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The transition to convection in the Rayleigh-Bénard problem at small Knudsen numbers is studied
via a linear temporal stability analysis of the compressible “slip-flow” problem. Considering a
power-law !variable hard-sphere" model of interaction our analysis indicates that for sufficiently
large Froude numbers “softer” potentials result in less unstable systems. At small Froude numbers
this trend is reversed, i.e., the “softer” interaction potentials correspond to a more unstable response.
These results are discussed in terms of the opposing mechanisms of thermal expansion and
compressibility. We carry out an asymptotic expansion for small temperature differences and
establish the principle of exchange of stabilities for this limit. A singularity appears in this limit
when compressibility effects are dominant. © 2005 American Institute of Physics.
#DOI: 10.1063/1.2136127$

The onset of Rayleigh-Bénard !RB" convection is a clas-
sical problem in hydrodynamic stability theory and has been
studied extensively within the framework of the Boussinesq
approximation,1 wherein both relative temperature differ-
ences and density variations owing to compressibility effects
are assumed small. These assumptions may not apply when
considering the RB convection in rarefied gases. The prob-
lem has been studied in recent years mainly by means of the
direct simulation Monte Carlo !DSMC" method.2–4 The nu-
merical simulations follow the evolution of the system
through its terminal state which, in turn, serves to classify
the system response as stable or unstable. The above-
mentioned studies demonstrate that convection only occurs
at small O!10−2" Knudsen numbers. However, the artificial
“noise” inherent in these simulations makes it difficult to
clearly identify and characterize the final states, particularly
for parameter combinations in the vicinity of the transition to
convection. Furthermore, these simulations may become ex-
tremely time consuming in the continuum limit, which ob-
structs an accurate delineation of the domain of instability.
Consequently, explicit results in the literature have been pre-
sented only for a hard-sphere gas in a limited number of
parameter combinations. In particular, no results have been
presented thus far for Knudsen numbers smaller than 10−3.

Recently, Manela and Frankel5 studied the RB problem
in the continuum limit via a linear temporal stability analysis
of the compressible “slip-flow” model.6 Their predictions of
the onset of convection for a hard-sphere gas at a specific
temperature difference show remarkable agreement with ex-
isting DSMC and continuum nonlinear simulations.4 This
agreement suggests the linear analysis as a useful alternative
for studying the RB problem, particularly at arbitrarily small
Knudsen numbers. The present contribution is thus aimed at
examining the effects of varying both the model of molecular
interaction and the temperature difference. In the limit of
small temperature differences we obtain inter alia the famil-
iar Boussinesq-type results of Spiegel.7,8 Our analysis indi-

cates, however, that this approximation becomes nonuniform
when compressibility effects are dominant.

We consider a layer of perfect monatomic gas confined
between infinite horizontal walls and heated from below. To
render the problem dimensionless the position vector is
scaled by D, the distance between the walls, the gas density
by a reference value !̄ #see !6"$, and the temperature by Th,
the absolute temperature of the lower !hot" wall. Fluid veloc-
ity is scaled by the mean thermal speed Uth= !2RTh"1/2

!wherein R is the gas constant" and the pressure is normal-
ized by !̄RTh. Shear viscosity and heat conductivity are nor-
malized by their respective values, "h and #h, at Th. The
problem is governed by the continuity, Navier-Stokes, and
energy equations together with the perfect gas equation of
state. From the symmetry properties of the subsequent per-
turbation problem5 we may, without loss of generality, use a
two-dimensional description in the Cartesian coordinates
!x1 ,x2" whose origin lies on the lower wall. The x2 axis is
directed vertically upwards and x1 is a horizontal coordinate.
In these coordinates
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In the above summation of repeated indices is implied, D /Dt
denotes the material derivative and $ij is the Kronecker delta.
Also appearing in !2" and !3" are eij, the rate-of-strain tensor,
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and &, the rate of dissipation. The dimensionless parameters
appearing in the equations are Kn="h / !̄UthD, related to the
Knudsen number #see !8" et seq.$; the Froude number, Fr
=Uth

2 /gD, describing the relative magnitudes of gas inertia
and gravity, respectively; the Prandtl number, Pr="hcp /#h,
and %=cp /cv, the ratio of specific heat at constant pressure
and volume, respectively. For a perfect monatomic gas %
=5/3 and Pr=2/3.

