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On the Rayleigh—Bénard problem in the continuum limit
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The transition to convection in the Rayleigh—Bénard problem at small Knudsen numbers is studied
via a linear temporal stability analysis of the compressible “slip-flow” problem. No restrictions are
imposed on the magnitudes of temperature difference and compressibility-induced density
variations. The dispersion relation is calculated by means of a Chebyshev collocation method. The
results indicate that occurrence of instability is limited to small Knudsen numbers (Kn=<0.03) as a
result of the combination of the variation with temperature of fluid properties and compressibility
effects. Comparison with existing direct simulation Monte Carlo and continuum nonlinear
simulations of the corresponding initial-value problem demonstrates that the present results
correctly predict the boundaries of the convection domain. The linear analysis thus presents a useful
alternative in studying the effects of various parameters on the onset of convection, particularly in
the limit of arbitrarily small Knudsen numbers. © 2005 American Institute of Physics.
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I. INTRODUCTION

The onset of convection in an initially quiescent fluid
confined between parallel horizontal walls and heated from
below is a classical problem in hydrodynamic stability
theory and has been investigated extensively owing to its
relevance to free convection phenomena (see Refs. 1-3).
Most studies have been carried out within the framework of
the Boussinesq approximation where fluid-density variations
are only considered in the buoyancy term of the equation of
motion. This approximation is based on the assumptions that
relative temperature differences and density variations owing
to compressibility are both small. The stability problem is
then governed by a single parameter, the Rayleigh number
[see (17)] representing the relative effects of buoyancy, fluid
viscosity, and heat conductivity.

Most of the relatively few analyses which have hitherto
addressed the corresponding compressible-flow problem
have relaxed either one but not both of these assumptions.
Thus, J effreys,4 Giterman and Shteinberg,5 and more recently
Bormann® considered compressibility effects assuming small
temperature differences and hence constant viscosity and
thermal conductivity coefficients. Frolich, Laure, and Peyret7
studied the effects of large temperature differences while re-
taining the assumption that compressibility-induced density
variations were negligible. In both cases the results indicate
that the compressible-fluid system is less unstable than the
corresponding predictions based on the Boussinesq approxi-
mation. Unlike Refs. 4-7, Spiegel8 has apparently relaxed
both of the above assumptions. His analysis, however, con-
siders constant fluid viscosity and heat conductivity, which
may not be consistent with large temperature variations. Ad-
dressing the continuum gas-dynamic problem without a pri-
ori restricting the relative temperature differences or
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compressibility-induced density variations is thus one of the
main objectives of the present contribution.

The RB problem in rarefied gases has in recent years
attracted considerable interest as a model problem for study-
ing such fundamental issues as the mechanisms of instability
and self-organization at the molecular level and their relation
to macroscopic phenomena.9 The two-dimensional problem
has principally been studied by means of the direct simula-
tion Monte Carlo (DSMC) method.'*'* The numerical simu-
lations follow the evolution of the system through its termi-
nal state which, in turn, serves to classify the system
response as stable or unstable. Early investigationslo’11 as-
sumed an external field proportional to the prescribed tem-
perature gradient so as to artificially retain the Boussinesq
approximation depending only on the Rayleigh number.
Golshtein and Elperin12 pointed out the importance of allow-
ing for arbitrary temperature differences and attendant com-
pressibility effects. Consequently, they noted that the result-
ing problem could not be completely characterized in terms
of the Rayleigh number. Sone and co-workers'>"'® considered
the corresponding problem for a Bhatnagar—Gross—Krook
model equation. Making use of a finite-difference scheme,
they studied the effects of the Knudsen (Kn) and Froude (Fr)
numbers, the temperature ratio and the geometry of the rect-
angular domain occupied by the gas. Stefanov and
Cercignani13 and Stefanov, Roussinov, and Cercignani14
(hereafter referred to as SRC) studied the RB problem for a
hard-sphere gas. The latter paper (SRC)'* compares the
DSMC results to those obtained via a finite-difference
scheme applied to a continuum slip model. Both schemes
provide closely similar results. For specific values of the
temperature ratio and the aspect ratio of the rectangular fluid
cell, the domain of convection in the (Fr, Kn) plane of pa-
rameters is delineated.

