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Existing studies on sound wave propagation in rarefied gases examine sound gener-
ation by actuated boundaries subject to isothermal boundary conditions. While these
conditions are simple to analyze theoretically, they are more challenging to apply
in practice compared to heat-flux conditions. To study the effect of modifying the
thermal boundary conditions, the present work investigates the impact of replac-
ing the isothermal with heat-flux conditions on propagation of acoustic waves in a
microchannel. The linearized problem is formulated for an ideal hard-sphere gas,
and the effect of heat-flux prescription is demonstrated through comparison with
counterpart results for isothermal boundaries. Analytical solutions are obtained for
a gas at collisionless (highly rarefied) and continuum-limit conditions, and validated
through comparison with direct simulation Mote Carlo predictions. Remarkably, it
is found that prescription of heat flux at the walls, altering the energy balance within
the medium, has a significant effect on acoustic wave propagation in the gas. In
particular, when optimized with respect to the boundary acoustic signal applied,
the heat flux condition may be used to achieve “acoustic cloaking” of the moving
wall, a much desired property in classical acoustics. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4884369]

I. INTRODUCTION

Acoustic cloaking,1 the concept of making a structure “acoustically invisible” at given flow
conditions, has recently become a key objective in various disciplines in classical acoustics, ranging
from aeroacoustics to underwater acoustics, and spanning over the entire range of audible sound
frequencies. Making use of the theory of transformation acoustics,2, 3 existing studies have applied a
coordinate-transformation-based technique to show that sound scattering from a given body can be
arbitrarily controlled through optimized manipulation of structure material and surrounding medium
parameters. A variety of mechanical and electromechanical means have been suggested to monitor
sound-wave propagation, leading to growing use in metamaterials and metafluids to achieve acoustic
sound reduction (e.g., Refs. 4 and 5).

While acoustic cloaking has been widely studied in the context of continuum fluid mechanics,
no counterpart research has been taking place in the field of non-continuum flows. Yet, apart from
the fundamental interest in studying cloaking at non-continuum conditions, such investigation may
be helpful in shedding light on cloaking at continuum-limit conditions, as well as relate macroscopic
mechanisms of noise control to microscopic-level phenomena. It therefore appears worthwhile to
investigate cloaking methodologies in the context of rarefied gas flows, encountered in cases where
the characteristic macroscopic length and time scales of the acoustic setup are of the order of, or
smaller than, the mean free path and mean free time of a gas molecule, respectively.

Propagation of sound waves in rarefied gases has been studied in a large number of works,
beginning in the middle of the 20th century and evolving through to current research.6–17 Owing to
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the relative complexity of non-continuum flows, most studies have focused on a fundamental setup
of an infinite planar wall undergoing small-amplitude periodic oscillations in the normal direction,
and investigated the sound generated at semi-infinite and finite flow domains. Other works have
followed to consider the case of sound generation by non-periodic boundary animation.18, 19 While
the acoustic pressure field has been investigated in detail in all of these studies, no attempt has been
made to develop means for monitoring the outcome sound. In addition, common to all mentioned
works is the prescription of isothermal conditions on the confining walls. Inevitably, to maintain
constant wall temperature, time-dependent non-zero heat flux must occur at the boundaries. This, in
turn, affects the energy balance within the gas and resulting flow field.

While isothermal-wall conditions are relatively simple to analyze, they are challenging to
follow in practice. Thus, in a typical experiment, it would be preferable to monitor the heat flux at
a boundary rather than its temperature. When doing so, the wall temperature becomes an a priori
unknown variable, consequence of the interaction between the gas and the wall. From the theoretical
point of view, this complicates the formulation of the problem. Yet, from the practical point of view,
this may enable control over the properties of the generated sound, as will be discussed below.

In parallel with studies on propagation of acoustic waves in rarefied gases, a set of works have
appeared which consider the gas response to thermoacoustic excitation, in the form of temperature
variation of its boundaries (see Refs. 20–24 and works cited therein). Similar to mechanical actuation,
temperature variations result in generation of pressure waves, which propagate with velocity equal
to the acoustic wave velocity. In a single work where both acoustic and thermoacoustic effects were
considered, Kalempa and Sharipov25 have studied the combined effects of harmonically varying
both normal boundary velocity and temperature in time. To the extent that walls temperature is
“prescribed,” this set of studies, including Ref. 25, can be considered similar to the above acoustic-
wave investigations. Here, as before, an a priori unknown amount of heat flux must be supplied to
the walls to maintain them at the required temperature.

