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From the Generalized Boussinesq Approximation
to the Marginally Super-Adiabatic Limit

A. MANELA1 AND I. FRANKEL2

1Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA
2Faculty of Aerospace Engineering, Technion-Israel Institute of
Technology, Haifa, Israel

The prevailing view of the Rayleigh-Bénard problem in compressible fluids is that for
small temperature differences the Boussinesq approximation holds, provided that it
is based on a modified Rayleigh number incorporating the potential-temperature
gradient. However, for small values of the latter, the onset of convection is charac-
terized by distinct non-Boussinesq features. We consider the linear temporal stability
problem and identify the origin of the nonuniformity in the convection and
compression-work terms of the perturbation energy balance. We thereby regularize
the transition with diminishing potential-temperature gradient from the generalized
Boussinesq approximation to the limit when the temperature gradient is only
marginally super-adiabatic. It is demonstrated that this transition is accomplished
in two phases. Initially, the critical Rayleigh number rapidly increases, which is
accompanied by only slight variations of the corresponding wave number. Subse-
quently, with further diminishing potential-temperature gradients, the critical wave
number rapidly increases as well, and the resulting convection becomes effectively
confined to a narrowing fluid layer adjacent to the upper wall.

Keywords Compressibility; Generalized Boussinesq approximation; Rayleigh-
Bénard instability; Super-adiabatic limit

Introduction

The Rayleigh-Bénard (RB) problem has been studied extensively within the
framework of the Boussinesq approximation (Chandrasekhar, 1961). This approxi-
mation models an essentially incompressible fluid possessing constant viscosity and
heat conductivity. Only density variations resulting from thermal expansion are con-
sidered and then only in the buoyancy term in the equation of motion. The resulting
stability problem is governed by a single parameter, the Rayleigh number (Ra),
representing the relative effects of buoyancy on the one hand and fluid viscosity
and heat conductivity on the other hand. For a fluid confined between infinite planar
walls, the Boussinesq approximation predicts the onset of convection beyond the
critical value Racr � 1708 and characterized by a dimensionless wave number
(scaled by D, the gap width) kcr � 3.117.
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When allowing for compressibility effects, it is necessary for the onset of
convection that the adiabatic expansion of a fluid element rising through the refer-
ence hydrostatic pressure field reduces its density below the ambient value (Landau
and Lifshitz, 1959). This is usually expressed as a condition on the (negative) vertical
reference temperature gradient requiring that it be smaller than the adiabatic gradi-
ent corresponding to the ambient hydrostatic pressure distribution. This requirement
becomes the dominant condition for the onset of convection in natural situations
(e.g., on atmospheric scales) where the Rayleigh number greatly exceeds the critical
value (Tritton, 1988) as well as in laboratory experiments with near-critical fluids
(owing to their large compressibility; Kogan and Meyer, 2001). For a perfect
monatomic gas we thus require that

Fr > Fr0 ¼ � 4

5

dT ð0Þ

dy

� ��1

ð1Þ

wherein T(0)(y) denotes the dimensionless temperature distribution normalized by
Th, the temperature of the hot wall, and the vertical coordinate y is scaled by D.
On the left-hand side of Equation (1) appears the Froude number, Fr¼ 2RTh=gD
(wherein R is the universal gas constant and g is the gravitational acceleration),
representing the relative magnitudes of thermal and gravitational effects.

Assuming a small temperature difference and uniform viscosity and heat
conductivity across the fluid, the RB problem for a compressible fluid has been
studied by Jeffreys (1930), Spiegel (1965), and Giterman and Shteinberg (1970),
among others. Based on these analyses the prevailing view is that under these con-
ditions the Boussinesq approximation applies to a compressible fluid provided that
a generalized Rayleigh number based on the potential (i.e., the excess of the actual
over the adiabatic) temperature gradient is employed (Tritton, 1988). The RB
problem for a compressible fluid subject to an arbitrary temperature difference
has been addressed in the continuum limit of slightly rarefied gases (Sone et al.,
1997; Stefanov et al., 2002; Manela and Frankel, 2005a). The stability problem is
here characterized by a pair of parameters, e.g., Fr and the Knudsen number, rather
than just by Ra. A unique feature of this problem is that with diminishing Fr a
distinctly non-Boussinesq behavior emerges. Convection is effectively confined to
a narrow layer of fluid adjacent to the upper (cold) wall and is characterized by wave
numbers significantly larger than the above-mentioned kcr(�3.117) (Stefanov et al.,
2002; Manela and Frankel, 2005a,b). Furthermore, this trend persists even at small
temperature differences (Manela and Frankel, 2005b), which is at variance with the
above view regarding validity of the generalized Boussinesq approximation. Manela
and Frankel (2006) have related this nonuniformity to the fact that with decreasing
small Fr, Equation (1) is satisfied only over a diminishing portion of the fluid
domain. They have thus substantiated the non-Boussinesq features of the limit
Fr!Fr0 when the reference-temperature gradient is only marginally super-adiabatic
(i.e., when, Equation (1) is only locally satisfied at the upper (cold) wall).