All of the above-mentioned studies demonstrate that sig-
nificant convection only occurs at small O(1072) Knudsen
numbers. However, the artificial “noise” inherent in DSMC
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makes it difficult to clearly identify and characterize the final
states, particularly for parameters combinations in the vicin-
ity of the transition to convection. Furthermore, these simu-
lations become extremely time consuming in the continuum
limit, which obstruct an accurate delineation of the domain
of instability. The present contribution is thus intended to
avoid these difficulties and complement the above studies by
considering the corresponding linear hydrodynamic
temporal-stability problem in the continuum limit. Towards
this end, we make use of a continuum model consisting of
the Navier—Stokes equations corresponding to a monatomic
hard-sphere gas. These are supplemented by the first-order
velocity-slip and temperature-jump conditions corresponding
to purely diffuse reflection at the walls.” (Higher-order slip
conditions are discussed by Hadjiconstantinou.”) Use of this
model in the context of the present RB problem is supported
by the results of SRC (Ref. 14) (see the discussion in Sec.
V).

In the following section we formulate the linearized per-
turbation problem about the pure-conduction reference state.
Subsequently, in Sec. III we describe the neutral surface in
the space of (Fr, Kn) and the dimensionless wave numbers.
In Sec. IV we consider discrete spectra occurring for finite
aspect ratios of the (rectangular) fluid domain. Finally, in
Sec. V we discuss the applicability of the continuum slip
model and the impact of the slip boundary conditions and
make some concluding remarks.

Il. STATEMENT OF THE PROBLEM

Making use of the standard normalization in studies of
the RB problem in rarefied gases, the position vector is
scaled by D, the distance between the walls, the gas density
by the reference value p associated with the normalization
condition (6), and the temperature is normalized by T}, the
absolute temperature of the lower (hot) wall. The transport
coefficients of shear viscosity and heat conductivity are nor-
malized by their respective values u;, and «;, at T),. Fluid
velocity is rendered dimensionless by the mean thermal
speed Uth=(2RT})""? (wherein R is the gas constant) and the
pressure is normalized by pRT),.

In a compressible Newtonian fluid the dimensionless
pressure, velocity, temperature, and density thus defined are
governed by the continuity, Navier—Stokes, and energy equa-
tions together with the equation of state. We write these
equations in a Cartesian system of coordinates (x;,x;,X3)
whose origin lies on the lower wall and whose x, axis is
pointing upwards (opposite to the direction of g, the accel-
eration of gravity). In these coordinates

op d

P 2 (pu) =0, I
Dui 1 d d 1 (9“‘

p_:—__p+Krl_ 2/.L<eij—__l> _£5[2s (2)
Dt 2&)6,- L?X] 3 axi Fr

Phys. Fluids 17, 036101 (2005)

DT Kn a( aT) (y-1) o, 2y— 1)Knd
—=——\k—|-(y-Dp—+ - 1)Kn®d,
Por = pr o \Nax,) T P, T

(3)

and

p=pT. “4)

In the above summation of repeated indices is implied, D/ D¢
denotes the material derivative and J;; is the Kronecker delta.
Appearing in (2) and (3) are the rate-of-strain tensor e;;
=(du;/ dxj+du;l dx;)/2 and the rate of dissipation &
=2u(e;e;—(du;/ x;)*/3). The dimensionless parameters ap-
pearing in the equations are the Knudsen number, Kn=1/D,
representing the ratio of /, the mean free path and the mac-
roscopic scale D; the Froude number, Fr= U,Zh/ gD, describing
the relative magnitudes of gas inertia and gravity; the Prandtl
number, Pr=u;c,/ k, and y=c,/c,, the ratio of specific heats
at constant pressure and volume, respectively. We consider a
monatomic hard-sphere gas. For this model of molecular in-
teraction y=5/3 and Pr=2/3. In addition, the Chapman—
Enskog scheme'® yields for the leading order of the dimen-
sionless transport coefficients

5 172

16

w(T) = k(T) = T2, (5)

The above equations are supplemented by the normalization
condition

f pdx,dx,dx; =1, (6)

specifying the total amount of gas between the walls, and by
the boundary conditions

o 5 T
l/l2=0, M1‘3=§_, T=1+7— atx2=0, (7)
(9.X2 &XZ
51413 T
u, =0, u1’3=—§(9x , T=RT—T; atx, =1,
2 2

(8)

respectively, imposing the vanishing of the normal velocity
component and specifying the magnitudes of velocity slip
and temperature jump at the lower (y=0) and upper (y=1)
walls. In (7) and (8), Ry=T,/T), denotes the ratio of cold- and
hot-wall temperatures, {=1.1466Kn and 7=2.1904Kn.’

