

� (τ )
∂Y2

∂y1

)
x� (τ )

dτ√
tr − τ

, (25)

where V ( j)
� denotes the velocity component of the incident vortex in the xj-direction. Similarly, pw

is evaluated by substituting (16) and (21) into (20), to yield

pw(x, t) ≈
n∑

k=1

(
ρ0�k sin θ

2π
√

2c0|x|
∂

∂t

∫ tr

0

V (2)
�k

(τ )dτ√
tr − τ

− ρ0�k cos θ

2π
√

2c0|x|
∂

∂t

∫ tr

0

(
V (1)

�k
(τ )

∂Y2

∂y2
− V (2)

�k
(τ )

∂Y2

∂y1

)
x�k (τ )

dτ√
tr − τ

)
,

(26)

where V ( j)
�k

marks the xj-velocity component of the vortex �k. In general, expressions (23), (25), and
(26) for the pressure components are calculated numerically, based on the near-field solution of the
problem formulated in Sec. II A. In addition to the “lift-type” dipole found for pξ in (23) (proportional
to cos θ , therefore directed along the x2-axis), both incident vortex and wake dipoles (25) and (26)
have a “suction-type” component oriented along the mean-flow x1-direction (proportional to sin θ ).
This component results directly from nonlinear vortex-airfoil interactions, leading to motions of
the incident and trailing edge vortices in the normal x2-direction. A similar finding was observed
in previous studies considering sound radiation from nonlinear vortex interactions with rigid-wing
setups.25

Typically, our calculations indicate that the suction pressure component is smaller than the lift
component at all times. We therefore focus in our results on the lift dipole contribution. Here, as
well, vortices motion in the normal direction affect the acoustic signal through the respective V (2)

contributions to the second lines in (25) and (26). In addition, time variations in V (1) (which differs
from the mean flow velocity U, particularly at times when the vortex passes in the vicinity of the
airfoil) also affect the acoustic signal. These effects have not been incorporated in previous analyses
of linearized fluid-structure interaction systems.21, 22



071906-7 A. Manela Phys. Fluids 25, 071906 (2013)

C. Numerical procedure

Before proceeding to the presentation of results, the dimensional problem formulated in
Secs. II A and II B should be non-dimensionalized. Towards this end, the length, velocity, time,
frequency, and pressure are scaled by a, U, a/U, U/a, and ρ0U2, respectively. The normalized form
of the airfoil equation of motion (4) becomes

∂2ξ̄

∂ t̄2
+ 1

ᾱ2

∂4ξ̄

∂ x̄4
1

= 1

μ̄

 p̄, (27)

where non-dimensional quantities are marked by overbars. Equation (27) is governed by the param-
eters

μ̄ = ρs

ρa
and ᾱ = U

√
ρsa2

E I
, (28)

denoting airfoil to fluid mass ratio and fluid to bending speed ratio (with bending speed given by
Ub =

√
E I/ρsa2), respectively. Omitting the presentation of the full non-dimensional problem for

brevity, we note that the scaled dynamical problem is also governed by

ε̄p , ω̄p = a

U
ωp , �̄ = �

2πaU
, and z̄�0 = z�0

a
, (29)

specifying the scaled pitching amplitude and frequency, and incident vortex circulation and initial
location, respectively. To illustrate our results, we focus on a case where the incident vortex circula-
tion is �̄ = 0.2. The vortex is initially located at z̄�0 = −50 + 0.2i, sufficiently far upstream of the
airfoil, where it is essentially unaffected by the airfoil and convects along a straight line with the
mean flow. In addition, we fix ε̄p = 0.01 (or otherwise consider the case ε̄p = 0 for reference; see
Sec. III A), in accordance with the small-amplitude assumption set in Sec. II A.

The homogeneous (unforced) problem in the absence of incoming flow vorticity and leading
edge actuation has been studied in Ref. 15, based on the Brown and Michael model.28, 29 In this
work, the critical condition (namely, the neutral curve) for the onset of spontaneous structure motion
has been delineated, in terms of combinations of μ̄ and ᾱ. To ensure that our small-amplitude
assumption is satisfied, we focus here on a subcritical case, where the unperturbed airfoil state is
stable. Specifically, we fix μ̄ = 10 and ᾱ = 1, corresponding to M* = 0.2 and U* = 2 defined in
Ref. 15 (cf. Fig. 4(a) therein). Our numerical calculations indicate that no significant differences
are observed when choosing other subcritical (μ̄, ᾱ) combinations, and we therefore consider the
present choice as representative for system response at subcritical conditions. With all the above
quantities being specified, the only remaining free parameter is the pitching frequency ω̄p, whose
effect is studied below.

