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a b s t r a c t

The study considers the combined effects of boundary animation (small-amplitude
heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic
signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is
analysed using the Brown and Michael equation, yielding the incident vortex trajectory

source term to evaluate the far-field sound using Powell–Howe analogy. The results
identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance
of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of
scaled heaving frequency ωa=U (with ω the dimensional heaving frequency, a the airfoil
half-chord, and U the mean flow speed), the system behaviour can be divided into two
characteristic regimes: (i) for ωa=U⪡1, the effect of heaving is minor, and the acoustic
response is well approximated by considering the interaction of a line vortex with a
stationary airfoil; (ii) for ωa=U⪢1, the impact of heaving is dominant, radiating sound
through an “airfoil motion” dipole oriented along the direction of heaving. In between (for
ωa=U �Oð1Þ), an intermediate regime takes place. The results indicate that trailing edge
vorticity has a two-fold impact on the acoustic far field: while reducing pressure
fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices
transmit sound along the mean-flow direction, characterized by airfoil heaving frequency.
The “silencing” effect of trailing edge vorticity is particularly efficient when the incident
vortex passes close to the airfoil trailing edge: at that time, application of the Kutta
condition implies the release of a trailing edge vortex in the opposite direction to the
incident vortex; the released vortex then detaches from the airfoil and follows the
incident vortex, forming a “silent” vortex pair. By analysing the nonlinear fluid–structure
interaction problem, the present work aims at complementing existing studies, in which
linear eddy-airfoil interactions are considered for unforced configurations.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The coupling between dynamics of thin structures and ambient fluid flow is a classical problem in fluid–structure
interactions which has attracted considerable attention over the years [1–3]. Specific interest in the associated vibroacoustic
problem has evolved owing to its relevance to engineering applications and biological phenomena. These include, among
others, the generation of palatal snoring sound [4]; the coupling between acoustic disturbances and aerodynamic
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performance of micro-air-vehicle wings [5]; and the design of flapping-based active noise control systems for the reduction
of blade-vortex interaction noise [6,7]. Strong coupling between thin-structure actuation and flow unsteadiness is also
common during insect flight, where typical small thickness-to-chord wing ratios are encountered [8]. These motions result
in the radiation of a wide variety of noises known as “insect songs” [9,10], which are important factors in the social and
sexual behaviour of various insect species (e.g., [11]). Consequently, several works have studied the sound field of insect-
wing configurations, both experimentally [12] and numerically [13].

Existing studies on the motion and acoustic signature of thin airfoils in unsteady flows have considered various aspects
of the problem. In the context of the dynamical problem, Manela and Howe [14] studied the unforced fluid–structure
interaction between a flexible filament and uniform flow, while Alben [15] and Michelin and Llewellyn Smith [16] examined
the small-amplitude motion of an elastic appendage actuated at its leading edge. The counterpart acoustic problem was
studied by Manela [17], who considered the vibroacoustic response of an elastic plate to arbitrary (small-amplitude) non-
periodic boundary actuation.

A separate set of works focused on the effect of incoming flow unsteadiness on the motion and sound of unforced fluid–
structure configurations. Incoming flow unsteadiness was modelled by a single or a sequence of line vortices interacting
with the structure. Howe [18] analysed the generation of sound by a single vortex convected past a rigid stationary airfoil. In
later contributions, a semi-infinite geometry was considered and elastic degrees of freedom were added to the structure
[19,20]. Manela and Howe [21] studied the motion of an elastic flag induced by a street of vortices released from its pole.
More recently, the acoustic radiation of a flexible plate interacting with a rectilinear line vortex was studied [22].

All Refs. [18–22] have focused on a linearized setup where the incident vortex strength is small and the structure is
unforced by external (other than ambient fluid) loads. In such a setup, the vortex convects along a straight line with the
mean uniform flow, unaffected by the image vorticity induced by the structure. These assumptions were partially relaxed by
Abou-Hussein et al. [23], who examined the effect of nonlinear vortex-structure interaction on the trajectory and acoustic
radiation of a line vortex passing above a stationary rigid plate, with no direct account taken of the evolution of trailing edge
wake. Tang and co-workers [24–26] have then applied a similar approach to analyse the effect of elasticity on vortex sound
emitted in other unforced configurations of practical importance.

The objective of the present work is to analyse the combined effects of flow unsteadiness (incident vorticity) and
boundary animation on the acoustic radiation of a thin airfoil. Such conditions are common in flapping flight, where the
wing is actively actuated and interacts with unsteady gust or incoming turbulence. For simplicity, we consider a two-
dimensional setup of a thin rigid airfoil actuated by periodic heaving motion and affecting the motion of an incident line
vortex passing in its vicinity. After analysing the dynamical problem, we apply the Powell–Howe acoustic analogy [2,27]
(valid in the present low-Mach and high-Reynolds number setup) to evaluate the far-field sound. By considering this setup
we seek to examine the basic nonlinear coupling mechanism between boundary actuation and vortex sound.

The remaining parts of the paper are organized as follows: in Sections 2 and 3 the fluid dynamical and acoustic problems
are formulated, respectively. Numerical results are presented and discussed in Section 4. A summary of the main findings of
the work and concluding comments are given in Section 5.
2. Dynamical problem

Consider a two-dimensional thin rigid airfoil of length 2a subject to low-Mach high-Reynolds number flow of velocity
U¼ Ux̂1, parallel to the airfoil chord (Fig. 1). The airfoil is located between �arx1ra and displaced periodically at time
tZ0 in the x2-direction with prescribed small-amplitude heaving motion,