SRC (Ref. 14) obtained for the above problem the steady
“pure conduction” (i.e., u«)):O) solution

i

C 6 12
0) _ 2/3 0) _ _— 70
79 = (Ax, + B)??, p©= 0 exp{ AFrZ( ] , (9

in which the constants A, B, and C are determined by use of
(6)—(8). The linear temporal stability of this pure-conduction
reference state is analyzed by assuming that it is perturbed by
small spatially harmonic perturbations. Accordingly, each of
the above-mentioned fields is generically represented by the
sum
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F=FO(x,) + ¢V (x,)explik - 1 + wi], (10)

wherein F© denotes the steady reference state and k
=(k,,k3) and r=r(x,,x3) are, respectively, the wave number
vector and the position vector in the (x;,x3;) plane parallel to
the walls. The above problem is transversely symmetric
about the x, axis. We may therefore, with no loss of gener-
ality, confine subsequent description to vertical planes paral-
lel to k. To simplify notation we thus select the x-axis par-
allel to k and rewrite u;, u,, and x, as u, v, and Yy,
respectively. Substituting (10) into (1)—(3), neglecting non-
linear terms and eliminating the pressure p by use of the
equation of state (4), we obtain in the new notation the per-
turbation problem consisting of

dp"”
wp) + Z_yv<1>+ (o>[
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wherein f)=iku'). These equations are supplemented by the
boundary conditions

df'! dr')
ﬂ“=¢gi, =0, W=2x7 (15)
dy dy

at  y=0,1, respectively. In (12)—(14), u@=«O®
=(572/16)T®" and «V=(57"2/32)TO""*TV in accor-
dance with linearization of (5). The assumed form (10) en-
sures that p!) satisfies the homogeneous equivalent of (6).
The dispersion relation w=w(k;Kn,Fr,Ry) is calculated
by means of the Chebyshev collocation method." This
method transforms the above problem into an algebraic ei-
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FIG. 1. Division of the plane of parameters (Fr, Kn) into unstable (U,
shaded zone) and stable (S) domains for R;=0.1 according to the present
linear theory (solid line) together with DSMC (circles) and continuum
(squares) results of SRC (Ref. 14). Also marked are the large-Fr asymptote
Ra,, =~ 1773 (dashed line), the locus of perturbations possessing the largest
growth rates at given Kn (crosses joined by line segments), the initial ap-
pearance of nonmonotonical density distribution (dash-dotted line), and the
necessary condition (18) for the onset of convection (cross-hatched line).

genvalue problem consisting of a system of 4N linear equa-
tions satisfied by the perturbations p!"), fV, v and 7V at N
discrete points across the gas domain. Throughout the do-
main of parameters corresponding to subsequent results, con-
vergence of the calculation is established within N<<70. In
particular, unlike DSMC computations, there is no difficulty
in obtaining results for arbitrarily small Kn>0.

lll. RESULTS AND DISCUSSION

Throughout the entire domain of parameters our calcu-
lations invariably yield real-valued w. Accordingly, the onset
of convection takes place via “exchange of stabilities,”' i.e.,
the appearance of stationary perturbations, w=0. In the fol-
lowing we focus on a temperature ratio R;y=0.1 so as to
facilitate comparison with the results of SRC."

The solid line in Fig. 1 separates the plane of parameters
(Fr, Kn) into respective domains of unstable (U, shaded
zone), >0, and stable (S), <0, response. Also presented
are the corresponding DSMC (circles) and continuum finite-
difference (squares) results of SRC," the large-Fr asymptote
(FrKn?~3.65% 1073, dashed line), the dash-dotted line
marking the locus of states where nonmonotonical density
distributions initially appear in the pure-conduction reference
state (9) and the cross-hatched line corresponding to the nec-
essary condition (18) related to compressibility-induced den-
sity variations. Finally, the crosses joined by the line seg-
ments mark the points where, according to the present linear
analysis, perturbations possess maximal growth rates for re-
spectively given values of Kn.