Numerical solution of the dynamical problem requires discretization of the system of equations
in both space (along the airfoil chord) and time (from t = 0 to some final time). Space discretization
is needed to express the vorticity distribution γ a(x1, t) along the airfoil and the x1-derivatives in
the structure equation of motion. The numerical solution for γ̄a(x1, t) is obtained, in a standard
procedure described in Ref. 27, via expansion of γ̄a in a Fourier-type series (which satisfies the
Kutta condition (14) identically) and truncation. The system of equations is integrated in time using
a fourth-order Runge-Kutta algorithm. The typical time step used for integration was π/2000ω̄p (but
not smaller than π /2000 for ω̄p < 1), which proved sufficient for convergence (with errors �0.1%).
Close to leading- and trailing-edge times (i.e., times when the vortex passes above the airfoil leading
and trailing edges, respectively) smaller time steps (≈π/5000ω̄p, and not smaller than π /5000 for
ω̄p < 1) were required for convergence. This is because at these time instants the time scales for
dynamic and acoustic signal variations are considerably smaller.

Adopting the scaling introduced, the non-dimensional form of the acoustic pressure (17) is

p(x, t)

ρ0U 2
=
√

M

8|x̄|�tot(t̄r ) =
√

M

8|x̄|
(
�ξ (t̄r ) + ��(t̄r ) + �w(t̄r )

)
, (30)
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where

�ξ (t̄r ) ≈ 2

π
cos θ

∂2

∂ t̄2

∫ t̄r

0

dτ√
t̄r − τ

dτ

∫ 1

−1

√
1 − y2

1

∂ξ̄

∂τ
(y1, τ ) dy1, (31)

��(t̄r ) ≈ 2�̄

⎡⎣sin θ
∂

∂ t̄

∫ t̄r

0

V̄ (2)
� dτ√
t̄r − τ

− cos θ
∂

∂ t̄

∫ t̄r

0
Re

⎧⎨⎩
(

V̄ (1)
� + iV̄ (2)

�

)
z̄�dτ√

(z̄2
� − 1)(t̄r − τ )

⎫⎬⎭
⎤⎦ , (32)

and

�w(t̄r ) ≈
n∑

k=1

2̄�k

⎡⎣sin θ
∂

∂ t̄

∫ t̄r

0

V̄ (2)
�k

dτ√
t̄r − τ

− cos θ
∂

∂ t̄

∫ t̄r

0
Re

⎧⎨⎩
(

V̄ (1)
�k

+ iV̄ (2)
�k

)
z̄�k dτ√

(z̄2
�k

− 1)(t̄r − τ )

⎫⎬⎭
⎤⎦ . (33)

In (33), �̄k = �k/(2πaU ). The “rigid airfoil” counterpart of �ξ in (31) (see (24)) is[
�ξ (t̄r )

]
rigid ≈ −

√
π

2
cos θ ε̄pω̄

5/2
p

(
cos(ω̄pt̄r ) + sin(ω̄pt̄r )

)
, t̄r � ω̄−1

p . (34)

Results for the acoustic pressure will be presented in terms of the acoustic “kernels” �tot, �f,
�� , and �w. In addition to the parameters given by (28) and (29), the non-dimensional acoustic
pressure is governed by the observer direction θ = cos−1 (x2/|x|).

III. RESULTS

A. Non-pitching airfoil

For easy reference, we start by considering the case of a non-actuated airfoil (that is, ε̄p = 0), and
compare between system responses for elastic and rigid airfoil configurations. Figure 2 describes
the near-field dynamics for both elastic and rigid structure setups, presenting time evolutions of
airfoil displacement (Fig. 2(a)) and total airfoil circulation (Fig. 2(b)), as well as instantaneous time
snapshots of vortical flow field in the elastic (Fig. 2(c)) and rigid (Fig. 2(d)) setups. The total airfoil
circulation presented in Fig. 2(b) is given by

�a

aU
=
∫ 1

−1

γa(x̄1, t̄)

U
dx̄1 = −

n∑
k=1

�k

aU
, (35)

in accordance with Kelvin’s theorem (11). In agreement with the small amplitude of motion assumed
for the analysis in Sec. II, |ξ | � 1 at all times.