The purpose of the present contribution is to investigate the effect of replacing the isothermal
boundary conditions with heat-flux conditions on propagation of sound waves in a microchannel.26

Apart from the fundamental interest in such an investigation, the analysis may be of practical
importance, as it is much easier to monitor heat-flux at a boundary than to control its temperature.
Moreover, we suggest the heat-flux prescribed at a boundary to be used as a “control parameter,” to
affect the properties of wall-motion acoustic radiation; specifically, it will be demonstrated that an
optimal choice of the heat-flux profile may lead to effective cloaking of the moving boundary, in a
mechanism named “thermal cloaking.”

The paper outline is as follows. In Sec. II, the general problem of acoustic wave propagation
in a microchannel is described. Limit-case analytical solutions (at collisionless and continuum-limit
conditions) are derived, and description of the direct simulation Monte Carlo (DSMC scheme),
used for numerical solution, is provided. Numerical and analytical results are presented in Sec. III,
demonstrating the effect of heat-flux boundary conditions on sound wave propagation. Concluding
comments are given in Sec. IV.

II. PROBLEM FORMULATION

Consider a perfect monatomic gas layer of uniform density ρ∗
0 confined between two parallel

infinitely long diffusely reflecting walls placed at x∗ = ∓L∗/2 (with asterisks denoting dimensional
quantities). The gas is initially at rest and in thermodynamic equilibrium with the boundaries, which,
at time t∗ < 0, maintain the temperature T ∗

0 . At time t∗ ≥ 0, one or both walls move in the normal
direction into the gas layer according to a prescribed (arbitrary) small-amplitude velocity profile,

εU∗
w± (t∗) = εU ∗

w±(t∗)x̂, (1)

with “plus” and “minus” signs corresponding to the motion of walls located at x∗ = −L∗/2 and
x∗ = +L∗/2, respectively. Simultaneously, heat-flux at the walls is prescribed by

εQ∗
w±(t∗) = εQ∗

w± (t∗)x̂. (2)
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The temperature of both boundaries is left unprescribed for t∗ ≥ 0, and is determined through the
interaction between the walls and the gas. In both (1) and (2), it is assumed that ε � 1, so that the
system description may be linearized about its initial equilibrium.

To render the problem dimensionless, we normalize position, velocity, and time by L∗,
U ∗

th = √
2R∗T ∗

0 (marking the mean thermal speed of gas molecules, with R∗ denoting the spe-
cific gas constant), and acoustic time-scale t∗

a = L∗/U ∗
th , respectively. Density and temperature are

scaled by ρ∗
0 and T ∗

0 , respectively, and the heat flux is normalized by ρ∗
0 U ∗3

th . The resulting non-
dimensional problem is governed by the scaled profiles of boundaries motion and heat-flux injection,
as well as by the Knudsen number,

K n = l∗/L∗, (3)

marking the ratio between the mean free path of a gas molecule l∗ and the channel width L∗.
The physical problem will be analyzed in the entire range of Knudsen numbers: the limit-cases of
highly rarefied (collisionless) and near-continuum conditions are considered in Secs. II A and II B,
respectively; description of the direct simulation Monte Carlo method, to be used to solve the
problem at arbitrary Knudsen numbers, is given is Sec. II C.

A. Ballistic-flow limit

In the framework of kinetic theory of gases, the gas state is described by the velocity distribution
function,

f (x, t, c) = F[1 + εφ(x, t, c)], (4)

wherein c = (cx , cy, cz) is the vector of molecular velocity, and F =π−3/2exp [−c2] is the equilibrium
Maxwellian distribution. Assuming the Knudsen number, defined in Eq. (3), to be infinitely large,
we neglect the effect of molecular collisions and consider the collisionless Boltzmann equation for
φ(x, t, c),

∂φ

∂t
+ cx

∂φ

∂x
= 0. (5)

The equation is supplemented by an initial condition,

φ(x, t = 0−, c) = 0, (6)

together with a linearized form of the diffuse boundary condition imposed at the walls,27

φ(x = ∓1/2, t, cx ≷ 0) = ρ±(t) + 2cxUw±(t) + Tw±(t)(c2 − 3/2). (7)

In (7), Uw±(t) are obtained from the scaled form of (1). Notably, ρ±(t) and Tw±(t) are yet to be
determined, with Tw±(t) marking the scaled time-variation of walls temperature perturbation.