The goal of the present contribution is to regularize and rationalize the
transition between the above limits. In the next section we formulate the linearized
perturbation problem. The breakdown of the generalized Boussinesq approximation
and the transition to the limit Fr!Fr0 are analysed, the results are illustrated and
discussed, and some concluding comments are made.
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Formulation of the Problem

We consider a perfect monatomic gas confined between infinite horizontal walls and
heated from below. Gas density, fluid velocity, and the pressure are scaled by �qq, the
average density, Uth¼ (2RTh)

1=2, and �qqRTh, respectively. Shear viscosity and heat
conductivity are normalized by lh and jh, their respective values at Th. The dimen-
sionless problem is governed by the continuity equation

@q
@t

þr � ðquÞ ¼ 0 ð2Þ

together with the Navier-Stokes

q
Du

Dt
¼ � 1

2
rpþ 1

Re
r � 2l e� 1

3
ru

� �� �
� q
Fr

ĵj ð3Þ

and energy

q
DT

Dt
¼ 5

2Re
r � ðjrTÞ � 2

3
pr � uþ 4

3Re
U ð4Þ

equations as well as the perfect gas equation of state

p ¼ qT ð5Þ

In the above equations D=Dt denotes the material derivative, Re ¼ �qqUthD=lh is
the Reynolds number, ĵj is the unit vector pointing vertically upwards, u is the velo-
city vector, and e and U denote the rate-of-strain tensor and the rate of dissipation,
respectively. For the dimensionless transport coefficients we assume the power law
l(T)¼ j(T)¼T1=2 (corresponding to the hard-sphere model in gas-kinetic theory;
Chapman and Cowling, 1970). The above equations are supplemented by the
normalization condition for q and by the boundary conditions imposing no-slip
and temperature continuity at the walls.

The above problem possesses the steady ‘‘pure conduction’’ (i.e., u(0)¼ 0)
solution (Stefanov et al., 2002):

T ð0Þ ¼ ½1þ ðR3=2
T � 1Þy�2=3; qð0Þ ¼ C

T ð0Þ exp � 6

ðR3=2
T � 1ÞFr

T ð0Þ1=2
" #

ð6Þ

in which RT¼Tc=Th is the ratio of the cold- and hot-wall temperatures and C is
calculated by use of the above-mentioned normalization condition. The linear tem-
poral stability of this reference state is analyzed assuming that it is perturbed by
small spatially harmonic perturbations. By the transverse symmetry of the problem
(Manela and Frankel, 2005a) we use a two-dimensional description in the Cartesian
coordinates (x, y) whose origin lies on the lower wall and where x is a horizontal
coordinate in the wave-vector direction. Accordingly, each of the above-mentioned
fields is generically represented by the sum

F ¼ F ð0ÞðyÞ þ /ð1ÞðyÞ exp½ikxþ xt� ð7Þ
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wherein F(0) denotes the steady reference state, k is the real wave number, and x is
the (complex-valued) growth rate. Substituting Equation (7) into Equations (2)–(4)
and the attendant boundary conditions while neglecting nonlinear terms in the per-
turbations we obtain a linear perturbation problem. For brevity we explicitly present
here only the continuity equation

xqð1Þ þ dqð0Þ

dy
vð1Þ þ qð0Þ

dvð1Þ

dy
þ f ð1Þ

� �
¼ 0 ð8Þ

and the perturbation energy equation

xqð0ÞT ð1Þ þ qð0Þvð1Þ
dT ð0Þ

dy
¼ � 2

3
qð0ÞT ð0Þ dvð1Þ

dy
þ f ð1Þ

� �
þ

5

2Re

djð0Þ

dy

dT ð1Þ

dy
þ dT ð0Þ

dy

djð1Þ

dy
þ jð0Þ

d2T ð1Þ

dy2
� k2T ð1Þ

� �
þ jð1Þ

d2T ð0Þ

dy2

� � ð9Þ

wherein u(1)¼ (u(1), v(1)) is the perturbation velocity vector, f (1)¼ iku(1), jð0Þ ¼ T ð0Þ1=2 ,
and jð1Þ ¼ ð1=2ÞT ð0Þ�1=2