Focusing on the system behavior at early times (prior to the incident vortex passage above
the airfoil), we observe that, in the elastic case, the airfoil bends slightly upwards as the vortex
approaches the structure (see the solid and dotted curves in Fig. 2(a), marking trailing edge (ξTE/a)
and mid-chord (ξ (x1 = 0)/a) displacements, respectively). This is in accordance with the coun-
terclockwise velocity field induced by the vortex. At this stage, the differences between the total
circulations of the elastic and rigid airfoils are minor (cf. the solid and dashed curves in Fig. 2(b) for
Ut/a < 40). Yet, as the vortex approaches the airfoil leading edge and passes above it (at the time
instant indicated by the left dashed-dotted lines in Figs. 2(a) and 2(b)), considerable airfoil displace-
ments are observed in the elastic case, followed by large variations in the total circulation. Notably,
vortex passage above the elastic airfoil induces oscillatory structure motion at a distinct frequency,
reflected also through oscillatory variations in airfoil circulation (see the solid line in Fig. 2(b) for
Ut/a > 50). The characteristics of elastic airfoil oscillations will be discussed below (see Fig. 4).

Apart from affecting structure dynamics, airfoil elasticity results in the release of alternate-
sign “vortex street” vortices at times after incident vortex passage above the airfoil, as seen in
Fig. 2(c). This is in marked difference from the rigid-airfoil system behavior (see Fig. 2(d)), where
three trailing edge vortices suffice to describe the entire trailing edge evolution. In accordance with
our problem formulation, the first trailing edge vortex is released in both cases at the initial time
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FIG. 2. Near-field dynamics for non-pitching elastic and rigid airfoils: (a) time variations of trailing edge (solid) and mid-
chord (dotted) displacements for an elastic airfoil (the dashed line marks the stationary state of the rigid airfoil, for reference);
(b) total airfoil circulation for the elastic (solid) and rigid (dashed) airfoils; (c) and (d) vortical-field snapshots for the elastic
(Fig. 2(c)) and rigid (Fig. 2(d)) setups at Ut/a = 70. In Figs. 2(c) and 2(d), crosses and triangles mark instantaneous trailing
edge vortices’ locations with positive (�k > 0) and negative (�k < 0) circulations, respectively, and circles denote locations
of incident vortex. Solid and dashed curves show trajectories of incident vortex � and trailing edge vortex �2, respectively.
In Figs. 2(a) and 2(b), vertical dashed-dotted lines confine time interval during which the incident vortex passes above the
airfoil in the elastic-airfoil setup.

t = 0; then, as the vortex passes above the airfoil, the first trailing edge vortex is detached and the
release of a second vortex (denoted �2, and opposite in sign to �) is initiated. Soon after the incident
vortex passes above the trailing edge, the second vortex is subsequently detached, and follows the
incident vortex in a “vortex-pair-like” motion (see the solid and dashed trajectories in Figs. 2(c) and
2(d)). From this point on, vortical field evolution differs markedly between elastic and rigid setups:
airfoil oscillations induced in the elastic case lead to successive release of opposite-sign trailing
edge vortices, whereas the rigid static configuration results in the release of only one additional
vortex. In both setups, airfoil circulation vanishes at late times (recovering its initial value), and
the release of trailing edge vorticity diminishes accordingly. As will be demonstrated below, the
indicated differences in wake topology have a major effect on the acoustic signature of the two
systems.