ξðtZ0Þ ¼ εa cos ωt; (1)

where ε⪡1 and ω denotes the heaving frequency. An incident line vortex of strength Γ is released into the flow at a given
location at time t¼0 and moves within the vicinity of the airfoil. In what follows we analyse the near-field fluid motion and
far-field acoustic radiation of the fluid-airfoil system.
Fig. 1. Schematic of the problem. A thin rigid airfoil of length 2a is set in small-amplitude periodic heaving motion in the x2-direction. The airfoil is subject
to uniform low-Mach stream at speed U in the x1-direction and to a line vortex of strength Γ in the spanwise direction.
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To analyse the acoustic radiation of the system, particular care should be given to the modelling of fluid vorticity. In the
present potential-flow setup, fluid vorticity is concentrated at the incident vortex location and along a trailing edge wake.
Vorticity may also be released at the airfoil leading edge, where flow separation may occur. However, in the present level of
approximation, and following existing theoretical investigations of flows around actuated thin structures [15–17], we
neglect any flow separation upstream of the trailing edge, and allow the flow velocity and pressure to diverge as the inverse
square root of distance from the leading edge. This divergence results in a finite leading-edge “suction” force on the airfoil,
which is an acceptable model for the force in actual flow [28], and serves as a standard model for describing flows past
slender airfoils [29]. We further discuss the impact of this approximation on the calculated acoustic field in Section 5.

2.1. Flow complex potential

We consider an initial value problem where at time t¼0 the incident vortex Γ is set into the flow and the airfoil starts
heaving. The instantaneous vortex location and velocity at time t are denoted by xΓðtÞ and vΓðtÞ ¼ dxΓ=dt, respectively.
Setting z¼ x1þ ix2, the flow complex potential is given by the superposition

wðz; tÞ ¼ ðwΓþwξþwγÞHðtÞþUz; (2)

representing the separate contributions of incident vortex ðwΓÞ, plate motion ðwξÞ, trailing edge wake ðwγÞ, and uniform flow
(Uz). Here HðtÞ is the heaviside step function, imposing initial conditions of a stationary plate and no incoming flow
unsteadiness at time to0.

The potential wΓ is obtained by mapping the fluid region in the z-plane into the region outside the unit circle in the
ζ�plane, using the time-dependent Joukowski-type transformation

ζðsÞ ¼ sðz; tÞ
a

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsðz; tÞÞ2

a2
�1

s
; sðz; tÞ ¼ z�iξðtÞ: (3)

Using (3), the airfoil is mapped into a stationary strip ðjRefsgjra; Imfsg ¼ 0Þ in the s-plane, and the vortex location is mapped
into ζΓ ¼ ζðzΓÞ in the ζ�plane. To satisfy the impermeability condition on the unit circle jζj ¼ 1, we place an image vortex �Γ
at the inverse point ζ¼ 1=ζnΓ (with an asterisk denoting the complex conjugate of a complex number), together with a vortex
Γ at the centre of the circle, ensuring that the total circulation around the cylinder vanishes at time t¼0. This yields

wΓðζÞ ¼� iΓ
2π

lnðζ�ζΓÞþ
iΓ
2π

ln ζ� 1
ζnΓ

� �
� iΓ
2π

ln ζ: (4)

Similarly, using the transformation (3), the potential wξ induced by the plate motion normal to itself is

wξðζÞ ¼�ivna=ζ; (5)

where vn ¼ dξ=dt marks the instantaneous airfoil velocity, calculated from (1).
The fluid velocities derived from (4) and (5) exhibit square-root singularities at the airfoil leading and trailing edges. To

obtain finite velocity at the trailing edge, the unsteady Kutta condition should be imposed. This necessitates release of
vorticity from the airfoil trailing edge into a trailing edge wake, which we now turn to analyse.

2.2. Evolution of trailing edge wake

Previous theoretical approximations of high Reynolds number vortex shedding from two-dimensional airfoils have been
frequently based on the Brown and Michael equation [30,31], originally suggested for the evaluation of lift on delta wings.
According to this model, the shedding of vorticity is discretized as a set of line vortices whose position and strength vary
with time. At a given time instant, one vortex is being shed from the airfoil trailing edge, in the form of a thin connecting
sheet of infinitesimal circulation which ends in a concentrated core of finite circulation. Denoting the core circulation by γn,
Fig. 1 illustrates schematically the case n¼3, where the thin connecting sheet is marked by the dashed line connecting the
trailing edge and γ3. The core strength changes with time according to the Kutta condition, while its position xγn is governed
by the Brown and Michael formula (see (6)). When the time derivative dγn=dt changes sign, the vortex is detached from the
thin sheet and propagates as a “free” line vortex with “frozen” (fixed) circulation. At the same time, shedding of a new
vortex ðγnþ1Þ is initiated.

Howe [32] reappraised the Brown and Michael equation by accounting for inconsistent surface forces introduced by the
original formulation. A rigorous procedure has led to an emended form of the equation

dxγn

dt
� ∇Ψ iþ

Ψ i

γn

dγn
dt

¼ vγn �∇Ψ i; (6)

which will be applied hereby. Here Ψ iðx; tÞ (i¼1,2) is the stream function corresponding to a flow of unit speed in the i-
direction at large distances from the airfoil surface, and vγn is the velocity at γn with its local self-potential excluded. For the
present case of a thin flat airfoil stationary in the s-plane,

Ψ1 ¼ Imfsg and Ψ2 ¼ Im �i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�a2

pn o
: (7)
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Substituting (7) into (6) yields the complex form of the Brown and Michael equation in our setup:

dsnγn
dt

þ snγn�
Re a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2γn�a2

qn o
Re snγn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2γn�a2

qn o
0
B@

1
CA1
γn

dγn
dt

¼ vnγn ; (8)

where sγn denotes the location of γn in the complex s-plane. Here

vnγn ¼�iγnζ″ðsγn Þ
4πζ′ðsγn Þ

þFγn ðsγn Þ; (9)

where primes denote differentiations with s, and Fγn ðsγn Þ is given by Eq. (15) with k¼n (see below).
The remaining n�1 vortices composing the trailing edge wake, which have been released from the airfoil edge at earlier

times (when dγk=dt; k¼ 1;…;n�1, changed sign), are treated as “free” vortices: their circulations γk are assumed constant
and their locations are tracked similar to the incident vortex Γ (see Section 2.3). The total potential induced by the wake is
given by the sum

wγðζÞ ¼ ∑
n

k ¼ 1
�iγk
2π

lnðζ�ζγk Þþ
iγk
2π

ln ζ� 1
ζnγk

 ! !
; (10)

which includes the potential of n image vortices of circulations �γk placed at the inverse points ζ ¼ 1=ζnγk . The Kutta
condition, imposing finite velocity at the airfoil trailing edge, can now be applied. Making use of (2), (4), (5) and (10), and
requiring that the diverging part of the flow velocity at the trailing edge vanishes, yields the equation

