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The acoustic signature of side-by-side airfoils, subject to small-amplitude harmonic
pitching and incoming flow unsteadiness, is investigated. The two-dimensional near-field
problem is formulated using thin-airfoil theory, where flow unsteadiness is modeled as a
passing line vortex, and wake evolution is calculated via the Brown and Michael formula.

of the Powell–Howe acoustic analogy. The associated compact Green's function is
calculated numerically using potential-flow analysis of the fluid–structure flow domain.
Results, comparing the acoustic radiation of the double-airfoil system to a reference case
of a single airfoil, point to several mechanisms of sound attenuation and sound
amplification, caused by airfoil–airfoil and airfoils-wake interactions. It is found that
counter-phase pitching of the airfoils results in effective cloaking of the system, which
otherwise becomes significantly noisy (as a 5/2-power of the pitching frequency) at large
frequencies. In addition, depending on the distance between airfoils, in-phase pitching
may result in an acoustic signature equivalent to a single airfoil (when the airfoils are
adjacent) or to two separate airfoils (when the airfoils are far apart). In general, flow
unsteadiness produces more sound when interacting with a double (compared with a
single) airfoil setup. However, airfoils' nonlinear wake–wake interactions give rise to a
sound reduction mechanism, which becomes most efficient at times when incoming
vorticity passes above airfoils' leading and trailing edges. The present scheme can be
readily extended to consider the acoustic properties of various double-airfoil configura-
tions, as well as multiple (42) airfoil setups.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-body fluid–structure interactions have been a topic of increasing interest in the past few decades. Motivated by
ubiquitous everyday phenomena in natural and engineering applications, studies have initially focused on the canonical
problem of flow interference between two circular cylinders [1]. Later works on the near-field dynamics of multi-body
interactions have considered other geometrical configurations, taking account, in each of the problem studied, of the
combined effects of multi-body interactions with associated flow fields. Among several setups studied, multi-airfoil
configurations have received particular attention, owing to their relevance for analyzing formation locomotion in fish and
birds and gaining insight into the aerodynamic advantages of group flight (e.g., [2–6]).
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Investigations on far-field acoustic radiation frommulti-body setups have received relatively less attention. Nevertheless,
while current efforts focus mainly on sound scattering from single-body geometries [7], an increasing number of works have
recently appeared, studying noise emission phenomena in multi-structure setups. Towards this end, Inoue et al. [8] and
Doolan [9] considered sound emission from a double cylinder array, focusing on the role of cylinders separation distance
and associated vortex shedding on the radiated sound. Several other workers have carried out acoustic investigations of
multi-body setups containing airfoils. Thus, Casalino et al. [10] predicted the noise produced by rod–airfoil interactions
using the Ffowcs–Williams–Hawkings acoustic analogy. Leclercq and Doolan [11] investigated the sound generated by the
interaction between a blade and a block. Winkler and Carolus [12] and Gruber et al. [13] suggested means for reducing
tandem airfoil noise through active blowing or additional trailing and leading edge serrations, respectively. While these and
other studies have revealed some of the consequences between near-field and far-field flow characteristics in multi-
structure configurations, considerable work still remains to investigate the complex phenomena of sound emission in multi-
airfoil systems.

The purpose of the present work is to study in detail the far-field vibroacoustic signature of a basic two-dimensional
double-airfoil setup. The study builds upon previous analyses of the vibroacoustic signature of single-airfoil configurations,
where the effects of leading edge forcing, structure elasticity, and flow unsteadiness on system near- and far-field behaviors
have been investigated (see Refs. [14–16] and works cited therein). Practically, the present investigation may be of interest
as a starting point for analyzing the acoustic signature of multi-airfoil interaction. A side-by-side thin-airfoil configuration is
considered as a model problem, and high-Reynolds low-Mach flow conditions are assumed. To mimic flapping-flight state
and include unsteady flow effects, small-amplitude pitching actuation is introduced, together with incoming flow non-
uniformity in the form of a passing line vortex. Extending on the above-mentioned single-airfoil investigations, the
formulation of the near-field problem couples the effect of leading edge actuation to the fluid–structure interaction problem
in a nonlinear description. Assuming that the setup is acoustically compact, the far-field calculation is carried out via
application of the Powell–Howe analogy. The results obtained present several mechanisms by which sound suppression and
sound amplification phenomena occur in the double-airfoil system considered.

The paper is organized as follows. In Section 2, both near- and far-field problems are introduced and analyzed. In Section 3,
results are presented and discussed for the separate cases of pitching airfoils for steady flow; non-pitching airfoils for unsteady
flow; and the combined setup of animated airfoils for unsteady conditions. Concluding remarks are given in Section 4, and a
technical description of the numerical calculation of the compact Green's function, used for obtaining the far-field radiation, is
relegated to an Appendix.