Taking the Laplace transform of (5) and making use of (6) and (7) yield the solution

φ̂(s, x, cx ≷ 0, cy, cz) =
[
ρ̂±(s) + 2cxÛw±(s) + T̂w±(s)

(
c2 − 3

2

)]
exp

[
− s

cx

(
x ± 1

2

)]
, (8)

where s is the Laplace variable and ˆ denotes the Laplace transform of a function. By inversion of
(8) we obtain

φ(t, x, cx ≷ 0, cy, cz) = ρ±(t±) + 2cxUw±(t±) + Tw±(t±)(c2 − 3/2), (9)

where t± = t − (x ± 1/2)/cx. The fields ρ±(t) and Tw±(t) are determined by imposing macroscopic
no-penetration conditions,

1

π3/2

∫ ∞

−∞
cxφ

(
x = ∓1

2

)
exp(−c2)dc = Uw±(t), (10)

and heat-flux conditions,

1

2π3/2

∫ ∞

−∞
c2cxφ

(
x = ∓1

2

)
exp(−c2)dc − 5

4
Uw±(t) = Qw±(t), (11)
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at the walls.27 Substituting (9) into (10) and (11), and carrying out appropriate changes of variables,
lead to a set of coupled integral equations, imposing no-penetration,

ρ±(t) + 1

2
Tw±(t) − 2

∫ t

0

ρ∓(τ )

(t − τ )3
exp

[
− 1

(t − τ )2

]
dτ −∫ t

0

Tw∓(τ )

(t − τ )3

[
2

(t − τ )2
− 1

]
exp

[
− 1

(t − τ )2

]
dτ =

±√
πUw±(t) ∓ 4

∫ t

0

Uw∓(τ )

(t − τ )4
exp

[
− 1

(t − τ )2

]
dτ, (12)

and heat flux,

ρ±(t) + 3

2
Tw±(t) −

∫ t

0

ρ∓(τ )

(t − τ )3

[
1

(t − τ )2
+ 1

]
exp

[
− 1

(t − τ )2

]
dτ −∫ t

0

Tw∓(τ )

(t − τ )3

[
1

(t − τ )4
+ 1

2(t − τ )2
+ 1

2

]
exp

[
− 1

(t − τ )2

]
dτ =

±5

4

√
πUw±(t) ± 2

√
π Qw±(t) ∓ 2

∫ t

0

Uw∓(τ )

(t − τ )4

[
2

(t − τ )2
− 1

]
exp

[
− 1

(t − τ )2

]
dτ, (13)

at the walls. The equations should be solved in conjunction with the initial conditions

ρ±(0) = ±(7
√

π/8)Uw±(0) ∓ √
π Qw±(0) and T±(0) = ±(

√
π/4)Uw±(0) ± 2

√
π Qw±(0). (14)

The initial-value problem is solved numerically, for given choices of Uw±(t) and Qw±(t), using an
Euler-type method. Once solutions for ρ± and Tw± are obtained, the probability density function
perturbation φ in (9) is known, and the O(ε) perturbations of all hydrodynamic fields are computed
through appropriate quadratures over the molecular velocity space.27

B. Continuum limit

To analyze the limit of small Knudsen numbers, we make use of a continuum model, based on
the continuum (Navier-Stokes-Fourier) equations, supplemented by impermeability and heat-flux
conditions at the boundaries. The model is similar to the continuum-limit scheme applied in previous
analyses (e.g., Ref. 19), yet is repeated here for completeness and to emphasize on the differences
in boundary conditions.