γnðtÞ ¼
2 Refζγn g�jζγn j2�1

jζγn j2�1
2Γð1�RefζΓgÞ

2 RefζΓg�jζΓj2�1
þ2πa

dξ
dt

þ ∑
n�1

k ¼ 1

γkð1�jζγk j2Þ
2 Refζγk g�jζγk j2�1

 !
; (11)

which determines the instantaneous circulation of the evolving vortex γnðtÞ. Eqs. (8) and (11) specify the properties of the
vortex γn.

2.3. Formulation of the dynamical problem

Summarizing the above discussion, the dynamical problem consists of nþ2 equations for nþ2 unknowns, namely the
time-dependent locations of the incident vortex Γ and n trailing edge vortices γk ðk¼ 1;…;nÞ, together with the time-
varying circulation of the vortex γn. Two of the equations have been formulated in (8) (Brown and Michael equation) and
(11) (Kutta condition), and the other n equations are the equations of motion for the n “free” vortices. We formulate these
equations in the s-plane. Once solved, the results are mapped into the physical z-plane by taking z¼ sþ iξ.

The equation of motion for the incident vortex is obtained by taking the s-derivative of the flow complex potential in (2),
evaluating the result at the vortex location sΓ , and removing the singular contribution of the vortex self-potential. This
procedure yields [27]

dsnΓ
dt

¼�iΓζ″ðsΓÞ
4πζ′ðsΓÞ

þFΓðsΓÞ; (12)

where

FΓðsΓÞ ¼
iΓ
2π

ζ′Γ
ζ2Γ�jζΓ j2

þ i
dξ
dt

ζ′Γ
ζ2Γ
�iζ′Γ
2π

∑
n

k ¼ 1
γk

1
ζΓ�ζγk

� 1
ζΓ�1=ζnγk

 !
þ1: (13)

A similar procedure follows to formulate the equations of motion for the n�1 “free” trailing edge vortices, which take the
form

dsnγk
dt

¼�iΓζ″ðsγk Þ
4πζ′ðsγk Þ

þFγk ðsγk Þ; (14)

with

Fγk ðsγk Þ ¼ � iΓ
2π

ζ
0
γk

1
ζγk � ζΓ

� 1
ζγk � 1=ζnΓ

þ 1
ζγk

 !
þ iγk

2π
ζ
0
γk

ζγk � 1=ζnγk
þ i

dξ
dt

ζ
0
γk

ζ2γk
� iζ

0
γk

2π
∑
n

m¼1
ma k

γm
1

ζγk � ζγm
� 1

ζγk � 1=ζnγm

 !
þ 1; (15)

and k¼ 1;…;n�1.
The nonlinear system of Eqs. (8), (11), (12) and (14) formulates the dynamical problem to be solved in conjunction with

an initial condition for the vortex location at time t¼0. At to0, the airfoil has no trailing edge wake (i.e., n¼0), and release
of the first trailing edge vortex is initiated at t¼0. The system of equations was integrated numerically using a fourth-order
Runge–Kutta algorithm. The typical time step used for integration was π=250ω (i.e., 500 time steps during each heaving
period of the airfoil), which proved sufficient for convergence (with errors ≲ 0.1%). Notably, the running time required for a
single computation (that is, calculation of system evolution for a specific set of parameters from an initial state, when the
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vortex is located far upstream of the airfoil, to a time after it has passed past the plate trailing edge) was very short, being
only few seconds on a standard desktop machine.

3. Acoustic radiation

In the present small-amplitude, low-Mach high-Reynolds number setup, the far-field acoustic pressure is governed by
the Powell–Howe acoustic analogy [2,27]

1
c20

∂2

∂t2
�∇2

 !
p¼ ρ0

dvn
dt

δðx2Þþρ0∇ � Ω� Vð Þ; (16)

where c0 is the speed of sound, ρ0 is the mean fluid density, δ is the Dirac delta function, and V is the fluid velocity. Also
appearing in (16) is Ω, the vector of fluid vorticity, given by the sum of

ΩΓ ¼ x̂3Γδðx�xΓðtÞÞ and Ωγ ¼ ∑
n

k ¼ 1
Ωγk ¼ x̂3 ∑

n

k ¼ 1
γkδðx�xγk ðtÞÞ; (17)

which mark the incident and trailing edge vorticities, respectively. In accordance with Eq. (17) and the linearity of Eq. (16),
the acoustic pressure can be written as a sum of “airfoil motion”, “incident vortex”, and “wake” contributions,

pðx; tÞ ¼ pvn ðx; tÞþpΓðx; tÞþpγðx; tÞ; (18)

where

pvn ðx; tÞ ¼ ρ0
∂
∂t

Z 1

0
vnðτÞ∮SaGðx; y; t�τÞ dSðyÞ dτ; (19)

pΓðx; tÞ ¼�ρ0

Z 1

0

Z
VΓ

ðΩΓ � VΓÞ � ∂G∂yðx; y; t�τÞ dy dτ; (20)

and

pγðx; tÞ ¼ �ρ0 ∑
n

k ¼ 1

Z 1

0

Z
Vγk

ðΩγk � Vγk Þ �
∂G
∂y

ðx; y; t�τÞ dy dτ: (21)

In (19)–(20), Sa is the airfoil surface, VΓ and Vγk denote the fluid regions occupied by the trailing edge and incident vortices,
respectively, Gðx; y; t�τÞ is the acoustic Green's function having a vanishing normal derivative on the undisturbed plate, and
VΓ and Vγk are the incident and trailing edge vortex velocities, respectively.