2. Problem formulation

2.1. Near-field aerodynamics

Fig. 1 presents a schematic of the near-field problem. Consider a two-dimensional setup of two identical, flat, and
infinitely thin rigid airfoils, of chord 2a. The airfoils are nominally placed parallel to the x1-direction in a “side-by-side”
setup, with a separation distance of 2s between their leading edges in the x2-direction. The system is subject to low-Mach
uniform flow of magnitude U in the x1-direction. At time tZ0, an incident line vortex of strength Γ is released into the flow
at a prescribed location and interacts with the system. Simultaneously, harmonic pitching actuation, with common
amplitude ε (where an overbar denotes a non-dimensional quantity) and frequency ω, is applied at both airfoils' leading
edges:

αu
LE ¼ ε sin ðωtÞ and αl

LE ¼ ε sin ðωtþϕÞ: (1)

In (1), αLE denotes the angle between instantaneous airfoil's positions and their unperturbed states, and superscripts “u” and
“l” mark hereafter quantities corresponding to “upper” (nominally at x2 ¼ s) and “lower” (nominally at x2 ¼ �s) airfoils.
The phase shift between pitching actuations is denoted by ϕ, and it is assumed that pitching amplitude, ε, and incident
vortex strength, Γ, are sufficiently small, so that linearized thin-airfoil theory can be applied. Given the small angles of
Fig. 1. Schematic of the side-by-side airfoil setup.
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attack considered, leading edge flow detachment is excluded, and fluid vorticity is allowed only at the incident vortex
location and along a trailing edge wake. In addition, the small mean-flow Mach number assumed allows us to treat the near-
field flow as incompressible and potential.

We formulate an initial value problem, where at t¼0 the airfoils are aligned with the x1-axis, the incident vortex Γ is set
into the flow, and leading edge actuation is commenced. The initial vortex location is chosen sufficiently upstream of the
airfoil, to approximate a case where the vortex initially has a negligible effect on system near-field dynamics. Adopting
complex-variable notation, we denote the instantaneous vortex location and velocity by zΓðtÞ ¼ x1Γ ðtÞþ ix2Γ ðtÞ and
_zΓðtÞ ¼ _x1Γ ðtÞþ i _x2Γ ðtÞ, respectively.

In accordance with potential thin-airfoil theory, trailing edge singularity is induced by incident vortex and airfoil motion
interactions with surrounding fluid, and reflects through square root divergence of the fluid velocity field. This singularity is
regularized by application of the unsteady Kutta condition, and results in release of vorticity at the airfoil trailing edge.
Production of trailing edge vorticity is modeled via the Brown and Michael equation [17,18], a commonly used scheme to
approximate high Reynolds number vortex shedding from two-dimensional sharp ends. The scheme has been applied in studies
on both near-field dynamics [19–21] and sound emission [22,23] problems. The model assumes the trailing edge wake to be a
discrete sequence of concentrated line vortices whose position and strength vary with time. At a given time, one vortex is being
shed from the airfoil trailing edge, in the form of a thin connecting sheet of infinitesimal circulation ending in a concentrated core
of finite circulation. The core strength changes with time according to the Kutta condition, while its position is governed by the
Brown and Michael formula. When the time derivative of vortex strength changes sign, the vortex is detached from the thin
sheet and propagates as a “free” line vortex with “frozen” (fixed) circulation; the shedding of the next vortex is then initiated.

Applying thin-airfoil methodology, each of the upper and lower airfoils is represented by distribution of circulation,
γuaðx1; tÞ and γlaðx1; tÞ, respectively, per unit length. To specify these distributions, no-penetration conditions are imposed on
the structures. Based on the form of pitching actuation (1), airfoils' deflections in the x2 direction, ξu and ξl, are given by

ξuðx1; tÞ ¼ εðx1þaÞ sin ðωtÞþs and ξlðx1; tÞ ¼ εðx1þaÞ sin ðωtþϕÞ�s; (2)

where �arx1ra. Accordingly, the form of no-penetration condition is

∂ξu

∂t
þU

∂ξu

∂x1

¼ Im
i
2π �

Z a

�a

γuaðp; tÞ dp
x1�p

þ
Z a

�a

γlaðp; tÞ dp
x1�pþ2is

þ Γ
zu�zΓ

þ
Xnu
k ¼ 1

Γu
k

zu�zΓu
k

þ
Xnl
k ¼ 1

Γl
k

zu�zΓl
k

" #( )
; (3)

for the upper airfoil, and

∂ξl

∂t
þU

∂ξl

∂x1

¼ Im
i
2π

Z a

�a

γuaðp; tÞ dp
x1�p�2is

þ �
Z a
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k ¼ 1

Γu
k

zl�zΓu
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Xnl
k ¼ 1

Γl
k

zl�zΓl
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" #( )
; (4)

for the lower airfoil. In (3) and (4), zu ¼ x1þ is and zl ¼ x1� is mark locations along the upper and lower airfoils, respectively,
and zΓu

k
and zΓl

k
denote instantaneous locations of k th trailing edge vortices originating from the upper and lower airfoils,

respectively. Barred integrals mark Cauchy principal value integrals, to be evaluated based on Glauert integral method [24].
Summations in Eqs. (3) and (4) are carried out over all nu and nl wake vortices contained in the upper and lower
airfoil wakes.