We assume an inverse power-law central-force interac-
tion between the gas molecules, F'r−!s+1", wherein r is the
separation between the centers of the molecules and 4(s
)* !the limits corresponding to Maxwell molecules and
hard spheres, respectively". For this interaction law, the
Chapman-Enskog scheme9 yields the dimensionless transport
coefficients10

"!T" = #!T" = T1/2+2/s. !5"

The above equations are supplemented by the normalization
condition

) ! dx1dx2 = 1, !6"

specifying the total amount of gas between the walls, and by
the boundary conditions

u2 = 0, u1 = ± +
!u1

!x2
, T = % 1

RT
( ± ,

!T

!x2
at x2 = %0

1
( ,

!7"

respectively, imposing the vanishing of the normal velocity
component and specifying the magnitudes of velocity slip
and temperature jump at the lower !x2=0" and upper !x2
=1" walls. In !7", RT=Tc /Th denotes the ratio of cold- and
hot-wall temperatures, +=1.1466Kn and ,=2.1904Kn,
wherein Kn is the Knudsen number representing the ratio of
l, the mean free path, and the macroscopic scale D. We here
make use of the slip !+" and jump !," coefficients
calculated11 using the Bhatnagar-Gross-Krook !BGK" model
and neglect the slight !5% at most" dependence of these co-
efficients upon the model of interaction.12–14

To relate the parameters Kn and Kn appearing in the
above, the mean free path needs to be expressed in terms of
hydrodynamic properties of the gas. For molecules other
than hard spheres, there is a certain degree of arbitrariness in
the selection of the appropriate !convergent" effective cross
section. For the prevailing variable hard-sphere !VHS"
model16 !based on the viscosity cross section" one obtains

Kn = G Kn, G =
5*-

16
3s2

!3s − 2"!s − 1"
T̄−2/s. !8"

In !8" T̄ denotes the mean gas temperature #see !10"$. It is
worthwhile to note that the selection of other models appear-
ing in the literature15 will only affect the resulting explicit
functional form of G.

The above problem !1"–!7" possesses the steady “pure-
conduction” !i.e., ui

!0"=0" solution

T!0" = !Ax2 + B"2s/!3s+4",
!9"

!!0" =
C

T!0"exp%−
2!3s + 4"
AFr!s + 4"

T!0"!s+4"/2s( ,

in which the constants A, B, and C are determined by use of
!6" and !7". T̄ in !8" is then obtained as

T̄ = )
0

1

T!0"dx2. !10"

The linear temporal stability of this pure-conduction ref-
erence state is analyzed assuming that it is perturbed by
small spatially harmonic perturbations. Accordingly, each of
the above-mentioned fields is generically represented by the
sum

F = F!0"!x2" + .!1"!x2"exp#ikx1 + /t$ , !11"

wherein F!0" denotes the steady reference state and k is the
real wave number. Substituting !11" into !1"–!7" and neglect-
ing terms nonlinear in the perturbations we obtain a linear
problem. With minor modifications the resulting problem is
the same as !11"–!15" of Ref. 5 and is therefore not explicitly
presented here. The dispersion relation /=/!k ;Kn,Fr,RT" is
obtained by means of the Chebyshev collocation method.17

Throughout the entire domain of parameters, our calculations
invariably yield real valued growth rates. Thus convection
appears via stationary perturbations, /=0. We will later on
establish the principle of exchange of stabilities in the limit
RT→1.

Figure 1 presents the effects of the parameter s on the
convection domain in the !Fr,Kn" plane for RT=0.1. The
solid lines are the neutral curves for the limiting cases s=4
and *, as well as the more realistic15 intermediate case s
=8. Following Ref. 3 we define the modified Rayleigh
number

FIG. 1. Neutral curves in the !Fr,Kn" plane for RT=0.1 at the indicated
values of s !solid lines". The dashed asymptotes correspond to constant
values of Ram, the modified Rayleigh number #see !12"$.
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Ram =
8

3G2!1 + RT"2

1 − RT

Fr Kn2 !12"

based on the arithmetic mean of wall temperatures. At
Fr01, pressure is nearly uniform across the gas #see !4" and
!9"$. Compressibility effects are therefore negligible and
the various neutral curves become asymptotic to the
dashed lines corresponding to constant values of Ram
!+1830,1800,1773 for s=4,8 ,*, respectively". With di-
minishing Fr and growing importance of compressibility ef-
fects, the neutral curves deviate to increasingly larger values
of Ram reaching a cutoff at a finite Fr !see Fig. 3 et seq."
where compressibility effects become dominant.

With the exception of the neighborhood of the smallest
Fr values !10.85", i.e., as long as compressibility effects are
not dominant, the “softening” of molecular interactions !i.e.,
diminishing s" has a stabilizing influence which is mani-
fested in the increasing critical values of Ram and the dimin-
ishing of the maximal values of Kn allowed in the convec-
tion domain. According to Frölich et al.,19 the enhanced RB
stability relative to the Boussinesq approximation is associ-
ated with the variation of # and " with T across the fluid.
From !5" we see that, for a given RT)1, the variability of the
transport coefficients is indeed increasing with diminishing s.