To proceed with the evaluation of the acoustic pressure, we consider a case where the airfoil is acoustically compact.
Thus, we assume that a=λ⪡1, where λ¼ 2π=k is the dimensional acoustic wavelength, and k¼ ω=c0 is the dimensional
acoustic wavenumber. The condition for airfoil compactness is then given by a=λ¼Mðωa=2πUÞ⪡1, where M¼U=c0 is the
mean stream Mach number. This restriction is in accordance with the low Mach assumption set in (16). The compact
approximation of Green's function [27]

Gðx; y; t�τÞ ¼ 1
4πjX�Yjδ t�τ�jX�Yj

c0

� �
(22)

is applied to evaluate the acoustic radiation, where XðxÞ and YðyÞ are the Kirchhoff vectors for the plate. To make use of (22)
in the present two-dimensional configuration, the above Green's function is integrated over �1oy3o1. Taking the far-
field ðjXj � jxj-1Þ limit, the leading-order Green's function contributing to the dipole acoustic field is

Gðx; y; t�τÞ � x � Y
2π

ffiffiffiffiffiffiffiffi
2c0

p
jxj3=2

∂
∂t

Hð½t��τÞffiffiffiffiffiffiffiffiffiffiffi½t��τ
p

� �
; x -1;jj (23)

where ½t� ¼ t�jxj=c0 is the acoustic retarded time. We approximate YðyÞ by the two-dimensional Kirchhoff vector for a strip,

YðyÞ ¼ y1; Re �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1þ iy2Þ2�a2

q� �� �
: (24)

To evaluate pvn ðx; tÞ, substitute (23) into (19) and specify the path of integration. The space integral can be calculated
explicitly to yield

pvn ðx; tÞ �
ρ0a2 cos θ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj

p ∂2

∂t2

Z ½t�

0

dξ=dτffiffiffiffiffiffiffiffiffiffiffi½t��τ
p dτ; (25)

where cos θ¼ x2=jxj, and 0rθrπ indicates the observer direction. Substituting (1) into (25), the time integral can be
evaluated for long times, yielding

pvn ðx; ½t�-1Þ�
ffiffiffiffiffiffi
2π

p
ρ0a3 cos θ

4
ffiffiffiffiffiffiffiffiffiffi
c0jxj

p εω5=2 sin ω½t��π

4

� �
: (26)

In practice, this “long time” approximation becomes valid already after few heaving periods of the airfoil.
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Unlike the analytical evaluation for pvn , the calculation of incident vortex and wake contributions to acoustic pressure
must be carried out numerically, based on the scheme described in Section 2. To evaluate pΓ , substitute (23) together with
(17) into (20) to obtain

pΓðx; tÞ �
ρ0Γ sin θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj

p ∂
∂t

Z ½t�

0

V ð2Þ
Γ ðτÞ dτffiffiffiffiffiffiffiffiffiffiffi½t��τ
p � ρ0Γ cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj

p ∂
∂t

Z ½t�

0
V ð1Þ
Γ ðτÞ∂Y2

∂y2
� V ð2Þ

Γ ðτÞ∂Y2

∂y1

� �
xΓðτÞ

dτffiffiffiffiffiffiffiffiffiffiffi½t��τ
p ; (27)

where V ðjÞ
Γ denotes the velocity component of the incident vortex in the xj-direction. Similarly, pγ is evaluated by substituting

(23) and (17) into (21), to yield

pγðx; tÞ � ∑
n

k ¼ 1

ρ0γk sin θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj

p ∂
∂t

Z ½t�

0

V ð2Þ
γk
ðτÞ dτffiffiffiffiffiffiffiffiffiffiffi½t��τ

p �ρ0γk cos θ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj

p ∂
∂t

Z ½t�

0
V ð1Þ
γk
ðτÞ∂Y2

∂y2
� V ð2Þ

γk
ðτÞ∂Y2

∂y1

� �
xγk ðτÞ

dτffiffiffiffiffiffiffiffiffiffiffi½t��τ
p

 !
; (28)

where V ðjÞ
γk

denotes the velocity component of the vortex γk in the xj-direction.
The integral terms appearing in (27) and (28) are directly related to the two components of unsteady force exerted on the

fluid (per unit span) by the airfoil: the sin θ terms are directed along the airfoil chord and represent the influence of
“suction” forces at the leading and trailing edges; the cos θ terms represent the unsteady lift experienced by the airfoil
during its interaction with the incident vortex and wake. The suction-type dipole appearing in (27) and (28) is in marked
difference from expression (25) for pvn , which contains only a lift-dipole term. This difference is attributed to the nonlinear
vortex-airfoil interactions, leading to velocity components of the incident and trailing edge vortices in the normal
x2-direction. Consequently, dipole-type sound is radiated in the x1-direction, reflecting both incident vortex motion at
times when the vortex passes close to the airfoil (in which V ð2Þ

Γ a0) and heaving airfoil motion which causes the trailing
edge vortices to move in the x2-direction (having V ð2Þ

γk
a0).

4. Results

To non-dimensionalize the problem, the length, velocity and time are scaled by a, U and a/U, respectively. Marking non-
dimensional quantities by overbars, the non-dimensional problem is governed by

ε; ω ¼ωa
U
; Γ ¼ Γ

2πaU
and xΓð0Þ ¼ xΓð0Þ

a
; (29)

denoting the normalized amplitude and frequency of airfoil motion, and the incident vortex circulation and initial location,
respectively. Adopting this scaling, the non-dimensional form of the acoustic pressure (18) is

pðx; tÞ
ρ0U

2 ¼
ffiffiffiffiffiffiffiffiffi
M
8jxj

s
Πtotð½ t �Þ ¼

ffiffiffiffiffiffiffiffiffi
M
8jxj

s
ðΠvn ð½ t �ÞþΠΓð½ t �ÞþΠγð½ t �ÞÞ; (30)

where

Πvn ð½ t �Þ � cos θ
∂2

∂t2

Z ½ t �

0

dξ=dτffiffiffiffiffiffiffiffiffiffiffiffi
½ t ��τ

p dτ; (31)