Starting with the set of unsteady one-dimensional continuum equations (non-dimensionalized
using the scales introduced in the beginning of Sec. II), and linearizing about the initial equilibrium
state, we obtain balances of mass, momentum, and energy for the O(ε) density, normal velocity, and
temperature perturbations,

∂ρ

∂t
+ ∂u

∂x
= 0 , (15)

∂u

∂t
= −1

2

(
∂ρ

∂x
+ ∂T

∂x

)
+ 4K̃ n

3

∂2u

∂x2
, (16)

and

∂T

∂t
= γ K̃ n

Pr

∂2T

∂x2
− (γ − 1)

∂u

∂x
. (17)

Here, K̃ n = ν∗/U ∗
th L∗ is the modified Knudsen number, with ν∗ denoting the mean kinematic

viscosity of the gas. The modified Knudsen number is related to Kn through

K̃ n = ν∗

U ∗
thl∗

K n, (18)
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where ν∗/U ∗
thl∗ = 5

√
π/16 for a hard-sphere gas model, to be considered hereafter.28 In Eq. (17),

γ and Pr mark the ratio of specific heats and Prandtl number, respectively, with γ = 5/3 and
Pr = 2/3 for a hard-sphere gas. Equations (15)-(17) are supplemented by the boundary conditions

u = Uw±(t) and
15K̃ n

8

∂T

∂x
= Qw±(t) at x = ∓1/2, (19)

imposing impermeability, and specifying the magnitude of heat flux at the walls. Note that, in
accordance with the continuum Fourier law of heat conduction, the heat flux in (19) is proportional
to the temperature gradient at the boundary. By applying this condition, the continuum description
is fully adopted, with no specific prescription of “temperature jump” at the boundaries. This is in
difference from standard formulations of continuum-limit models (e.g., Ref. 19), where isothermal
boundaries are considered.28 The effect of gas rarefaction in the present formulation is tacitly
inserted through the value of K̃ n in the momentum and energy balances (see (16) and (17)). As will
be demonstrated in Sec. III, this model is found adequate to capture the system behavior at small
(yet non-zero) Knudsen numbers.

The problem is solved by applying time Fourier transform to Eqs. (15)-(19). This yields a system
of ordinary equations in the frequency ω-domain,

iωρ̄ + ū′ = 0 , iωū = −1

2

(
ρ̄ ′ + T̄ ′) + 4K̃ n

3
ū′′ and iωT̄ = 5K̃ n

2
T̄ ′′ − 2

3
ū′ , (20)

where bars indicate Fourier-transformed fields, together with boundary conditions

ū = Ūw±(ω) and
15K̃ n

8
T̄ ′ = Qw±(t) at x = ∓1/2, (21)

in which primes denote differentiations with x. The density and velocity perturbations can be
eliminated using

ρ̄ = i

ω
ū′ , ū = −15K̃ n

4ω

(
1

2ω
+ 4iK̃ n

3

)
T̄ ′′′ −

(
2K̃ n − 5i

4ω

)
T̄ ′ (22)

to yield a single equation for the temperature,

5K̃ n

2

(
4K̃ n

3
− i

2ω

)
T̄ ′′′′ − 1

6

(
23iωK̃ n + 5

)
T̄ ′′ − ω2T̄ = 0, (23)

solved in conjunction with the four boundary conditions

−15K̃ n

4ω

(
1

2ω
+ 4iK̃ n

3

)
T̄ ′′′ −

(
2K̃ n − 5i

4ω

)
T̄ ′ = Ū±(ω) and

15K̃ n

8
T̄ ′ = Qw±(t) at x = ∓1/2 . (24)

The characteristic polynomial of Eq. (23) has four distinct roots,

r1,2(ω) = ±
⎡⎣−a1 +

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

and r3,4(ω) = ±
⎡⎣−a1 −

√
a2

1 − 4a2a0

2a2

⎤⎦1/2

, (25)

where a0, a1, and a2 are the coefficients multiplying T̄ , T̄ ′′, and T̄ ′′′′ in (23), respectively. The
solution for the temperature perturbation is given by

T̄ (x, ω) =
4∑

k=1

Ck(ω) exp [rk(ω)x] , (26)

where the constants Ck are determined using the boundary conditions (24). Expressions for the
Fourier-transformed density and velocity perturbations then follow from substitution of Eq. (26)
into Eq. (22). The time-domain solution is obtained by taking the real part of the inverse Fourier
transform of each of the transformed hydrodynamic fields.
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C. DSMC scheme