Fig. 3 compares between far-field radiations of elastic and rigid non-pitching airfoils. Focusing
on the lift (θ = 0) dipole, Figs. 3(a)–3(c) compare between the separate airfoil motion, incident
vortex, and wake sound contributions, respectively, and Fig. 3(d) shows the total acoustic signature
of the system. Starting with Fig. 3(d), we note that significant deviation between rigid- and elastic-
airfoil signatures starts when the vortex approaches the structure leading edge. At that time, sound
amplitude increases considerably in the elastic case (see the sharp maximum in the solid curve at
its intersection with the left vertical dashed-dotted line in Fig. 3(d)). In addition, once the vortex
has passed above the airfoil trailing edge, oscillatory pressure fluctuations, absent in the rigid-airfoil
setup, are radiated by the elastic-airfoil system.
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FIG. 3. Far-field radiation for non-pitching elastic (solid lines) and rigid (dashed lines) airfoils in the normal (θ = 0) direction:
(a) airfoil motion sound; (b) incident vortex sound; (c) wake sound; (d) total radiation. Vertical dashed-dotted lines confine
time interval during which the incident vortex passes above the airfoil in the elastic-airfoil setup.

As observed in Fig. 3(a), the sound induced by direct airfoil motion is relatively weak, while
incident vortex sound is nearly unaffected by airfoil elasticity (cf. the solid and dashed lines in
Fig. 3(b)). The differences described above between rigid and flexible airfoil signatures therefore
originate from the wake sound contribution, shown in Fig. 3(c). Comparing between the vortex
and wake noise in the rigid configuration (dashed lines in Figs. 3(b) and 3(c), respectively), we
find that wake sound tends to reduce incident vortex noise, leading to a weaker total signal, as
was also noted in previous studies of rigid-structure configurations (e.g., Ref. 35). In our discrete
wake model, generation of trailing edge vorticity during incident vortex passage above the rigid
airfoil accumulates into a single vortex (denoted �2 in Fig. 2), which later on “follows” the incident
vortex to form a “silent” vortex pair. However, the additional effect of elasticity results in qualitative
changes in the acoustic signature. At leading edge time, the upward bending of the airfoil reduces the
distance between the vortex and the trailing edge, causing the vortex interaction with the end-point
to become more singular and release larger amount of vorticity. Then, at later times, induced airfoil
oscillations lead to successive release of trailing edge vortices, resulting in oscillatory wake sound. It
is therefore found that structure elasticity increases noise levels in the passive (non-pitching) setup.
As we consider the airfoil response at subcritical conditions, the structure resumes its unperturbed
state at late times, where the acoustic far field vanishes.

To characterize the oscillatory behavior of the elastic-airfoil system, Figure 4 presents spectral
decompositions of trailing edge deflection and total lift dipole for a non-pitching elastic airfoil.
Defining the time Fourier transform of a function F as

F̃(ω̄) =
∫ ∞

−∞
F(t̄) exp(−iω̄t̄)dt̄, (36)
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FIG. 4. Spectral decompositions of far-field radiation in the normal (θ = 0) direction (�̃θ=0
tot , solid line) and trailing edge

displacement (̃ξTE, dashed line) for a non-pitching elastic airfoil. Values in each curve are scaled by their respective maximum.

Fig. 4 shows scaled results (normalized by the respective maximum in each curve) for ξ̃TE (dashed
line) and �̃θ=0

tot (solid line). Clearly, we observe that trailing edge motion (representing the motion
of the entire airfoil) is dominated by a single frequency, ω̄res = ωresa/U ≈ 0.83, characterizing the
late-time oscillations found in Fig. 2(a). The far-field radiation is consequently dominated by the
same frequency; in addition, a secondary peak at ω̄ ≈ 3ω̄res is also observed.

Recalling that we focus on a non-actuated airfoil response, it is expected that the motion
induced by the incident vortex passage (which can be mathematically described as a propagating
delta function, containing the entire spectrum of frequencies) will excite oscillatory airfoil motion
at the structure-fluid least stable eigenfrequency. At the present subcritical conditions (μ̄ = 10 and
ᾱ = 1), this frequency is given by the above value of ω̄res ≈ 0.83. A qualitatively similar result was
found when studying the linearized problem for a vortex passing above a passive sheet.21 Yet, a
major difference between the two results is in the spectral decomposition of the acoustic field; here,
the signal contains a secondary frequency peak, which is missing in the linearized analysis (cf. Fig.
8 in Ref. 21). The relation of this contribution to the nonlinear effect of wake-structure interactions
is rationalized below (see Fig. 6).