The incident and trailing edge vortex dynamics are governed by their equations of motion. The motion of the incident
vortex Γ is governed by

dzΓ
dt

¼Wn

Γ ; (5)

where an asterisk marks the complex conjugate of a complex number, and

WΓ ¼ U� i
2π

Z a
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k

 !
(6)

is the conjugate velocity induced at the instantaneous vortex location, after removing its self-singularity. Similarly, motions
of the Γu

1;…;Γu
nu �1;Γ

l
1;…;Γl

nl �1 “frozen” trailing edge vortices are governed by

dzΓu
k

dt
¼Wn
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k
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k

(7)

for the upper and lower airfoil wake vortices, respectively, where
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In line with the discussion of the Brown and Michael theory, the time-varying strengths and positions of the instantaneously
shed nu and nl trailing edge vortices are governed by the Brown and Michael equations1:

dzΓu
nu

dt
þ zΓu

nu
�zuTE

� � 1
Γu

nu

dΓu
nu

dt
¼Wn

Γu
nu
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dzΓl
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1
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dΓl
nl

dt
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; (9)

where Wn

Γu
nu

and Wn

Γl
nl
are given by Eq. (8) with k¼ nu and k¼ nl, respectively, and zuTE and zlTE mark the complex-variable

locations of airfoil's trailing edges. The strength of the shed vortices is specified by Kelvin's theorem

Γu
nu ðtÞ ¼ �

Z a
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Xnu �1
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Γu
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Xnl �1

k ¼ 1

Γl
k; (10)

ensuring that the sum of total circulation of each airfoil and its wake circulation vanishes at all times.
The nonlinear system of Eqs. (2)–(10) is solved in conjunction with an initial condition for the vortex location,

zΓðt ¼ 0Þ ¼ zΓ0
; (11)

and imposition of the unsteady Kutta condition,

γuaða; tÞ ¼ γlaða; tÞ ¼ 0; (12)

requiring that the fluid velocity at each trailing edge is finite. We assume that release of the first trailing edge vortex at each
airfoil starts at t¼0; the system evolution is then followed for t40 via numerical integration. Details regarding problem
scaling and numerical analysis are given in Section 2.3.

2.2. Far-field acoustic radiation

Considering the present small-amplitude-actuation, low-Mach, and high-Reynolds-number flow setup, the far-field
(jxj-1) acoustic pressure is governed by the Powell–Howe acoustic analogy [7,27]:

1
c20

∂2

∂t2
�∇2

 !
p¼ ρ0

∂2ξu

∂t2
δ x2�sð Þþρ0

∂2ξl

∂t2
δ x2þsð Þþρ0∇ � Ω� V

� �
; (13)

where c0 is the speed of sound, δ is the Dirac delta function, V is the fluid velocity, and Ω is the vector of fluid vorticity.
The latter is given by the sum of

ΩΓ ¼ x̂3Γδðx�xΓðtÞÞ and

Ωw ¼
Xnu

k ¼ 1

ΩΓu
k
þ
Xnl

k ¼ 1
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k
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k ¼ 1

Γl
kδðx�xΓl

k
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 !
; (14)

which mark the incident and trailing edge wake vorticities, respectively. In (14), x¼ ðx1; x2Þ marks a point in the plane of
flow, and x̂3 marks a unit vector in the normal-to-plane direction. Combining Eqs. (13) and (14), the acoustic pressure is
decomposed into a sum of “airfoil motion”, “incident vortex” and “wake” contributions:

pðx; tÞ ¼ pξðx; tÞþpΓðx; tÞþpwðx; tÞ; (15)

where

pξ x; tð Þ ¼ puξ x; tð Þþplξ x; tð Þ

¼ ρ0
∂
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Z 1
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 !
dτ

" #
; (16)

pΓ x; tð Þ ¼ �ρ0

Z 1

0

Z
VΓ

ΩΓ � VΓ
� � � ∂G

∂y
x; y; t�τð Þ dy dτ; (17)
1 Corrections to the original Brown and Michael formula have been suggested during the years, to account for a spurious dipole induced by the time
dependence of circulation of the shed vortex [25,26]. Yet, since these corrections are limited to stationary-structure setups, and as recent studies have
indicated the minor effect of using a corrected Brown and Michael formula on the calculated sound in a finite-chord airfoil setup (e.g., [15]), we expect that
no qualitative effects should occur due to present use of the original equation.
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and

pw x; tð Þ ¼ puw x; tð Þþplw x; tð Þ ¼ �ρ0

Z 1
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In (16)–(18), Su and Sl are the upper and lower airfoil surfaces, respectively; VΓ , VΓu
k
and VΓl

k
denote the fluid regions

occupied by the incident and trailing edge vortices; Gðx; y; t�τÞ is the acoustic Green's function having a vanishing normal
derivative on the undisturbed airfoils; and VΓ , VΓu

k
and VΓl

k
are the velocities of incident and trailing edge vortices.