ΠΓð½ t �Þ � 2Γ sin θ
∂
∂t

Z ½ t �

0

V
ð2Þ
Γ dτffiffiffiffiffiffiffiffiffiffiffiffi
½ t ��τ

p � cos θ
∂
∂t

Z ½ t �

0

ðV ð1Þ
Γ þ iV

ð2Þ
Γ ÞzΓ dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz2Γ�1Þð½ t ��τÞ
q

0
B@

1
CA; (32)

and

Πγð½ t �Þ � ∑
n

k ¼ 1
2γk sin θ

∂
∂t

Z ½ t �

0

V
ð2Þ
γk

dτffiffiffiffiffiffiffiffiffiffiffiffi
½ t ��τ

p � cos θ
∂
∂t

Z ½ t �

0

ðV ð1Þ
γk

þ iV
ð2Þ
γk
Þzγk dτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz2γk�1Þð½ t ��τÞ
q

0
B@

1
CA: (33)

In (33), γk ¼ γk=ð2πaUÞ. In the limit ½ t �-1, the expression for Πvn in (31) becomes

Πvn ð½ t �-1Þ� ffiffiffi
π

p
ε ω5=2 cos θ sin ω½ t ��π

4

� �
; (34)

which is the non-dimensional counterpart of Eq. (26).
The results for the acoustic pressure will be presented in terms of the acoustic “kernels” Πtot, Πvn , ΠΓ and Πγ . The non-

dimensional acoustic pressure is governed, in addition to the parameters specified in (29), by the observer direction
θ¼ cos �1ðx2=jxjÞ. To illustrate our findings we focus on a case of an incident vortex initially located at xΓð0Þ=a¼ ð�20;0:2Þ,
sufficiently far upstream of the airfoil, where it essentially convects with the mean flow. In addition, we fix Γ=ð2πaUÞ ¼ 0:2
and ε ¼ 0:01 (or otherwise consider the case of a stationary airfoil, ε ¼ 0), in accordance with our preliminary small-
amplitude-motion assumption. The remaining free parameter is therefore the normalized heaving frequency ωa=U. We start
by analysing the dynamical and acoustic problems for a stationary airfoil, and then examine the case of a heaving airfoil, to
illustrate the added effects of boundary animation.
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4.1. The case ε ¼ 0

When ε ¼ 0, release of trailing edge vorticity results only from airfoil interaction with the incident vortex. This
interaction is expected to be most intense when the vortex passes close to the structure, and in particular when it passes in
the proximity of airfoil end points. To examine this behaviour, Figs. 2 and 3 present the flow-field and acoustic radiation of a
stationary airfoil.

The incident vortex trajectory is shown by the solid line in Fig. 2a. As the vortex is placed in the flow at t¼0, it induces
fluid loading on the airfoil, resulting in generation of trailing edge vorticity. Satisfaction of the Kutta condition (11) and
Brown and Michael equation (8) determines the evolution of the trailing edge vortex γ1. The trajectory and circulation of γ1
are presented by the dash-dotted lines in Fig. 2b and c, respectively. When the incident vortex approaches the airfoil in the
mean-flow direction, it slightly shifts in the upward x2-direction owing to the vortex force Ω� U induced by the image
vorticity at ζðzÞ ¼ 1=ζnðzΓÞ (see (4)). At this stage, the trailing edge vortex moves away from the airfoil while its circulation
increases monotonically. When the incident vortex reaches xΓ=a� ð�4:9;0:21Þ, the trailing edge vortex trajectory changes
direction, and starts moving back towards the airfoil. This is accompanied by a decrease in the value of dγ1=dt. Shortly after
the incident vortex has passed above the airfoil leading edge (at Ut=a� 19:4, marked by crosses), dγ1=dt changes sign: at this
time instant, the interaction of the incident vortex with the airfoil trailing edge (which at earlier times was weaker than its
interaction with the leading edge) becomes dominant, and the γ1-vortex is detached from the trailing edge. Keeping its final
circulation γ1 � 0:59Γ constant at later times (see the dash-dotted line in Fig. 2c), it then convects as a “free” vortex, while
shedding of γ2 (having negative circulation) is initiated. Time evolution of γ2, characterized by a sharp change in its
circulation (see the dashed line in Fig. 2c), continues until slightly after the incident vortex has passed above the airfoil
trailing edge. At time Ut=a� 21:3, marked by triangles in the figure, dγ2=dt changes sign, followed by detachment of γ2 from
the trailing edge and release of γ340. Our calculations indicate that no additional vortices need to form at the trailing edge
at later times, since γ3 is monotonically increasing for Ut=a≳21:3. Notably, while the trajectories of γ1 and γ3 remain in the
vicinity of the x1-axis (note the difference in scales between the x1- and x2-axes in Fig. 2b), the trajectory of γ2 (having
circulation opposite in sign to Γ) follows the path of the incident vortex (see the location of the two vortices at Ut=a¼ 25,
marked by the squares in Fig. 2a). As will be demonstrated in Fig. 3, this results in suppression of the acoustic field radiated
by the incident vortex.
Fig. 2. Flow-field induced by an incident vortex passing past a stationary plate: (a) trajectories of incident vortex (solid) and trailing edge vortex γ2
(dashed); (b) trajectories of trailing edge vortices γ1 (dash-dotted) and γ3 (dotted); (c) time variations of airfoil circulation (solid line) and trailing edge
vortex circulations (dashed, dash-dotted and dotted curves). The bold solid lines in Fig. 2a and b indicate the airfoil location. The crosses, triangles and
squares denote the vortex locations (Fig. 2a and b) and circulations (Fig. 2c) at times Ut=a� 19:4;21:3 and 25, respectively. The vertical solid lines in Fig. 2c
confine the time interval during which the incident vortex passes above the airfoil.