B. Pitching airfoil

To study the effect of pitching actuation, Figure 5 presents the dynamic and acoustic fields of
elastic and rigid airfoils actuated at ωpa/U = 1, where the vortex residence time above the airfoil
approximately equals the mechanical period of pitching. Fig. 5(a) shows trailing edge motion in the
elastic case (compared with the sinusoidal motion prescribed in the rigid-airfoil setup) and Fig. 5(b)
shows the acoustic signatures of the elastic and rigid airfoils.

Starting with Fig. 5(a), we notice that trailing edge deflections obtained in the elastic airfoil are
larger than in the rigid setup, and that the largest amplitudes occur when the vortex passes above the
airfoil. We recall that the pitching frequency considered, ωpa/U = 1, is relatively close to the least
stable eigenfrequency of the elastic-airfoil system, ωresa/U ≈ 0.83, discussed in Fig. 4. The system
therefore amplifies the actuating signal. This, in turn, leads to increased sound levels, as observed
from comparison between the dashed and solid curves in Fig. 5(b). At early times, incident vortex
sound is negligible, and the total radiation reflects contributions from �ξ and �w (see Fig. 6(a)).



071906-12 A. Manela Phys. Fluids 25, 071906 (2013)

40 45 50 55 60 65

−0.15

 −0.1

−0.05

  0  

 0.05

  0.1 (a)

r igid

e last ic

U tr/a

ξ
T

E
/
a

40 45 50 55 60 65

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

U tr/a

Π
θ
=

0
to

t

e last ic

r igid

(b)

FIG. 5. Near-field dynamics and far-field radiation of elastic (solid lines) and rigid (dashed lines) airfoils pitching at
ωpa/U = 1: (a) trailing edge motion; (b) total far-field radiation in the normal (θ = 0) direction. Vertical dashed-dotted lines
confine time interval during which the incident vortex passes above the airfoil in the elastic-airfoil setup.

Both �ξ and �w are periodic at this stage, reflecting sinusoidal motion of the airfoil and outcome
release of trailing edge vortices. Sound amplitude of the elastic airfoil is nevertheless larger than
that of the rigid airfoil, owing to the larger magnitudes of motion excited.

When the vortex approaches the airfoil, its interaction with structure end points intensifies,
leading to significant variations in �� , and affecting the airfoil motion and release of trailing edge
vorticity. In the rigid airfoil setup this effect is essentially “local,” and confined to a short time
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FIG. 6. (a) Pressure components and total far-field radiation in the normal (θ = 0) direction, and (b) spectral decompositions
of far-field radiation (�̃θ=0

tot , solid line) and trailing edge displacement (̃ξTE, dashed blue line), for a pitching elastic airfoil at
ωpa/U = 1. (c) and (d) Counterpart results for an actuated elastic airfoil in the absence of an incident vortex (� = 0). Values
in each of the curves in Figs. 6(b) and 6(d) are scaled by their respective maximum.
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interval after the vortex has passed above the airfoil. However, in the elastic case, airfoil oscillations
induced by the vortex add to the periodic pitching signal, and are detected long after the vortex has
passed the structure. Remarkably, we observe that the acoustic signature of the elastic airfoil at late
times contains a frequency higher than the primary actuation frequency ωpa/U = 1.

To gain further insight into this behavior, Figure 6 presents a more detailed analysis of the
acoustic signal presented in Fig. 5(b). Fig. 6(a) shows separate contributions of airfoil motion
noise (�ξ ) and wake sound (�w) to the total lift radiation, and Fig. 6(b) presents time Fourier
decompositions (see (36)) of the total radiation and trailing edge motion. For reference, Figs. 6(c)
and 6(d) show counterpart results for an actuated elastic airfoil in the absence of incident vortex,
i.e., when � = 0, in which structure dynamics is entirely excited by leading edge actuation.

As in the case of a non-pitching airfoil (see Fig. 3), our calculations indicate that total acoustic
signature is dominated by wake sound at all times, excluding the time interval of vortex passage
above the airfoil. At this time, both structure motion sound and particularly incident vortex noise
become significant and affect the total radiation. At leading edge time, total radiation is dominated
by incident vortex contribution (not presented here), while at trailing edge time wake sound acts
to cancel incident vortex noise and reduce the total radiation. The spectral analysis of the acoustic
signal in Fig. 6(b) reveals that, in addition to the dominant ω̄p = ωpa/U = 1 component (being the
single component in ξ̃TE), higher odd multiple harmonics at ω̄ ≈ 3ω̄p, 5ω̄p, 7ω̄p, . . . also exist. This
is in qualitative agreement with the appearance of the secondary peak at ω̄ ≈ 3ω̄res in the Fourier
decomposition of the passive-airfoil signature in Fig. 4.