We consider a case where the double airfoil setup is acoustically compact, in which the acoustic wavelength is much
larger than the airfoil's chord a and distance between them s. Noting that the acoustic wavelength equals 2πc0=ω,
compactness requires that sound dimensional frequency satisfiesω{2πc0=a andω{2πc0=s. When scaling the frequency by
the convective unit U/a (as done in Section 2.3), this is equivalent to requiring ω{2π=M and ω{2πa=Ms for the non-
dimensional frequency ω, where M¼U=c0 is the mean-flow Mach number. The first of the two conditions is satisfied
automatically (as long as ω � Oð1Þ) due to the small-Mach assumption set for using Eq. (13) [7,27]; yet, the second condition
further requires that the airfoils are not too far apart, such that Ms=a{1. From the physical point of view, the compact-setup
approximation assumes that, to a leading order, the distance between each of the airfoils and the listener is identical and
acoustic phase differences owing to different locations within the source zone are neglected.

In accordance with the assumption on system compactness, we apply the far-field two-dimensional form of the compact
Green's function [7,27]:

G x; y; t�τð Þ � x � Y
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c0jxj3

p ∂
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H tr�τð Þffiffiffiffiffiffiffiffiffiffiffi
tr�τ

p
	 


; x -1;jj (19)

where YðyÞmarks the Kirchhoff vector for the double-airfoil configuration, and tr ¼ t�jxj=c0 is the acoustic retarded time. The
Kirchhoff vector YðyÞ is given by

YðyÞ ¼ y1;Y2ðy1; y2Þ
� �

; (20)

where Y2ðy1; y2Þ, denoting the potential of uniform flow of unity magnitude in the y2-direction over the two-airfoil system,
is obtained numerically (see Appendix). Substitution of Gðx; y; t�τÞ into (16)–(18) yields explicit expressions for pξ; pΓ and
pw.

Starting with the evaluation of pξðx; tÞ, substitute (19) and (2) into (16). The time integration can be carried out explicitly,
to yield

puξ x; tð Þ � �ερ0ω5=2 cosθ
4
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dy1; (21)

for the separate contributions of upper and lower airfoil motions, respectively, and pξ ¼ puξþplξ. Here, cosθ¼ x2=jxj indicates
the observer direction, and Y2ðy1; 7s7 Þ denotes values of the potential function Y2 over the top and bottom surfaces of the
airfoils.

To evaluate pΓ, substitute (19) together with (14) into (17) to obtain

pΓ x; tð Þ � ρ0Γ sinθ
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where V ðjÞ
Γ denotes the velocity component of the incident vortex in the xj-direction. Similarly, pw is evaluated by

substituting (19) and (14) into (18), to yield
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for the separate contributions of upper and lower airfoil wakes, respectively, and pw ¼ puwþplw. Here, V
ðjÞ
Γu

k
and V ðjÞ

Γl
k

mark the
xj-velocity component of the respective wake vortices.

Expressions (21)–(23) for the pressure components are calculated numerically, based on the near-field solution of the
problem. Apart from the “lift-type” dipole found for pξ in (21) (p cosθ, therefore directed along the x2-axis), both incident
vortex and wake dipoles (22) and (23) have a “suction-type” component oriented along the mean-flow x1-direction
(p sinθ). In common with previous studies on single-airfoil noise [14–16], our calculations indicate that the suction
pressure component is considerably smaller than the lift component at all times, and we therefore focus our results on
studying the lift dipole contribution.

2.3. Scaling and numerical analysis

The problem formulated in Sections 2.1 and 2.2 is now scaled to obtain a non-dimensionalized problem. Normalizing the
length, velocity, time, frequency and pressure by a;U; a=U;U=a and ρ0U

2, respectively, we find that the non-dimensional
near-field problem is governed by

ε; ω ¼ a
U
ω; ϕ; s ¼ s

a
; Γ ¼ Γ

2πaU
and zΓ0

¼ zΓ0

a
; (24)

specifying the scaled pitching amplitude and frequency, the phase-shift between airfoils' actuations, the separation distance
between the airfoils, and the incident vortex circulation and initial location, respectively. To illustrate our results, we focus
on a case where the incident vortex circulation is Γ ¼ 0:2. The vortex is initially situated at zΓ0

¼ �50þ0:3i, sufficiently far
upstream of the airfoils, where it essentially convects along a straight line with the mean flow. We study a case of relatively
close airfoils, s ¼ 0:1, to focus on the effects of mutual body and wake interactions on the flow-field and radiated sound. The
pitching amplitude is taken as ε ¼ 0:01, in accordance with the small-amplitude assumption set in Section 2.1. The pitching
frequency is chosen to be ω ¼ 1, and the effect of phase shift angle ϕ is examined. Cases of pitching airfoils with steady flow
(ε ¼ 0:01;Γ ¼ 0), and non-pitching airfoils in unsteady flow (ε ¼ 0;Γ ¼ 0:2) are studied separately and then combined. To
assess the impact of double-airfoil interactions, our findings are compared to the results obtained in a counterpart single-
airfoil setup.