For all Kn>0 the convection domain is confined to a
finite interval of Froude numbers. The extent of this interval
is rapidly diminishing with increasing Kn, vanishing entirely
for Kn=0.029. When Kn=<0.01 (and Fr=40), the right
branch of the U-domain boundary is approaching the dashed
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line. The latter corresponds to the modified Rayleigh number
based on the arithmetic mean of wall temperatures

2048  1-R;
a,, =
" 75m(1 + Ry)? FrKn?

~ 1773 (16)

(cf. Golshtein and Elperin'z). In the limit when the tempera-
ture difference is small this expression reduces to the tradi-
tional expression

g(1-Ry)D’p’cp
Ra=— P2 PTP
LK

(17)
The coincidence of the Fr>1 portion of the U-domain
boundary with a critical value of Ra,, which is larger than the
Boussinesq value (=1708) is in agreement with the results of
Frolich et al.” who studied this limit within the framework of
the Low—Mach approximation of the Navier—Stokes equa-
tions. Thus, according to Frolich et al.,7 the critical value of
Ra,, is growing with increasing relative temperature differ-
ences essentially owing to the variation of the transport co-
efficients (u and «) with the local gas temperature (which
effect is neglected in the Boussinesq approximation). This
correspondence of the lower-right boundary with a constant
critical value of Ra,, would not occur in the presence of
significant compressibility effects (i.e., density variations re-
sulting from pressure differences). However, when Fr>1,
the pressure is nearly uniform across the fluid domain [cf.
(9)], hence p=p(T) and compressibility effects are indeed
negligible.

We now turn to consider the left branch of the U-domain
boundary. It is interesting to note that for all Kn=<0.02, this
boundary is disposed to the left of the dash-dotted line. In-
deed, transition to convection may take place in a compress-
ible fluid even when the fluid density in the reference state is
monotonically decreasing.6 Thus, convection may set in pro-
vided that adiabatic expansion of a fluid element rising
through the reference hydrostatic pressure field reduces its
density below the ambient reference density.20 In the present
dimensionless notation, this yields the condition

dr”

4
A(y)=—+—<0. 18
») @]+5H (18)

The cross-hatched line in the figure presents the locus of
conditions where (18) is initially satisfied by the reference
fluid-temperature gradient. From (9) we see that this condi-
tion initially occurs at the upper (cold) wall.>' The analysis
leading to (18) does not consider the retarding effects of fluid
viscosity and heat conductivity, hence this condition is in fact
a necessary condition for the onset of convection. As such, it
is not surprising that the corresponding line appears to the
left of the actual boundary. We further elaborate on the rel-
evance of (18) towards the conclusion of this section.

In view of the vastly different methods of calculation (a
linearized eigenvalue problem as opposed to a nonlinear ini-
tial value problem), the close agreement between the present
results and those of SRC (Ref. 14) is gratifying. The largest
differences between the respective results appear at the lower
portion of the right branch of the boundary (Kn=<0.01,Fr
> 1) of the convection domain which is wider according to
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FIG. 2. A “top view” of the neutral surface w(Fr,Kn,k)=0 over the (Fr,k)
plane for R;=0.1. Neutral curves at the indicated values of Kn are marked
by the bold solid lines. Thin solid lines are level lines of w for Kn=0.01
(Aw=0.02). The dashed and dash-dotted curves joined by the circle describe
the projection of the neutral curve (bold solid line) in Fig. 1 on the (Fr,k)
plane.

the present results. This difference may be attributed to non-
linear (hysteresis) phenomena (which are obviously absent
from the present linear analysis). For example, consider the
location of the right boundary at Kn=0.005. The correspond-
ing values of the Froude number are Fr=~ 152 in the present
calculation and Fr=50-55 in SRC."" However, their Fig. 12
shows wide hysteresis loop extending as far as Fr=200.
Thus, in this part of the (Fr, Kn) plane the convection domain
is bounded by a zone rather than a line; the boundary delin-
eated by the present linear calculation is passing through this
zone. Traversing the rest of the boundary of the U domain
we observe that in its upper (Kn=0.02) portion the differ-
ences between the present line and the results of SRC (Ref.
14) are comparable to the differences between their various
schemes. At the lower-left portion of the boundary [Kn
=<0.02,Fr=0O(1)] the results of all calculations nearly coin-
cide. Similarly to the above, this correspondence is in accor-
dance with the hysteresis loops here being much narrower
than those encountered on the right branch of the bounding
curve [cf. Figs. 11 and 12 of SRC (Ref. 14)].