Fig. 3. Acoustic signature of a stationary airfoil along θ¼ π=2 (suction dipole): (a) separate incident vortex (ΠΓ , solid line) and wake (Πγ , dashed line)
contributions; (b) decomposition of Πγ into separate contributions from trailing edge vortices Πγ1;2;3 ; (c) total acoustic signature. The vertical solid lines in
each part confine the time interval during which the incident vortex passes above the airfoil.
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In addition to the time-variations of trailing-edge vortex circulations, the solid line in Fig. 2c presents the airfoil
circulation ΓaðtÞ, normalized by Γ. In accordance with Kelvin's theorem,

ΓaðtÞ ¼ � ∑
n

k ¼ 1
γkðtÞ; (35)

which satisfies the condition that Γað0Þ ¼ 0. The non-monotonic changes in Γa reflect the detachments of trailing edge
vortices: at 0rUt=a≲19:4 the circulation decreases from Γað0Þ ¼ 0 to Γa ��0:59Γ. It then increases to Γa � 0:2Γ as γ2 is
released, and decreases again for Ut=a≳21:3. At late times Γa-0, as the loading induced by the incident vortex on the airfoil
vanishes. The time-variation for Γa calculated here, a manifestation of the unsteady lift force experienced by the airfoil, is in
marked difference from a previous analysis of the problem [23], where the effect of trailing-edge wake has been neglected at
the outset, and the airfoil circulation was assumed zero at all times.

The acoustic radiation of a stationary-airfoil system is presented in Fig. 3, where we focus on the suction dipole oriented
along the x1-axis ðθ¼ π=2Þ. In general, Πvn ¼ 0 for a stationary airfoil, and the total signal Πtot, shown in Fig. 3c, is the sum of
incident vortex ðΠΓÞ and wake ðΠγ ¼∑n

k ¼ 1Πγk Þ radiations. The separate contributions of ΠΓ and Πγ are shown by the solid
and dashed curves in Fig. 3a, respectively, and the decomposition of Πγ into the separate acoustic radiations of trailing edge
vortices Πγ1;2;3 is presented in Fig. 3b.

Starting with the incident vortex radiation (see solid line in Fig. 3a), we find that at early times the vortex convects with
the constant mean velocity U¼ Ux̂1 and does not generate sound. When the vortex approaches the airfoil leading edge, its
trajectory is shifted upwards (see Fig. 2a), and considerable pressure fluctuations are generated during its interactions with
the airfoil end points (at times marked by the two vertical lines). Once the vortex has passed over the plate, it continues
radiating sound along its trajectory, mainly due to its interaction with the trailing edge vortex γ2 (see the trajectories in
Fig. 2a). Considering the decomposition of wake sound Πγ into Πγ1;2;3 presented in Fig. 3b, we observe that its dominant
component is Πγ2 which, clearly, cancels out ΠΓ at late times (after the passage of incident vortex above the airfoil).
Consequently, the total pressure signal presented in Fig. 3c reflects only the vortex interactions with the airfoil leading and
trailing edges. The interaction with the trailing edge generates a relatively weaker pressure fluctuation owing to partial
suppression caused by Πγ (cf. the sum of the solid and dashed lines in Fig. 3a in the vicinity of the right vertical line). This
suppression is only partial since, at this stage, the vortex γ2 is still evolving (not yet detached from the trailing edge), and its
strength is relatively weak.

Howe [32] applied the emended Brown and Michael equation to study the acoustic radiation of a line vortex convected
past the edge of a stationary semi-infinite plate with no mean flow. No leading edge interaction existed in this semi-infinite
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configuration, and it was shown that trailing edge wake could be represented by shedding of only one vortex. More recently,
Guo [33] considered the sound radiated from a line vortex passing past a stationary Joukowski airfoil, through the
application of the emended Brown and Michael equation and a two-dimensional formulation of the Ffowcs Williams–
Hawkings analogy. In support of the present analysis, the results in Refs. [32,33] demonstrate the suppressing effect of
trailing edge vorticity on the total acoustic radiation. In particular, in the finite-airfoil configuration considered by Guo, it
was found that trailing edge wake can be described by shedding of three vortices, which circulations and trajectories are
qualitatively similar to those presented in Fig. 2 (cf. Figs. 3–5 in Ref. [33]). This agreement lends support of the following
application of our scheme to evaluate the acoustic far field of a heaving airfoil.
4.2. The case εa0

Airfoil heaving has both direct and indirect effects on the system vibroacoustic behaviour: directly, airfoil vibration
radiates sound, given by Πvn in Eq. (31); indirectly, heaving motion influences the incident vortex trajectory and results in
release of additional trailing edge vorticity which, in turn, affects both near-field flow and far-field acoustic signature. Our
numerical calculations indicate that the impact of airfoil heaving is minor at low frequencies ωa=U⪡1, and we therefore
focus on cases where ωa=U≳Oð1Þ.

Fig. 4 presents the flow-field induced by an incident vortex passing past a heaving airfoil with ωa=U ¼ 1. Fig. 4a–c shows
the locations of incident and trailing edge vortices at different time instants. For easy reference, trailing edge vortices with
positive and negative circulations are marked by crosses and triangles, respectively. At each time snapshot, the airfoil
location is marked by a bold horizontal line, and the incident vortex trajectory is shown by a thin curve. The trajectory of the
trailing edge vortex γ6, shed when the incident vortex passes above the airfoil trailing edge, is depicted by the dashed lines.
Fig. 4d complements the flow-field description by presenting time variation of scaled airfoil circulation Γa=Γ. To illustrate
the effect of heaving frequency, total circulations are also presented for a stationary wing (dashed line; identical with the
solid curve appearing in Fig. 2c) and a heaving airfoil with ωa=U ¼ 1:5 (dotted line).