The numerical solution of the dynamical problem is obtained using a discretization of the system of equations in both
space (along airfoil's chords) and time (from t¼0 to some final time). Space discretization is needed to express the vorticity
distributions, γu

aðx1; tÞ and γ l
aðx1; tÞ, along the airfoils. The numerical solution for vorticity distributions is obtained via a

standard Fourier-expansion procedure similar to the one described in Ref. [15] for a single airfoil. The system of equations is
integrated in time using a fourth-order Runge–Kutta algorithm. The typical time step used for integration was Δt ¼ 0:01,
which proved to be sufficient for convergence of the acoustic-field results (with errors o0:1 %).

Adopting the scaling introduced, the non-dimensional form of the acoustic pressure (15) becomes

pðx; tÞ
ρ0U

2 ¼
ffiffiffiffiffiffiffiffiffi
M
8jxj

s
Πtot t r

� �¼
ffiffiffiffiffiffiffiffiffi
M
8jxj

s
Πξðt rÞþΠΓðt rÞþΠwðt rÞ
� �

; (25)

where

Πξ t r
� �¼Πu

ξ t r
� �þΠ l

ξ t r
� �

;

Πu
ξ t r
� �� � εω5=2 cosθffiffiffiffiffiffi

2π
p sin ðωt rÞþ cos ðωt rÞ

� � Z 1

�1
y1þ1
� �

Y 2ðy1; sþ Þ�Y 2ðy1; s� Þ� �
dy1;

Π l
ξ t r
� �� � εω5=2 cosθffiffiffiffiffiffi

2π
p cosϕ sin ðωt rÞþ cos ðωt rÞ

� �þ sinϕ sin ðωt rÞ� cos ðωt rÞ
� �� �

�
Z 1

�1
ðy1þ1Þ Y 2ðy1; �sþ Þ�Y 2ðy1; �s� Þ� �

dy1; (26)

ΠΓ t r
� �� 2Γ sinθ

∂
∂t

Z t r

0

V
ð2Þ
Γ dτffiffiffiffiffiffiffiffiffiffiffiffi
t r�τ

p � cosθ
∂
∂t

Z t r

0
V

ð1Þ
Γ
∂Y 2

∂y2
�V

ð2Þ
Γ
∂Y 2

∂y1

 !
x
Γ
ðτÞ

dτffiffiffiffiffiffiffiffiffiffiffiffi
t r�τ

p
2
4

3
5; (27)

and

Πw tr
� �¼Πu

w tr
� �þΠ l

w t r
� �

;
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Πu
w tr
� �� 2

Xnu

k ¼ 1

sinθ
∂
∂t

Z t r

0

Γ
u
kV

ð2Þ
Γu

k
dτffiffiffiffiffiffiffiffiffiffiffiffi

t r�τ
p � cosθ

∂
∂t

Z t r

0
Γ

u
k V

ð1Þ
Γu

k

∂Y 2

∂y2
�V

ð2Þ
Γu

k

∂Y 2

∂y1

 !
x
Γ
u
k
ðτÞ

dτffiffiffiffiffiffiffiffiffiffiffiffi
t r�τ

p
2
64

3
75;

Π l
w t r
� �� 2

Xnl
k ¼ 1

sinθ
∂
∂t

Z t r

0

Γ
l
kV

ð2Þ
Γl

k
dτffiffiffiffiffiffiffiffiffiffiffiffi

t r�τ
p � cosθ

∂
∂t

Z t r

0
Γ

l
k V

ð1Þ
Γl

k
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∂y2
�V

ð2Þ
Γl

k
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 !
x
Γ
l
k
ðτÞ

dτffiffiffiffiffiffiffiffiffiffiffiffi
t r�τ

p
2
64

3
75: (28)

In (28), Γ
u
k ¼Γu

k=ð2πaUÞ and Γ
l
k ¼Γl

k=ð2πaUÞ.
Results for the acoustic pressure are presented in terms of the acoustic “kernels” defined in (25)–(28). In addition to the

parameters introduced in Eq. (24), the non-dimensional acoustic pressure is governed by the observer direction,
θ¼ cos �1 x2=jxj

� �
.

3. Results

3.1. Pitching airfoils at steady flow

We begin by considering the case of pitching airfoils at steady flow, i.e. in the absence of an incident vortex (Γ ¼ 0).
Disregarding transient effects obtained at times close to the initial time of actuation (t ¼ 0), we focus on analyzing the
time-periodic behavior of the system achieved at tc1. To study the impact of phase angle ϕ between
airfoils' actuations on system acoustic properties, we compare cases of in-phase (ϕ¼ 0) and counter-phase (ϕ¼ π) forcing
(see Eq. (1)).