Figure 2 describes a “top view” of the three-dimensional
neutral surface w(k;Fr,Kn)=0 (for R;=0.1) above the plane
of Fr and k, the dimensionless wave number, which thus
complements the “front view” of the preceding figure. The
bold solid lines are the neutral curves (w=0) at the indicated
values of Kn. With increasing Kn, the extent of the U domain
is rapidly diminishing. Also presented for Kn=0.01 are the
level lines of the growth rate (the separation between adja-
cent lines being Aw=0.02). The local maximum of the
growth rate (w,,~0.309) is marked by the cross at k=4.95,
Fr=2.20 (corresponding to the cross marked at Kn=0.01 in
Fig. 1). Noting that Fr values are described on a logarithmic
scale, we see that the larger growth rates occur in the prox-
imity of the left (small Fr) boundary of the U domain (cf. the
crosses marked in Fig. 1).
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FIG. 3. The variation across the fluid domain of g(y), the x average of
convection intensity, (solid line), and A(y), associated with the necessary
condition (18) (dashed lines) at the indicated values of Kn.

The projection of the neutral curve of Fig. 1 on the (Fr,
k) plane is described by the combination of the dash-dotted
(right branch) and dashed (left branch) lines joined at the
bold circle (peak). At each point of the neutral curve of Fig.
1 the present line gives the corresponding dimensionless
wave number k... For future reference we note that through-
out the entire right branch as well as in the upper portion
(Kn=0.02,Fr=1.23) of the left branch only slight changes
from k.= m appear. With further decreasing Fr and Kn, &,
veers up and becomes rapidly increasing. Finally, we observe
that the curvature of the neutral curves about their respective
intersections with the k., line is decreasing with diminishing
Fr and Kn. Consequently, in the vicinity of these intersec-
tions a slight increase of Fr is sufficient to render unstable a
wide spectrum of perturbation wave numbers.

To gain some further insight into the effects of com-
pressibility, we focus on the lower left portion of the
U-domain boundary. Towards this end, we consider the
variation across the gas domain of A(y) [see (18)] and ¢(y),
the x average of convection intensity (normalized to unity).
These are presented in Fig. 3 by the respective dashed and
solid lines at the indicated Knudsen numbers corresponding
to three points on the lower left branch of the neutral curve
of Fig. 1.

It may readily be established that A(y) is monotonically
decreasing. Furthermore, |d7\®/dy| is decreasing with Kn
tending to increase A. However, at the small values of Kn
concerned (0.0002-0.002) this has only a slight effect which
is dominated by the diminishing of the second term as we
move along the neutral curve to larger values of Fr (specifi-
cally from Fr=0.66 to Fr=0.84). Consequently, with in-
creasing Fr and Kn, A(y) decreases and the interval §; adja-
cent to the cold wall where the necessary condition (18) is
satisfied is widening.

At Kn=0.0002 convection is effectively confined to the
upper quarter of the gas domain. With increasing (Kn, Fr)
this convection zone J, is growing so that its extent is a little
more than twice that of the corresponding &;. This correla-
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tion remains valid with very slight deviations up to Kn
~(0.005 when convection nearly occupies the entire gas do-
main between the walls. These results appear to agree quali-
tatively with Figs. 2 and 3 in SRC."

The foregoing discussion demonstrates the usefulness of
(18) to the rationalization of the onset of convection under
significant compressibility effects and temperature differ-
ences. Being a necessary condition (which neglects retarding
viscous and heat-conduction effects) it is insufficient to re-
quire A(1) <0 at the upper cold wall (see the cross-hatched
line in Fig. 1). Rather (depending on Fr, Kn) there is a
threshold critical interval &; where (18) needs to be satisfied
before convection may be sustained. Once convection sets in
it extends over a wider (than &,) portion of the gas domain &,
owing to viscous momentum diffusion to lower fluid layers.