The appearance of higher odd multiple harmonics in the acoustic signal is rationalized in
Figs. 6(c) and 6(d), by examining the counterpart problem in the absence of incident vortex. In this
case, structure motion and far-field radiation are periodic in time, and the acoustic field is given
by the sum of �ξ and �w contributions, yielding the solid line in Fig. 6(c). Having removed the
effect of the incident vortex, the spectral decomposition �̃θ=0

tot in Fig. 6(d) clearly contains ω̄p = 1
and all its odd multiple harmonics, in descending intensity. Separate decompositions of �̃ξ and �̃w

(not presented here) show that wake sound is the main cause for appearance of higher harmonics
in the total signature, while airfoil motion noise contributes almost entirely to the fundamental
frequency ω̄p = 1. The periodic wake structure, in turn, contains a sequence of discrete vortices
with alternating signs (a pair of opposite-sign vortices released during each heaving period), and the
respective pressure fluctuation should therefore satisfy

�w(t̄r + T̄ ) = �w(t̄r ) and �w(t̄r + T̄ /2) = −�w(t̄r ),

with T̄ = 2π/ω̄p denoting the scaled heaving period. Evidently, the second of the two requirements
is only satisfied by odd multiples of ω̄p, and excludes even multiples from the spectrum.

Summarizing the above discussion, it is concluded that at the intermediate value of pitching
frequency considered, elastic airfoil sound is dominated by trailing edge wake noise. Following
the nonlinear mechanism of wake-airfoil interaction, the radiated wake noise contains not only
the fundamental pitching frequency, but also its odd multiples. Practically, this implies that even
when the fundamental actuation frequency is below hearing threshold, pitching sound may still be
perceived through the higher harmonics radiated by the wake. This finding could not be obtained in
previous linear analyses, where the wake was a priori described as a mono-harmonic vortex sheet
(e.g., Ref. 21).

Figure 7 examines the effect of varying the pitching frequency ω̄p on the system dynamic and
acoustic behaviors. Towards this end, we introduce the far-field sound energy of the system,

Pacous(t̄r ) =
∫ 2π

0
�2

tot (t̄r , θ ) dθ, (37)

obtained by integration of the squared total radiation (30) over a circle of radius |x̄| → ∞, together
with the total integrated sound energy,

P ∗
acous =

∫ t̄r (x̄1�
=10)

t̄r (x̄1�
=−10)

Pacous(τ )dτ, (38)
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FIG. 7. Effect of pitching frequency on the acoustic far field: (a) and (b) Comparison between sound energy amplitudes of
elastic (solid lines) and rigid (dashed) airfoils actuated at ωpa/U = 0.9 (Fig. 7(a)) and ωpa/U = 4 (Fig. 7(b)); (c) trailing edge
deflections for an elastic airfoil actuated at ωpa/U = 0.9 (solid line) and ωpa/U = 4 (dashed line); (d) variation of integrated
sound energy amplitude, P ∗

acous, with pitching frequency, for elastic (solid curve) and rigid (dashed curve) airfoils. Solid
horizontal lines in Fig. 7(c) confine the amplitude of trailing edge motion for a rigid airfoil, for reference.

measuring the total sound radiated by the system at a time interval containing the vortex passage
above the airfoil

[
t̄r (x̄1�

= −10) ≤ t̄r ≤ t̄r (x̄1�
= 10)

]
. Figs. 7(a) and 7(b) compare between Pacous

for rigid and elastic airfoils actuated at ωpa/U = 0.9 and ωpa/U = 4, respectively, and Fig. 7(c)
presents the trailing edge displacements of the elastic airfoil in the two cases. Fig. 7(d) shows
variation of the integrated sound energy P ∗

acous with pitching frequency for elastic and rigid airfoils.
Focusing on Figs. 7(a) and 7(b), we observe that the rigid airfoil system is much noisier at