Airfoil heaving results in continuous release of trailing edge vorticity. According to the present calculation, two vortices
are detached from airfoil trailing edge during each heaving period. The detachments account for changes in sign of d2ξ=dt2

during a period, causing changes in sign of dγn=dt of the released vortex (see the time derivative of Eq. (11) after removing
Fig. 4. Flow-field induced by an incident vortex passing past a heaving airfoil with ωa=U ¼ 1: (a–c) locations of incident vortex (circle) and trailing edge
vortices (crosses and triangles) at times Ut=a� 17 (Fig. 4a), Ut=a� 43 (Fig. 4b), and Ut=a� 59 (Fig. 4c). The crosses and triangles denote vortices with
positive and negative circulations, respectively. The solid and dashed curves show trajectories of incident vortex and vortex γ6 (released when the incident
vortex passes above the airfoil trailing edge), respectively. The bold solid line in each figure indicates the instantaneous airfoil location (which appears
unchanged owing to the large scale of the x2-axis presented). (d) Time variations of scaled airfoil circulation for ωa=U ¼ 1 (solid line), ωa=U ¼ 1:5 (dotted
line), and a stationary airfoil (dashed line). Vertical solid lines confine the time interval during which the incident vortex passes above the airfoil for
ωa=U ¼ 1.
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the incident vortex and the other (relatively minor) trailing edge vortex contributions). Accordingly, at the time Ut=a� 17
presented in Fig. 4a, approximately 17=2π � 2:7 heaving periods have elapsed, and five vortices of alternating signs have
been released. These vortices form the beginning of a “vortex street”, characterizing the wake behind oscillating bodies.
When the incident line vortex approaches the airfoil, additional fluid loading is induced on the airfoil, which affects the
shedding of trailing edge vorticity. The effect of incident vortex on trailing edge wake is similar in essence to that described
in Fig. 2: as the vortex passes above the airfoil, its interaction with the trailing edge becomes dominant; the release of a new
trailing edge vortex (in this case, γ6) is initiated and continues until shortly after the incident vortex has passed above the
airfoil trailing edge; γ6 is then detached from the trailing edge and forms a “vortex-pair” motion with the incident vortex
(cf. the solid and dashed lines in Fig. 4a and b); this motion effectively cancels out the incident vortex sound at late times, as
will be demonstrated in Fig. 5. After the vortex pair has moved away from the airfoil, release of trailing edge vorticity
continues in accordance with the airfoil heaving motion. The time variation of scaled airfoil circulation Γa=Γ, shown by the
solid line in Fig. 4d, reflects both strong vortex-airfoil interaction at the time when the vortex passes above the airfoil, and
periodic release of vorticity at the heaving frequency (cf. the solid line in Fig. 2c). Evidently, the effect of periodic release of
trailing edge vortices, reflecting heaving motion, is missing in the non-heaving case (dashed line), and becomes more
pronounced with increasing ω, as in the ωa=U ¼ 1:5 setup (dotted line). At late times (when the effect of incident vortex
becomes negligible), Γa varies periodically in each of the heaving-airfoil configurations, with its mean value Γa-0.

Fig. 5 presents the far-field acoustic radiation of an incident vortex interacting with a heaving airfoil at ωa=U ¼ 1 (same as
in Fig. 4). Fig. 5a and b presents separate contributions of incident vortex (solid lines), trailing edge wake (dashed lines) and
airfoil motion (dash-dotted line) radiations to the lift (Fig. 5a) and suction (Fig. 5b) dipoles. Fig. 5c shows decomposition of
the trailing edge radiation into contributions from the vortex γ6 (released when the incident vortex passes above the airfoil
trailing edge, as found in Fig. 4) and all other trailing edge vortices. Fig. 5d presents the total acoustic signal radiated along
the x1 (dashed line) and x2 (solid curve) directions.

Starting with Fig. 5a and b, we note, as observed in Section 3, that there is no contribution of airfoil motion sound Πvn to
the suction dipole (see Eq. (31)). Thus, in the present level of approximation, dipole sound is emitted along the mean-flow
direction only due to incident vortex and wake radiations. In both Fig. 5a and b, ΠΓ and Πγ show similar qualitative
behaviour: at early times ΠΓ and Πγ are small and the acoustic field is dominated by the direct airfoil sound Πvn oriented in
the x2-direction (at the time interval presented, the analytic approximation (34) of Πvn is identical with the numerical
Fig. 5. Acoustic signature of an incident vortex passing past a heaving airfoil with ωa=U ¼ 1: (a,b) separate incident vortex (ΠΓ , solid lines), wake (Πγ ,
dashed lines) and airfoil-motion (Πvn , dash-dotted line) contributions to the lift (θ¼ 0, Fig. 5a) and suction (θ¼ π=2, Fig. 5b) dipoles; (c) decomposition of
Πγ along θ¼ 0 into separate contributions from Πγ6 (solid line) and all other trailing edge vortices Πγ�Πγ6 (dashed curve); (d) total acoustic signature along
θ¼ 0 (solid) and θ¼ π=2 (dashed). The inset in Fig. 5d shows a close-up on the total acoustic radiation at late times (30rU½t�=ar40), and the vertical solid
lines in each figure indicate the time interval during which the incident vortex passes above the airfoil.
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expression (31)). When the incident vortex approaches the airfoil leading edge, and as it passes above it, large variations in
ΠΓ occur. These are partially cancelled by the release of γ6, initiated slightly after the incident vortex has passed above the
airfoil leading edge (cf. the solid and dashed lines in Fig. 5a and b). Similar to the result in Fig. 3, once the incident vortex has
passed the airfoil trailing edge it is “followed” by the vortex γ6, creating a “silent” vortex pair. As illustrated in Fig. 5c, the
acoustic pressure generated by γ6 is considerably larger than radiation from all other trailing edge vortices. At late times,
sound radiation is dominated by the airfoil motion in the x2-direction. Notably, a closer look into the dashed curve in the
inset of Fig. 5d indicates that “indirect” heaving sound is also radiated in the x1-direction at late times. This radiation
originates from the x2-velocity component of trailing edge vortices (see Eq. (33)), induced by the nonlinear interaction
between the trailing edge vortices and the airfoil. The total acoustic signature presented in Fig. 5d can therefore be viewed
as a combination of “heaving sound” at early and late times, superposed by relatively strong leading and trailing edge
interaction fluctuations. Trailing edge vorticity acts to reduce pressure fluctuations generated by the incident vortex, while
transmitting sound in both lift and suction directions, which reflects airfoil motion.