IV. DISCRETE SPECTRA

Existing studies of RB instability in rarefied gases con-
sider two-dimensional problems in rectangular domains.
Periodicity14 or specular reflection'®"*'%1¢ conditions are
imposed at the vertical planar boundaries (perpendicular to
the walls at x=0,L). The finite domain together with the
boundary conditions prescribed result in a discrete spectrum
of perturbation wavelengths. Thus, for a cell whose aspect
ratio is R;=L/D with periodicity condition, the dominant
perturbations need to be selected from the discrete set of
wave numbers k;d)=27m/RL (n=1,2,...). These, in turn,
correspond to occurrence of n pairs of convection rolls
within the rectangular domain.*

The transition from a continuous spectrum to a discrete
subset of perturbation wave numbers is expected to diminish
the U-domain. We here focus on a cell whose aspect ratio is
R;=2, as in SRC." For this value of R; our calculations
show that the actual displacement of the neutral curve is
imperceptible in Fig. 1. This result may be rationalized by
considering the projection of the neutral curve presented in
Fig. 2. As mentioned above, throughout the right branch and
the upper portion of the left branch the “continuous” critical
wave numbers deviate only slightly from k..~ 7. Selection
of the discrete counterpart ki_‘:)z 7 (n=1) thus results in slight
(indiscernible) changes of the critical Fr value corresponding
to a given Kn. Different values of R; may, however, result in
a more significant diminution of the U domain. Regarding
the left branch of the U-domain boundary, it has been ob-
served in Fig. 2 that for a given pair of (Fr, Kn) w=0 within
a wide interval of wave numbers about k.. Thus, the lower
left branch too is only slightly modified as a result of replac-
ing k., by the appropriate discrete value ki‘f). Unlike the right
branch of the neutral curve, this result is less sensitive to the
specific value of R;.

The discrete counterpart of the k. curve presented in
Fig. 2 is obtainable through comparison of the respective Fr
values corresponding to w=0 for the various discrete modes
kid) at a given Kn. Thus ki‘f)=77 throughout the right branch
and the upper Kn=0.0066 part of the left branch. For
00021 =Kn=0.0066 k=27 would prevail and for
0.000 83<Kn=0.0021 k“=37. When Kn is further re-
duced kif) increases. These results are compatible with the
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0.3

FIG. 4. The dominant discrete modes in a rectangular domain L/D=2 for
R;=0.1 and the indicated Knudsen numbers; k=7 (dashed), 27 (solid), and
37 (dotted).

(even) numbers of convection rolls at points on the lower-left
boundary of the convection zone tabulated in SRC."

As mentioned above, linear stability analysis is also con-
cerned in determining the dominant perturbations, i.e., those
possessing the maximal growth rate for a given set of param-
eters. To clarify the effects of Kn and Fr on the selection of
the dominant discrete perturbations, Fig. 4 describes the
variation of w with Fr for the dimensionless wave numbers
k= (dashed lines), 27 (solid curves), and 37 (dotted line)
at the indicated values of Kn. At the largest value of Kn
(=0.015) presented, the basic wave number k= 7 is the domi-
nant mode for all Fr (which remains true for Kn=0.011).
With decreasing Kn, an increasing number of higher-order
modes emerge as dominant perturbations, initially appearing
near Fr=2 (in the vicinity of the maximal w for a given Kn,
cf. the crosses marked in Fig. 1). While the number of bifur-
cations is rapidly increasing they become more gradual in the
sense that the modes involved possess comparable growth
rates over larger Fr intervals. This may affect the weakly
nonlinear behavior of perturbations by modifying, at small
Kn, the assumed exponential time dependence (10). Finally,
in accordance with the above discussion of k., for all Kn and
sufficiently large Fr (i.e., when approaching the right bound-
ary of the U domain), the dominant perturbation corresponds
to the basic harmonic k=.