T ð1Þ. (The full system of equations can be found, for example,
in (11)–(14) of Manela and Frankel, 2005a). These are supplemented by the pertur-
bation equations of motion (see Equations (14) and (15)) and the boundary condi-
tions prescribing the vanishing of temperature and velocity perturbations at y¼ 0,
1. In agreement with our numerical calculations (see at the beginning of
the Results section), we hereafter focus on a stationary (i.e., x¼ 0) transition to
convection.

Analysis

Breakdown of the Generalized Boussinesq Limit

Assuming an asymptotically small temperature difference

E ¼ 1� RT << 1 ð10Þ

we consider the limit process

Fr ¼ E�1Fr� and Re ¼ E�1Re� ð11Þ

wherein Fr� and Re� are fixed when E! 0. Expanding the pure-conduction reference
state (6) into power series in E we obtain

F ð0ÞðyÞ � 1þ EF ð0Þ
1 ðyÞ þ E2F ð0Þ

2 ðyÞ ð12Þ

in which F
ð0Þ
1 and F

ð0Þ
2 are linear and quadratic functions of y, respectively. Substitut-

ing Equations (10)–(12) in the above perturbation problem while assuming that all
perturbations appearing in Equation (7) are /(1)(y)�O(1) we obtain from the
O(1) continuity equation

dvð1Þ

dy
þ f ð1Þ ¼ 0 ð13Þ
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and from the same order of the x-momentum equation

T ð1Þ þ qð1Þ ¼ 0 ð14Þ

Combining the x- and y-momentum equations to eliminate the pressure terms we
obtain at the O(E) leading order

1

Re�
d3f ð1Þ

dy3
þ k2

d2vð1Þ

dy2
� df ð1Þ

dy
� k2vð1Þ

� �� �
� k2

Fr�
qð1Þ ¼ 0 ð15Þ

and from the O(E) energy equation

2

3

dqð0Þ1

dy
� dT

ð0Þ
1

dy

 !
vð1Þ þ 5

2Re�
d2T ð1Þ

dy2
� k2T ð1Þ

� �
¼ 0 ð16Þ

From Equations (13)–(16) together with the above-mentioned boundary
conditions we obtain for v(1), the vertical component of the perturbation velocity,
the Boussinesq-type problem consisting of the equation

d2

dy2
� k2

� �3

vð1Þ ¼ �Ra1k
2vð1Þ ð17Þ

which is supplemented by

vð1Þ ¼ 0;
dvð1Þ

dy
¼ 0;

d2

dy2
� k2

� �2
vð1Þ ¼ 0 at y ¼ 0; 1 ð18Þ

The single parameter governing the problem is the generalized Rayleigh number

Ra1 ¼
2

15

Re�2G
ð0Þ
1

Fr�
ð19Þ

wherein

G
ð0Þ
1 ¼ 2

3

dqð0Þ1

dy
� dT

ð0Þ
1

dy
¼ 5Fr� � 4

Fr�
ð20Þ

is proportional to the O(E) leading potential-temperature gradient (Spiegel, 1965;
Manela and Frankel, 2005b).

Validity of the above limit depends upon the nonvanishing of G
ð0Þ
1 . However,

inspecting Equation (1) in conjunction with Equation (12) we obtain

Fr0 �
4

5E
½1þOðEÞ� ð21Þ

Thus, with diminishing Fr!Fr0, Fr� ! 4=5, and the generalized Boussinesq
approximation becomes non uniform (Manela and Frankel, 2005b). This nonunifor-
mity may be traced back to the energy Equation (16), where G

ð0Þ
1 is multiplying v(1).
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Evidently, with the vanishing of v(1) from the energy equation, the above perturba-
tion scheme breaks down, admitting only trivial solutions.

Regularization of the Transition between Limits

To examine the transition from the generalized Boussinesq limit to the marginally
super-adiabatic limit with Fr approaching Fr0 we define the small parameter

d ¼ Fr

Fr0
� 1 ð22Þ

Subsequent analysis of the transition to the super-adiabatic limit is governed by
the relative magnitude of d compared to E.