To complete the presentation of results, Fig. 6 examines the effect of airfoil heaving frequency ωa=U on the total lift
(Fig. 6a) and suction (Fig. 6b) dipoles. The solid and dash-dotted lines in each figure mark the acoustic signals for ωa=U ¼ 1
and ωa=U ¼ 3, respectively. The dashed lines present lift and suction dipoles for a stationary airfoil (with the dashed line in
Fig. 6b identical with the solid line in Fig. 3c). Fig. 6c presents separate contributions of Πvn to the lift dipole for both
stationary (where Πvn � 0) and heaving airfoils. Note the difference in scale between Fig. 6a and b, indicating that the lift
dipole is typically much stronger than the suction dipole. As has been demonstrated by Fig. 5, late-time acoustic radiation
along the x1-direction may originate only from the motion of trailing edge vortices in the x2-direction.

Focusing on Fig. 6a and c, we observe that the increase in ωa=U magnifies the relative contribution of airfoil heaving
sound Πvn to the lift dipole significantly, while the relative contributions of incident vortex and wake radiations become
weaker. The large increase in direct airfoil-motion sound is in accordance with Eq. (34), showing that Πvn �Oðωa=UÞ5=2.
Nevertheless, vortex sound remains the only source radiating sound along the x1-direction, as shown in Fig. 6b. In this
direction, the signal is combined of a heaving-frequency component at early and late times, together with vortex-airfoil
interaction sound at times when the incident vortex passes in the vicinity of the airfoil. The former effect is inevitably
missing in the stationary-airfoil signature shown by the dashed curve (see also the comparison in Fig. 4d between airfoil
circulations in heaving and non-heaving setups). With increasing heaving frequencies ðωa=U⪢1Þ, our results indicate that
vortex sound remains significant mainly along the mean-flow direction, while radiation in other directions is dominated by
the direct airfoil-motion contribution Πvn .
Fig. 6. Effect of heaving frequency on the acoustic signature of a heaving airfoil: (a,b) comparison between total lift (θ¼ 0, Fig. 6a) and suction (θ¼ π=2,
Fig. 6b) dipoles for stationary (dashed line) and heaving (ωa=U ¼ 1, solid line; ωa=U ¼ 3, dash-dotted line) airfoils. (c) Separate contributions of Πvn to the
lift dipole for stationary (dashed line) and heaving (ωa=U ¼ 1, solid line; ωa=U ¼ 3, dash-dotted line) airfoils.
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5. Conclusion

We analysed the effects of flow unsteadiness and periodic boundary animation (small-amplitude heaving) on the
vibroacoustic signature of a thin rigid airfoil in low-Mach high-Reynolds number flow. Modeling the incoming flow
unsteadiness by an incident line vortex, the dynamical problem for the vortex motion and trailing edge wake evolution was
studied using the method of conformal mapping and the Brown and Michael equation. The acoustic problem was then
analysed based on Powell–Howe acoustic analogy. The results identify the fluid-airfoil system as a dipole-type source, and
show that its behaviour can be divided into two characteristic regimes, based on the scaled heaving frequency ωa=U: (i) for
ωa=U⪡1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a
line vortex with a stationary airfoil; (ii) for ωa=U⪢1, the impact of heaving is dominant, radiating sound through a direct
“airfoil-motion” dipole ðpðωa=UÞ5=2Þ oriented along the direction of heaving. In this case, vortex sound remains significant
only in the vicinity of mean-flow direction. For ωa=U �Oð1Þ, an intermediate regime takes place, where the influences of
both regimes are of comparable strength (see Fig. 5).

The application of the Brown and Michael equation to model the wake dynamics has enabled a detailed study of the
effect of nonlinear vortex-airfoil interaction on the system acoustic radiation. It was found that trailing edge vorticity acts to
reduce pressure fluctuations generated by the incident vortex interaction with the airfoil. Simultaneously, the motion of
trailing edge vortices in the airfoil-motion direction transmits heaving-frequency sound along the mean-flow direction. The
“silencing” effect of trailing edge vorticity was found particularly efficient when the incident vortex passes above the airfoil
trailing edge: at that time, the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the
incident vortex; the trailing edge vortex then follows the incident vortex away from the airfoil, forming a “silent” vortex pair.
A similar mechanism was found by Howe [32] and Guo [33], who considered the sound radiated by an incident vortex
passing past stationary structures.

The present analysis is based on several approximations, listed along Sections 2 and 3. Perhaps the main approximation
made is in not accounting for possible flow separation at the airfoil leading edge, and its effect on the acoustic radiation.
Making use of potential-flow theory, we allow for a square-root singularity of the flow field at the leading edge, resulting in
a finite leading edge suction force. As stated in Section 2, the same assumption has been made in previous theoretical
studies of the flow generated around thin actuated structures, given that the amplitude of leading edge displacement is
small [15–17]. Moreover, for the level of approximation applied in this work, any vorticity shed from the airfoil leading edge
would convect over the airfoil surface, where its effects will be cancelled by image vortices in the airfoil, resulting in a silent
source [2]. It is worthwhile to mention that existing experimental studies of the flow past thick plates (or plates having
blunt leading edges) show that leading edge separation has an important impact on the outcome flow and acoustic fields
(e.g., [34,35]). This effect, however, is beyond the scope of the present contribution.

The study has focused on a case where the airfoil is rigid and experiences simple harmonic motion. As noted in the
Introduction, this simple forced-motion setup aims at complementing existing works studying vortex sound radiation in
unforced and non-rigid (elastic) systems. The present scheme can be easily extended to consider the fluid-airfoil response to
arbitrary (periodic or non-periodic) forcing of the structure, by taking the present analysis as a generalized Fourier
component of the actual forcing signal. A less trivial extension of this work, taking account of the effect of airfoil elasticity,
constitutes a topic of a study in progress.
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