In contrast to the above, diminishing s is seen to have a
destabilizing effect at the left portion of the neutral curves. In
this domain of small Fr !10.85", compressibility effects
dominate thermal expansion. Transition to convection may
only occur provided that the adiabatic expansion of a fluid
element rising through the reference hydrostatic pressure
field reduces its density below the ambient reference value.18

In the present dimensionless notation, this yields the
condition

2!x2" =
dT!0"

dx2
+

4
5Fr

) 0. !13"

Owing to the functional form of the dependence !5" of #
upon T and s, for given Kn and RT we find that dT!0" /dx2 is
diminishing with s. Hence !13" may be satisfied at smaller
Fr, which extends the lower left portion of the convection
domain.

To study the effects of the wall-temperature ratio we
begin with an approximation for a small temperature differ-
ence. Introduce the small parameter

3 = 1 − RT 4 1. !14"

The dominant balance of the respective effects of fluid vis-
cosity and heat conductivity, external field, and unsteadiness
in the perturbation problem, yields the distinguished limit
process

Kn = a3, Fr = b/3, and / = ā53 , !15"

wherein a, b, and 5 are fixed when 3→0 and ā=Ga #see
!8"$.20 To O!3" the reference temperature and density distri-
butions !9" are linear functions of x2. The perturbation prob-
lem satisfied by u2

!1", the leading-order vertical velocity per-
turbation, consists of the equation

& d2

dx2
2 − k2'& d2

dx2
2 − k2 − 5'& d2

dx2
2 − k2 −

2
3

5'u2
!1"

= − Rak2u2
!1", !16"

together with the boundary conditions

u2
!1" = 0,

!17"
du2

!1"

dx2
= 0, & d2

dx2
2 − k2'& d2

dx2
2 − k2 − 5'u2

!1" = 0 at x2 = 0,1.

The resulting problem is governed by the single parameter

Ra =
26

15ā2b2 , 6 = 5b − 4. !18"

The O!3" dimensionless excess of the absolute-temperature
gradient over the adiabatic gradient, 4 /5Fr, is thus propor-
tional to 6. When Ra is replaced by the classical Rayleigh
number, !16" and !17" become identical to the perturbation
problem obtained within the framework of the Boussinesq
approximation.1 Immediate corollaries of this equivalence
are the real values of / !i.e., the “principle of exchange of
stabilities”" and the critical values Ra+1708 and k+3.117
for the onset of convection.

Figure 2 presents the effects of the temperature ratio on
the transition to convection for a hard-sphere gas !s→*".
The solid lines correspond to numerically obtained neutral
curves at the indicated values of RT !=1−3". The dashed line
corresponds to Ra+1708 which in the plane of !b , ā", the
respective generalized Fr and Kn #see !15"$ represents the
universal !for all s" asymptote to the neutral curve as RT
→1. It is worthwhile to note that as RT→1, the convection
domain is confined to vanishingly small Knudsen numbers,
which render DSMC simulations rather impractical for RT
70.9.

Results similar to the above !16" and !17" have previ-
ously been obtained by Spiegel and co-workers7,8 in the con-
text of the stability of a thin layer of a perfect gas confined

FIG. 2. Effects of RT, the temperature ratio, on the neutral curves in the
!b , ā" plane for a hard-sphere gas. The dashed line corresponds to Ra
+1708.
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between free planar boundaries as a model of a polytropic
compressible atmosphere. Constant transport coefficients and
steady convection have been assumed at the outset. Their
results are presented in terms of Ra, the normalized width of
the layer !which is the counterpart of our 1−RT", and the
polytropic index m, which is related to the present 6 via

6 =
6 −4 m

5Fr!m + 1"
. !19"

When considering the onset of convection in the respective
limits RT→1, or of a thin layer, the necessary condition
!13" yields 680 which, in turn, requires that m)3/2. This
restriction has apparently been left unnoticed in Refs. 7 and
8, where Ra+1708 is regarded as the critical value for the
onset of convection in a thin layer irrespective of m !see
Fig. 1 and Table 1 in Ref. 8".

Inspection of Fig. 2 reveals that convergence to the as-
ymptote is nonuniform in b !the generalized Froude number".
The largest relative differences between the respective nu-
merical and asymptotic results take place at the lower-left
end of the neutral curves which, as mentioned above, are
dominated by compressibility effects. To gain further insight
into the behavior of this domain, Fig. 3 presents, at the indi-
cated values of RT, the variation of kcr, the critical wave
number normalized by the value corresponding to the Bouss-
inesq approximation, with $=Fr/Fr0−1, the relative devia-
tion of Fr from the cutoff value Fr0. #The latter is the smallest
value of the Froude number for which, at a given combina-
tion of !s ,Kn,RT", the necessary condition !13" is satisfied.$

The singular nature of the limit RT→1 is reflected in that, for
all 1−RT80, kcr diverges at some !however small" neigh-
borhood of $80. Calculations of the perturbation velocity
field !see Figs. 2 and 3 in Ref. 4 and Fig. 3 in Ref. 5" show
that, with diminishing $, the resulting convection becomes
confined to an increasingly narrower layer of the fluid adja-
cent to the upper !cold" wall. Analysis of this singular limit
of dominant compressibility effects is currently under way.
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