V. CONCLUDING REMARKS

Evaluation of the validity and accuracy of the present
results is closely related to the prediction of the failure of the
continuum slip-flow model employed. Earlier Refs. 23 and
24 require that Kn=<0.1, which condition is apparently sat-
isfied since the present results indicate that the onset of con-
vection only takes place when Kn=0.03. However, the fore-
going is an overall Knudsen number involving the mean free
path [ based on the average density p and the global macro-
scale D. Criteria based on the smallness of such average
Knudsen numbers may not be uniformly valid and may lo-
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FIG. 5. Comparison of the present neutral curve (solid line) and those ob-
tained in the absence of velocity slip (dash dotted), temperature jump
(dashed), and both (dotted).

cally fail at certain parts of the flow field.>*° A more careful
examination of this issue involves a local Knudsen number
based on the local mean free path and an appropriate local
macroscopic scale. The latter may be defined in terms of
some macroscopic field Q and its local gradients, i.e.,
Q/|V Q|. However, there is no unique commonly accepted
failure criterion. Rather, varying forms and upper bounds of
the local Knudsen number appear in the literature in the con-
text of different physical problems.%’zg The ultimate test in
any case is based on the comparison of the continuum model
predictions to DSMC results. For the RB problem, the com-
prehensive comparison which has been carried out by SRC
(Ref. 14) has demonstrated good agreement between the re-
spective results of both schemes throughout the relevant do-
main of parameters. This agreement ensures adequacy of the
present model which (apart from the linearization of the per-
turbation equations) is the same as the continuum model of
SRC."

To examine the influence of the velocity-slip and
temperature-jump boundary conditions (7) and (8), respec-
tively, on the stability of the system, Fig. 5 compares the
present neutral curve (solid line) to the one obtained when
the vanishing of velocity slip [¢=0 in (7) and (8)] and tem-
perature jump [7=0 in (7) and (8)] are imposed (dotted
curve). Also presented are the boundaries of the U domain
obtained in the absence of either velocity slip (dash-dotted
curve) or temperature jump (dashed curve). The various
curves converge with diminishing Kn, hence we focus on
their respective upper (Kn=0.01) parts.

There is a relatively small difference between the solid
and dotted lines—a slight leftward shift of the latter. The
present solution thus predicts a somewhat wider convection
domain at larger Fr (i.e., the right branch) and somewhat
more stable response at small Fr (the left branch). The re-
maining curves demonstrate that the foregoing small differ-
ence results from the summation of two mutually opposing
effects. Thus, on the one hand, the no-slip condition effec-
tively enhances the retarding effect of fluid viscosity. On the
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other hand, the absence of temperature jump at the walls
increases (for a given temperature ratio) the actual tempera-
ture gradient across the fluid and thus enhances the destabi-
lizing effect of buoyancy. The former is more significant at
the larger Fr values, increasing the critical value of Ra,, re-
quired for the onset of convection. The latter mainly affects
the left boundary of the U domain by advancing the satisfac-
tion of (18) at smaller Fr. While each of these would sepa-
rately yield a relatively substantial change, together they
nearly cancel each other.

The present linear temporal stability analysis focuses on
the onset of convection in RB problem in the continuum
limit. The above discussion indicates that the boundaries of
the domain of instability are essentially determined by two
factors: (i) The increasing of the critical Rayleigh number
related to variation of fluid viscosity and heat conductivity
with temperature and (ii) the cutoff at finite [O(1) for the
present selection of R;] values of Fr owing to compressibil-
ity. It is the intersection of these two which results in the
vanishing of RB instability beyond the relatively small Kn
~0.03.

In accordance with the goals set in the Introduction,
much of the discussion have been devoted to the comparison
of the present results and those obtained in the nonlinear
calculations of SRC." Obviously, the present scheme is not
expected to predict the form and intensity of the final con-
vection patterns which are governed by nonlinear interac-
tions. However, as demonstrated in Fig. 1, the linear analysis
does successfully predict the boundary of the convection do-
main (associated with stationary, nongrowing perturbations
which are therefore not necessarily inconsistent with the ba-
sic assumptions of the linear theory). This result offers the
linear temporal stability analysis as a viable means of study-
ing the effects of the various parameters on the onset of
convection. While the present selection of R;y=0.1 and a
hard-sphere gas was motivated by the need to facilitate com-
parison with SRC,14 there is evident interest in examining,
among other things, the effect of other values of Ry or alter-
native models of molecular interaction.
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