The vertical perturbation velocity v(1) is introduced into the energy Equation (9)
through both the convection term on the left-hand side the compression-work (i.e.,
the first) term on the right-hand side. When the latter contribution is expressed by
means of the equation of continuity (8) we find that v(1) appears in the energy
equation multiplied by

Gð0Þ ¼ 2

3

dqð0Þ

dy
� dT ð0Þ

dy
ð23Þ

(Thus, see Equation (12), G
ð0Þ
1 (20) is the coefficient of the leading O(E)

approximation of G(0) in the limit E! 0 when d�O(1) is fixed.) In terms of the
above-defined d and making use of the reference state (12) for E! 0 we obtain

Gð0Þ � 5

3

Ed
1þ d

þ E2 y
1

6
D2 � 7

6
Dþ 5

2

� �
� 1

12
ðDþ 5Þ

� �
ð24Þ

wherein D¼ 5(1þd)�1. In the following we examine the variation with d of the onset
of convection in the limit E! 0.

To begin with we allow d to diminish within the range O(E)<�d<�O(1). To
obtain a consistent dominant balance we modify the above limit process replacing
Equation (11) by Equation (22) and

Re ¼ a1

Ed1=2
ð25Þ

in which a1 is fixed when E! 0. Furthermore, unlike the generalized Boussinesq
limit, we need to distinguish between the respective leading orders of the various per-
turbations. Normalizing v(1) to be O(1), f(1) remains O(1) as well, whereas for the
temperature and density perturbations we assume T(1), q(1)�O(d1=2). The resulting
continuity, x-momentum, and combined-momentum perturbation equations remain
the same as the above Equations (13)–(14) and (15), respectively (though the orders
of the latter pair are now O(d1=2) and O(Ed1=2), respectively). In the O(dE) leading
energy balance G

ð0Þ
1 (20) needs to be replaced by G(0) (24) as the coefficient of v(1).

From these we obtain for v(1) the equation

d2

dy2
� k2

� �3

vð1Þ ¼ � a21G
ð0Þ�

2ð1þ dÞ k
2vð1Þ ð26Þ

which is supplemented by the boundary conditions (18). In (26) Gð0Þ� ¼ Gð0Þ=Ed.
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Evidently, for d�O(1) Equations (25) and (26) reduce to the above generalized
Boussinesq approximation. The same is true for d� o(1) as well, provided that
E=d� o(1). For d�O(E), however, both terms in G(0) (24) become comparable.
Consequently, Gð0Þ� is no longer a constant but rather a function of y:

Gð0Þ� � 5

3
þ 5

6

E
d
ðy� 1Þ ð27Þ

which manifests the departure from the above generalized Boussinesq approxima-
tion. Solutions to the eigenvalue problem governed by Equation (26) in conjunction
with Equation (27) are discussed below.

With d further diminishing to d� o(E) the limit process embodied in
Equation (25) together with the accompanying scaling of the perturbations
become nonuniform. This is manifested in the breakdown of the dominant
balance in the energy Equation (16). Thus, the conduction terms decrease as
Ed whereas G(0)v(1) apparently remains O(E2). To obtain a consistent balance
we again modify the limit process by rescaling Re and k and defining the
‘‘inner’’ variable Y through

Re ¼ E

d5=2
a2; k ¼ E

d
l; and Y ¼ kð1� yÞ ð0 � Y � kÞ ð28Þ

respectively, where a2, l, and Y are fixed for E! 0. (By definition, f(1) is now O(E=d).
Otherwise, the leading orders of the various perturbations remain unchanged.) Expand-
ing the reference state (12) about the regular point (y¼ 1, Fr¼Fr0) and substituting
this expansion into the perturbation problem (see Equation (8) and following) we
obtain for the leading-order vertical perturbation velocity in terms of the inner variable
the eigenvalue problem

d2

dY2
� 1

� �3
vð1Þ ¼ ðA0Y � B0Þvð1Þ ð29Þ

together with

vð1Þ ¼ 0;
dvð1Þ

dY
¼ 0; and

d2

dY 2
� 1

� �2

vð1Þ ¼ 0 at Y ¼ 0; k ð30Þ

In Equation (29) we denote A0 ¼ ð5=12Þa22=l5 and B0 ¼ ð5=6Þa22=l4. For
d=E�O(1), Equation (28)–(30) are equivalent to Equations (25), (26), and (18),
respectively, hence the present limit may actually serve to describe the entire range
d=E<�O(1). The resulting eigenvalue problem for a2 is governed by the two para-
meters l and d=E.