Fig. 2 presents the long-time acoustic radiation of the system. The solid lines in Fig. 2a and b show the separate
contributions of airfoils' motion and systemwake to the acoustic field in an in-phase (ϕ¼ 0) actuation, respectively, and the
12 16 20 24 28

−0.04

−0.02

  0

 0.02

 0.04

 0.06

12 16 20 24 28

−0.04

−0.02

  0

 0.02

 0.04

 0.06

12 16 20 24 28

−0.04

−0.02

  0

 0.02

 0.04

 0.06

Fig. 2. Acoustic radiation of pitching (ε ¼ 0:01;ω ¼ 1) side-by-side airfoils at steady flow (Γ ¼ 0): components of (a) airfoils' motion and (b) wake sound
radiations in the normal (θ¼ 0) direction; (c) total sound radiation in the normal (θ¼ 0) direction. In all figures, solid and red dash-dotted lines present
data for in-phase (ϕ¼ 0) and counter-phase (ϕ¼ π) pitching airfoils, respectively. Dashed blue lines mark results for a counterpart single airfoil setup. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the web version of this paper.)
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solid line in Fig. 2c gives the corresponding total radiation. Dash-dotted lines show counterpart results for airfoils in
counter-phase (ϕ¼ π) actuation, and dashed lines present data in the case of a single airfoil pitching at the same frequency,
for reference.

Comparing between the results for in-phase and counter-phase airfoils, we observe that radiation in the counter-phase
case is vanishingly small compared with the ϕ¼ 0 case. For the airfoils'-motion component Πξ, this can be easily
rationalized through the explicit expressions appearing in Eq. (26). Specifically, when considering the symmetry properties
of the velocity potential Y2ðy1; y2Þ (see Appendix), we find that the separate contributions of upper and lower airfoils' sound,
Πu

ξ and Π l
ξ in (26), are equal for ϕ¼ 0 and opposite in sign for ϕ¼ π. This, in turn, leads to the vanishing dash-dotted

contribution in Fig. 2a in the counter-phase case. The counter-phase cloaking mechanism may be of practical importance,
particularly at large actuation frequencies: noting the ω5=2 power dependence of Πξ in (26), our calculations show that the
total sound radiation is dominated by Πξ for ϕ¼ 0 when ωc1. Yet, in the counter-phase ϕ¼ π case, or in its vicinity, this
contribution (being O ωð Þ5=2 for Πu

ξ and Π l
ξ separately) vanishes.

Turning to the wake-noise component presented in Fig. 2b, we note that a similar mechanism of sound attenuation is
observed. Here, our calculations indicate that the wake in the in-phase case is composed of two in-phase wakes released
from the airfoils, each of which consists of a vortex street of vortices of equal strength and alternating signs. Having identical
in-phase properties (see the discussion in Fig. 3), the two identical wakes contribute equally to the total wake sound. Yet, in
the counter-phase (ϕ¼ π) case, the two wakes approximately cancel each other, leading to the nearly vanishing signal
shown by the dash-dotted line in Fig. 2b.

Comparing the two-airfoil and single-airfoil acoustic signatures presented in Fig. 2, we observe that single-airfoil
radiation is similar to the signature of the in-phase system. It is therefore concluded that for the present choice of relatively
close airfoils (with a separation distance of s/a¼0.1), the in-phase airfoil–fluid interaction is acoustically equivalent to the
single pitching airfoil setup. Particular similarity is shown by the almost identical wake noise signals obtained in the single-
airfoil (dashed line in Fig. 2b) and in-phase airfoils (solid line in Fig. 2b, which is the sum of equal upper and lower airfoils
wake contributions) setups. For the direct airfoil-motion noise, the results in Fig. 2a show small differences, with the
double-airfoil setup being slightly noisier. In both cases, wake noise and direct airfoil noise act to cancel each other, leading
to the total signal shown in Fig. 2c. Here, the single-airfoil system is found slightly noisier than the double-airfoil
configuration.

To gain further insight into the findings of Fig. 2, Fig. 3 presents comparison between near-field flow characteristics of the
side-by-side and single pitching airfoils at steady flow conditions, as in Fig. 2. To this end, we introduce the total circulations
of each of the airfoils in the double-airfoil setup:

Γ
u
a ¼

Z 1

�1
γu
aðx1; t Þ dx1 and Γ

l
a ¼

Z 1

�1
γ l
aðx1; t Þ dx1; (29)

and calculate the total system circulation, Γa ¼Γ
u
aþΓ

l
a. In Fig. 3a, the latter is compared with total airfoil circulation in a

single airfoil case. In Fig. 3b, the variation of the maximum value of Γa with the normalized distance between the airfoils,
s=a (¼ 0:1 in Figs. 2 and 3a), in an in-phase pitching setup, is presented.