ωpa/U = 4 than at ωpa/U = 0.9, whereas the elastic airfoil retains similar sound levels at both
frequencies. Thus, while for ωpa/U = 0.9 the elastic airfoil is noisier than the rigid (similarly to what
has been observed in Fig. 5 for ωpa/U = 1), the trend is inverted for ωpa/U = 4, where elasticity
is found to attenuate the sound level compared to a rigid setup. This is also reflected in Fig. 7(d),
where the value of P ∗

acous is larger for ωpa/U = 0.9 in the elastic case, and lower for ωpa/U = 4.
According to Fig. 7(d), the change in trends occurs at ωpa/U ≈ 2.6, above which a rigid airfoil
becomes noisier. Unlike at low and intermediate actuation frequencies (see Figs. 3(a) and 6(a)),
our numerical calculations indicate that at large frequencies, rigid airfoil signature is dominated by
airfoil motion sound �ξ , whereas �� and �w become relatively small. This results from the ω

5/2
p

power dependence of �ξ found in (34), leading to high sound levels at high frequencies. In marked
contrast, this amplification mechanism is absent in the flexible airfoil setup, where structure elasticity
acts to absorb system kinetic energy, and reduce motion amplitudes at actuation frequencies far from
system natural eigenfrequency.

As discussed in Fig. 4, the system least stable eigenfrequency for the present (μ̄, ᾱ) combination
is ωresa/U ≈ 0.83. Accordingly, trailing edge motion amplitude is much larger for ωpa/U = 0.9 than
for ωpa/U = 4 (see Fig. 7(c)). In fact, when ignoring the incident vortex effect, trailing edge
deflection for ωpa/U = 4 for the elastic setup is smaller than for a rigid airfoil (cf. the dashed
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curve and two horizontal lines in Fig. 7(c) at early times). Similar behavior is followed at other
high actuation frequencies, and reflected through the much larger noise levels radiated by a rigid
airfoil when ωpa/U � 1. It can therefore be concluded that, when actuated at frequencies far from
(and higher than) system least stable eigenfrequency, structure elasticity reduces radiated sound
levels. Consequently, elasticity may be considered as means for developing passive and active
methodologies to monitor the acoustic radiation of flapping flight. Further research is required for a
specific design of such systems.

IV. CONCLUSION

We studied the acoustic far field of a thin elastic airfoil, subject to low-Mach non-uniform
stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-
structure interaction problem was analyzed using potential (inviscid) thin-airfoil theory, combined
with a discrete Brown-Michael model to describe the evolution of the airfoil trailing edge wake.
The leading order dipole-sound signature of the system was analyzed using Powell-Howe acoustic
analogy. Compared with the acoustic field of a pitching rigid airfoil, the results demonstrate a
two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to
the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated
sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to
absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing
pitching frequency ωp, we found the rigid-airfoil setup to be significantly noisier than the elastic
airfoil, owing to an ω

5/2
p increase of its motion-induced noise component. In contrast with rigid

airfoil signature, our calculations indicate that wake sound contribution to elastic airfoil radiation is
significant for all ωp. This contribution contains, in addition to the fundamental pitching frequency,
its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the
wake.

The present contribution has applied sinusoidal pitching together with a propagating line vortex
to model flapping flight actuation and incoming flow non-uniformity. Yet, our numerical scheme
can be easily generalized to consider the system response to arbitrary (small-amplitude) actuation
or any distribution of incoming vorticity. In this context, the present choice of sinusoidal actuation
can be considered as a single Fourier component of a more general input signal, and the single
incident line vortex model can be replaced by a more complex vortical non-uniformity. The near-
field interaction of a thin sheet with a vortex street distribution has been studied by Alben,19 who
focused on conditions where vortex street dynamics are unaffected by structure motion. Full coupling
between fluid and body motions is therefore yet to be investigated, and can be readily accounted for
using the present scheme. We leave this extension for a later discussion.

Perhaps the main finding of the present study is in demonstrating that airfoil elasticity, when cou-
pled with nonlinear fluid-structure interaction forcing, has a significant effect on the system acoustic
radiation, both in terms of sound amplitude and frequency characteristics. This suggests elasticity as
a possible means for future development of passive and active noise control methodologies. Further
research is required to follow this route for an applicative design of such systems.
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