The general solution of Equation (29) is represented via the superposition (Duty
and Reid, 1964)

v
ð1Þ
0 ðYÞ ¼ R5

n¼0 gnfnðYÞ ð31Þ

From Generalized Boussinesq to Super-Adiabatic Limit 57

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
n
e
l
a
,
 
A
.
]
 
A
t
:
 
2
2
:
5
6
 
1
9
 
O
c
t
o
b
e
r
 
2
0
0
9



where gn (n¼ 0, 1,. . . ,5) are arbitrary (complex) constants and

fnðY Þ ¼
Z
Cn

exp � 1

A0

1

7
z7 � 3

5
z5 þ z3 þ ðB0 � 1Þz

� �
þ Yz

� �
dz ð32Þ

are generalized Laplace integrals in the complex z-plane. The contours Cn (Granoff
and Bleistein, 1972) originate and terminate at z!1 within any of the seven sectors
�(p=14)(1� 4n)< argz< (p=14)(1þ4n), (n¼ 0, 1, . . . , 6).

Substituting the (numerically evaluated) functions fn(Y) (n¼ 0, 1,. . ., 5) and
the respective derivatives at Y¼ 0, k into Equation (30), we obtain a system of six
homogeneous linear algebraic equations for gn (n¼ 0, 1,. . ., 5). The requisite disper-
sion relation a2¼ a2(l, d=E) is thereby obtained as the lowest branch of the character-
istic equation resulting from the vanishing of the system determinant. Making use of
the relation between Ra1, Fr, and Re, the generalized Rayleigh number is here
expressed as

Ra1 ¼
5a21

6ð1þ dÞ2
ð33Þ

which (see Equations (22) and (25)) for d�O(1) reduces to Equation (19). Explicit
results will be presented in terms of Ra1, k, and d=E.

Results and Discussion

Numerical solution of the eigenvalue problem formulated above by means of
the Chebyshev collocation method invariably yields real-valued growth rates
throughout the entire domain of parameters, as obtained in our previous numerical

Figure 1. The neutral curves in the (k, Ra1) plane of wave number and generalized Rayleigh
number for d=E¼ 1=7. The solid lines correspond to the numerical solution at the indicated
values of E, whereas the dashed curve depicts the E! 0 asymptote.
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investigations (Manela and Frankel, 2005a, b) carried out for a wide range of Froude
numbers (10�1<Fr< 106). This observation supports our focusing in the preceding
section on transition to convection through stationary states (x¼ 0).

Figure 1 examines convergence of the neutral curve in the limit E! 0 for
d=E¼ 1=7 (fixed). The solid lines result from numerical calculations based on the
‘‘exact’’ problem at the indicated values of E. The dashed line marks the E! 0 asymp-
tote corresponding to the dispersion relation Ra2¼Ra2(l, d=E), where the modified
Rayleigh number Ra2 is obtained from Ra1 through replacing a1 in Equation (33)
by a2. (From the definitions (25) and (28) Ra2¼Ra1(d=E)

4.) It is worthwhile to note
that the critical values Racr � 1.77� 105 and kcr � 7.21 are much larger than their
Boussinesq counterparts.

The transition from the Boussinesq limit to the marginally super-adiabatic limit
is described through the variation with diminishing (fixed) d=E of the neutral curve in
the (k, Ra1) plane. Thus, the solid lines of Figure 2(a) present on a semilogarithmic

Figure 2. (a) The neutral curves in the (Ra1, k) plane for E! 0 and the indicated values of d=E.
The dashed line corresponds to the generalized Boussinesq approximation. The dash-dotted
line depicts the variation of the critical conditions ðkcr;Ra1crÞ with d=E. (b) The neutral curves
in the (l, Ra2) plane for E! 0 and the indicated values of d=E. The dashed line marks the
d=E! 0 asymptote.
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scale the neutral curves Ra1¼Ra1(k) corresponding to the dispersion relation
a2¼ a2(l, d=E) obtained in the limit E! 0 with d=E fixed at the indicated values.
For comparison the generalized Boussinesq approximation (marked by the dashed
curve) is presented as well. The latter asymptote is indeed a close approximation
for d=E>�5. With diminishing d=E we observe that the critical values of Ra1 rapidly
increase. Down to d=E � 1=3 this is accompanied by only a slight variation of the
corresponding kcr. At this point the dash-dotted critical-conditions curve undergoes
a sharp bend. With further decreasing d=E< 1=3 kcr rapidly increases, which reflects
the emergence of a non-Boussinesq convection pattern (see Figure 3).