In line with the findings in Fig. 2, Fig. 3a shows that the single-airfoil and in-phase pitching airfoil circulations are closely
correlated. In addition, the total circulation in the counter-phase setup is vanishingly small, reflecting the sum of opposite-sign
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circulations of the upper and lower airfoils. While the latter result for counter-phase airfoils remains unchanged when varying the
distance between the airfoils, changes in the total system circulation with varying s/a are observed in the in-phase actuation setup,
as shown in Fig. 3b. Thus, when the distance between the airfoils increases above s=a� 10, their mutual effects vanish, and they
may be considered as two separate airfoils. Consequently, the total system circulation is given by the sum of two single airfoils
immersed in an unbounded domain. The dashed line in the upper right part of Fig. 3b depicts the respective asymptotic value of
� 0:09, being the double of the maximum value of single airfoil circulation (given by the maxima in the dashed line in Fig. 3a). In
the other limit, when the airfoils are closely situated (s=a{1), their wakes closely interact and they effectively act as a single airfoil.
The limit value of maximum system circulation is then � 0:045, as presented by the dashed line in the lower left part of Fig. 3b.
This value is only approximately achieved by our calculations, owing to numerical limitations of the numerical scheme occurring
when airfoil's trailing edges become excessively adjacent.
3.2. Non-pitching airfoils at unsteady flow

To study the separate effects of flow unsteadiness on system acoustic radiation, Fig. 4 presents the acoustic signature of
non-pitching (ε ¼ 0) side-by-side airfoils for unsteady flow conditions (Γ ¼ 0:2). Separate components of incident vortex
and wake sound are presented by the solid lines in Fig. 4a and b, respectively, and the total signature is given by the solid
line in Fig. 4c. As in the preceding section, the results are compared with counterpart data for a single-airfoil setup subject
to identical flow conditions, as described by the dashed lines. Fig. 4d shows the total sound energy for the double- and
single-airfoil systems, defined by integration of the squared total radiation of each of the systems over a circle of radius
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Fig. 4. Acoustic radiation of non-pitching (ε ¼ 0) side-by-side airfoils for unsteady flow (Γ ¼ 0:2): components of (a) incident vortex and (b) wake sound
radiations in the normal (θ¼ 0) direction (solid lines); (c) total sound radiation in the normal (θ¼ 0) direction (solid line); (d) total sound energy (solid
line). In all figures, dashed blue lines mark data for a single-airfoil setup. Dash-dotted vertical lines confine the time interval during which the vortex passes
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paper.)
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jxj-1:

Pacousðt rÞ ¼
Z 2π

0
Π2

totðt r ;θÞ dθ: (30)

The dash-dotted vertical lines in each figure confine the time interval during which the incident vortex passes above the
double-airfoil configuration. This time interval remains nearly unchanged between the single- and double-airfoil
configurations.

Focusing on the total signature and sound energy of the systems in Fig. 4c and d, we find that the double-airfoil setup is
generally noisier than the single-airfoil system. While this may have been expected due to the interaction of vorticity with
multiple sharp edges in the case of double-airfoil setup, it is not uniformly valid at all times. Thus, there exist time intervals,
particularly in the vicinity of leading-edge and trailing-edge times (i.e., when the incident vortex passes above x1 ¼ 71),
where the single-airfoil system radiates more sound. Inspection of Fig. 4a and b indicates that these time-intervals of sound
reduction are attributed to the wake sound component, being attenuated close to leading and trailing edge times compared
with the single-airfoil setup.

To investigate the latter observation, Fig. 5 examines the separate contributions of upper and lower airfoils to total
system wake noise (Fig. 5a) and total circulation (Fig. 5b). Remarkably, as the incident vortex approaches the airfoils and
passes above them, the wake released by the lower airfoil radiates sound which acts to reduce the noise generated by the
upper airfoil wake (note the opposite signs ofΠu

w andΠ l
w in Fig. 5a). In terms of near-field characteristics, the reason for that

is clarified in Fig. 5b. As the incident vortex approaches the airfoils' leading edges, the lower airfoil circulation (which,
at earlier times, is identical with upper airfoil circulation) starts deviating from the upper airfoil circulation gradually (see
the differences between the curves in Fig. 5b, beginning at t � 47). Recalling that, according to the Kelvin theorem, time
variations of airfoils' circulations reflect time variations of the total wake circulations (see Eqs. (10) and (29)), this deviation
reflects the shedding of wake vortices from the lower trailing edge that are opposite in sign to those released at the upper
trailing edge. This opposite-sign vorticity release, which results from the nonlinear interaction between the two wakes and
the incoming vortex, leads to the noise reduction effect observed in Fig. 5a. The mechanism is most effective at leading and
trailing edge times, and therefore only then the total system radiation may become lower than radiation by a single airfoil.
At late times, both airfoils' circulations become equal again, and vanish to their vanishing unperturbed value.

3.3. Combined forcing

Having studied the separate effects of pitching and flow unsteadiness on system acoustic properties, Fig. 6 presents the
total acoustic radiation from side-by-side airfoils subject to both incident vortex loading and leading edge animation. Both
parts of the figure show the total radiation in the lift (θ¼ 0) direction, but focus on different time intervals, for clarity of
presentation (note the difference in the Πtot-axis scale between the two figures).

Starting with a time interval prior to vortex passage above the airfoil, Fig. 6a shows a comparison between the acoustic
radiation of in-phase (solid line), counter-phase (dash-dotted line) and single (dashed line) airfoil setups for 25rt rr40.
During this time interval, when the impact of incoming vorticity is relatively small, the total radiations appear similar in
form to the steady-flow signatures discussed in Section 3.1. Specifically, the signature of the in-phase setup is qualitatively
similar to the single-airfoil radiation, while the sound level calculated in the counter-phase case is considerably smaller.
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Yet, unlike the steady-flow result in Fig. 2c, the counter-phase setup generates non-negligible sound owing to finite
interaction with the incoming vortex.

The comparison changes qualitatively during the time interval when the vortex passes above the airfoils, as depicted in
Fig. 6b.2 Here, the counter-phase pitching setup becomes considerably noisier than at earlier times, and similar in
magnitude to the in-phase configuration. Both setups are generally noisier than the single-airfoil system, excluding time-
intervals close to leading- and trailing-edge times, in accordance with the wake sound-reduction mechanism discussed in
Section 3.2. Interestingly, it is observed that the counter-phase system generates the highest sound level at leading edge
time. Our calculations indicate that this result is dependent on the specific time in which the vortex interacts with the
airfoils end points, in terms of the airfoils' pitching period. Thus, we find that varying the vortex initial location (i.e., so that
the vortex reaches the airfoils at a different time phase along their pitching period) results in quantitatively different ratios
between sound levels in in-phase and counter-phase systems. Detailed study of the effect of vortex initial location on the
results in Fig. 6b (which is also equivalent to varying the phase difference ϕ between airfoils' pitching actuations) is skipped
here for brevity.
4. Conclusion

We examined the acoustic radiation of a side-by-side airfoil configuration, subject to small-amplitude harmonic pitching
animation and unsteady flow conditions. The two-dimensional near-field problem was analyzed using thin-airfoil theory,
where flow unsteadiness was modeled in the form of a passing line vortex, and wake evolution was calculated using the
Brown and Michael formula. Assuming that the setup is acoustically compact, acoustic radiation was calculated using the
Powell–Howe acoustic analogy, where the compact Green's function was calculated numerically using potential-flow
analysis of the flow-field. Our results, comparing the acoustic radiation of the double-airfoil system to a reference case of a
single airfoil, indicate several mechanisms of sound attenuation and sound amplification caused by airfoil–airfoil and
airfoil–wake interactions. For the problem in the absence of incoming flow vorticity, it is found that counter-phase pitching
of the airfoils results in effective acoustic cloaking of the system, which otherwise becomes dominated by direct pitching-
motion sound (which increases like 5/2-power of the pitching frequency). In addition, depending on distance between
airfoils, in-phase pitching may result in an acoustic signature equivalent to a single airfoil (when the airfoils are adjacent) or
to two separate airfoils (when the airfoils are far apart). Flow unsteadiness generally produces more sound in the proximity
of the double-airfoil setup. Yet, airfoils' nonlinear wake–wake interactions lead to a sound reduction mechanism, most
efficient at times when incoming vorticity passes above airfoil's leading and trailing edges.

The present analysis relies strongly on the assumption of acoustic compactness, by neglecting acoustic-phase differences
within the source zone compared with the wavelength of far-field acoustic radiation. Thus, apart from confining validity of
our findings to relatively low frequencies (ω{2π=M, withω being normalized by airfoil-chord-based scale, andM being the
mean flow Mach number), compactness also requires that Ms{1, where s measures the scaled distance between the airfoils
(see Section 2.2). To the extent that these restrictions are satisfied, our scheme can be easily extended to consider the
acoustic properties of other double-airfoil configurations (apart from side-by-side setup), as well as multiple (42)
2 The time interval of vortex passage above the airfoils is not marked in Fig. 6b for clarity, as it slightly varies between configurations. Yet, it is roughly
between 49≲t r≲50:7 in all cases.



Fig. 7. Streamlines of the potential flow field Y2ðy1; y2Þ.
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airfoils' setups. A desirable, though less immediate, extension of the present work would include the effect of structural
elasticity (replacing presently assumed rigid airfoil) on the system acoustic properties.
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Appendix A. Calculation of Y2ðy1; y2Þ

Evaluation of Y2ðy1; y2Þ, the velocity potential of uniform unit flow in the y2-direction over the airfoils, is carried out
numerically via a finite-difference solution of Laplace's equation. The equation is solved in conjunction with impermeability
conditions on the airfoils, using a MATLAB subroutine. For actual calculation, airfoils of finite width must be considered.
To comply with our thin-airfoil assumption, we considered a case where the ratio between airfoil's thickness and chord is 10�3,
and verified that further decrease in airfoil's thickness does not affect the numerical results. In addition, it has been verified that
the numerical calculation captures the close-form solution for Y2ðy1; y2Þ for a single airfoil [27]. Note that a solution for Y2ðy1; y2Þ
may also be obtained using the Sedov method [28], which gives a general formula for the potential of uniform flow over an
arbitrary set of parallel airfoils. Yet, since an explicit application of Sedov's formula in the present case requires numerical analysis
of a complex-variable integral, we have preferred the present methodology owing to its relative simplicity.

Fig. 7 shows a characteristic plot of the flow streamlines obtained from the numerical solution. At large distances from
the airfoils, the flow is directed uniformly along the y2 vertical axis. The calculated flow field is symmetric about the y1 ¼ 0
and y2 ¼ 0 mid-plane axes.
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