To complete the description for d=E! 0, Figure 2(b) presents the neutral curves
in the (l, Ra2) plane. The curve d=E¼ 1 is the same as in Figure 2(a) since for this
value l¼ k, a2¼ a1, and hence Ra2¼Ra1. The dashed asymptote d=E! 0 is nearly
indistinguishable from the curve d=E¼ 1=3. This rapid convergence verifies appropri-
ateness of the scaling of the Reynolds number, the wave number, and the inner
variable assumed in the limit process (28).

To gain further insight into the above trends for d< E, we present in Figure 3 the
eigenfunctions v(1)(y) (normalized to unity) of the vertical velocity perturbation at cri-
tical conditions ðRa1cr ; kcrÞ for E! 0 and d=E fixed at the indicated values. As a refer-
ence the dashed line marks the generalized Boussinesq eigenfunction, which nearly
coincides with the actual v(1) for all d=E>�1=3. However, with further diminishing d
convection becomes essentially confined to an ever-narrowing fluid layer adjacent to
the upper (cold) wall. The corresponding (critical) wave numbers rapidly grow (as
observed in Figure 2(a)). These non-Boussinesq features are most evident in the curve
corresponding to d=E¼ 1=15 (the corresponding critical wave number is kcr � 15.3).

The above trends accompanying diminishing d=E may be rationalized in terms of
the increasing relative importance of the requirement (1) associated with the adiabatic
temperature gradient. The critical value of the generalized Rayleigh number thus
increases so as to provide the requisite potential temperature gradient. Furthermore,

Figure 3. The normalized eigenfunctions of the vertical velocity perturbation for E! 0 and
critical conditions at the indicated values of d=E. The dashed line marks the generalized
Boussinesq limit.
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from Equation (1) in conjunction with T(0) in Equations (6) and (12), we find that
Equation (1) is satisfied throughout the entire fluid domain only provided that
d=E	 1=2. With d=E further decreasing, Equation (1) is satisfied within a fluid layer
whose width diminishes like d=E (in agreement with the scaling (28) of the inner vari-
able). Figure 2 indicates that the actual departure from the Boussinesq approximation
insofar as the critical wave numbers and eigenfunctions are concerned does not occur
until d=E<� 1=3. This is related to viscous and heat-conduction effects, which are not
accounted for by the necessary condition (1). Thus, once convection sets in it extends
over a gas layer, which is wider than the expected � d=E owing to viscous momentum
diffusion to lower fluid layers. At d=E � 1=3 convection still occupies the entire fluid
domain and the Boussinesq eigenfunction and critical wave number are nearly recov-
ered. However, the corresponding Racr � 6.2� 103 (Figure 2(a)) is already much
larger than the Boussinesq counterpart.

Conclusion

We have analyzed a nonuniformity occurring in the generalized Boussinesq approx-
imation under marginally super-adiabatic conditions. We have studied the linearized
temporal stability problem and identified the origin of this nonuniformity in the con-
vection and compression-work terms of the perturbation energy balance. It has been
demonstrated that the transition between the generalized Boussinesq approximation
and the marginally super-adiabatic limit is accomplished in two phases. Initially,
the critical Rayleigh number rapidly increases, accompanied by slight variations
of the corresponding wave number. Then, with further diminishing potential-
temperature gradients, the critical wave number rapidly increases as well, and the
resulting convection becomes effectively confined to a narrowing fluid layer adjacent
to the upper wall.

Our analysis focuses on the limit where E, the relative temperature difference
between the walls, and d, the super-adiabatic deviation parameter, are asymptoti-
cally small. In actual physical situations (e.g., atmospheric phenomena on the scale
of hundreds of meters or experiments with near-critical fluids), E is small but finite.
Nonetheless, we expect our predictions regarding non-Boussinesq behavior to qua-
litatively apply at finite (small) d (<E=3) and corresponding finite (large) Racr. This
anticipation is supported by the qualitative agreement with results pertaining to
finite E (Stefanov et al., 2002; Manela and Frankel, 2005a), showing similar behavior
at the onset of instability at small Fr in the continuum limit. In particular, Stefanov
et al. (2002) have obtained these features (see their Figures 2 and 3) via simulations
of the fully nonlinear initial-value problem, which suggests relevance of the present
linear analysis to the actual onset of convection at arbitrary E and slightly
super-adiabatic conditions.
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