The prevalent numerical scheme for analyzing rarefied gas flows is a stochastic particle method,
known as the DSMC method.29 The method simulates the trajectories of a large number of molecules,
taking account of both collisions between molecules and molecular-boundary reflections, at discrete
time intervals. Making use of a hard-sphere model of molecular interaction, the present work applies
a one-dimensional version of the DSMC scheme, to simulate the gas response to acoustic and
thermal excitations generated by fully diffuse boundaries. Results for isothermal-boundary domain,
presented in Sec. III, have been generated for reference via the standard approach described in
Ref. 29. Prescribing heat flux conditions on the boundaries has required usage of a closed-loop
controller for the temperature of the boundaries. Towards this end, consider the total normalized
energy Ek transferred between the particles and a given boundary at the time interval 0 ≤ t ≤ tk.
Given the heat flux q(t) prescribed at that wall, we define the energy transfer error function,

Ẽk =
tk∫
0

q (τ ) dτ − Ek, (27)

and apply a discrete proportional-integral controller,

Tk+1 = 1 + K p Ẽk + Ki

k∑
j=0

Ẽ j . (28)

Here, Tk+1 is the normalized temperature of the wall at time-step k + 1, and Kp and Ki denote
proportional and integral gains, respectively. A positive Ẽk corresponds to a case where the energy
transferred by the wall to the incoming particles is lower than required by the prescribed boundary
condition. In this case, the Kp proportional gain term increases the temperature to compensate for
the outcome error. At the same time, the Ki accumulation term is present to eliminate the steady-
sate error in the temperature, Ẽk(t → ∞), which otherwise should have been present to allow for
non-zero steady state temperature perturbation, Tk(t → ∞) − 1 �= 0 (see Eqs. (31) and (32)). Both
gain values are chosen ≈ 0.1 in all cases, as larger values cause undesired effects such as negative
temperature, in the presence of simulation noise.

For consistency with our linearized setup, the amplitude of boundary excitation was chosen
small such that the maximum velocity in the channel does not surpass 2% of the mean thermal
velocity. Typically, the small perturbations relative to the noise level inherent in Monte Carlo
simulations greatly diminish the signal-to-noise ratio of the results. In this respect, a low-variance
direct Monte Carlo (LVDSMC) scheme may have been more suitable to reduce the statistical
noise.30, 31 Nevertheless, the present choice of standard DSMC method has been made due to three
main reasons: first, the relative simplicity of DSMC algorithm; second, the availability of powerful
computational resources; and third, to demonstrate that the common DSMC algorithm is able to
produce results that are of sufficient quality. In terms of analysis, the main purpose of the numerical
method applied is to support the analytical findings. In this context, the close agreement found
between DSMC and analytical results (see Sec. III) justifies application of the conventional Monte
Carlo algorithm.

To achieve the desired precision of the numerical solution, we have used spatial discretization
of 100 cells across the channel with 200 sub-cells each, and time discretization of 104 steps per
run, lasting several ballistic time scales. The number of cells and sub-cells was chosen so that
further refinement of the grid did not cause noticeable changes in the results. Each run consisted of
approximately 109 particles simulated on 24 Intel Xeon E5645 cores for 24 h.

III. RESULTS

The analysis described in Sec. II can be applied to study the gas response to any prescribed
small-amplitude motion and heat-flux at the boundaries. To demonstrate our findings, we consider
a case where the boundary at x = −0.5 is excited via velocity and heat “bump-like” excitations of
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identical durations,

Uw+(t) =
{

1 , 0 ≤ t ≤ tb

0 , otherwise
, Qw+(t) =

{
Q0 , 0 ≤ t ≤ tb

0 , otherwise
, (29)

where tb governs the bumps duration and is taken tb = 0.1 (in ballistic time units, L∗/U ∗
th), to

consider “short-time” excitation. This choice facilitates production of DSMC results, as the system
equilibration time is short enough to require relatively short simulation times. The wall at x = 0.5
is taken stationary (Uw− = 0) and adiabatic (Qw− = 0). We start by studying the gas response to
bump actuation in a thermally insulated channel (Q0 = 0), and compare our findings with counterpart
results for a gas confined between isothermal walls.19 We then turn to consider a non-adiabatic setup,
where non-zero heat-flux bump is applied at x0 = −0.5, and study its effect on outcome radiation.
We skip a detailed study of the breakdown of the limit-case analytical solutions with varying Kn, as
a similar study has been conducted in Ref. 19 in the context of the isothermal problem. Instead, we
focus on examining the extreme cases of large and small Knudsen numbers. Qualitatively similar
findings to those presented below (not presented here for brevity) have been obtained using DSMC
calculations at intermediate (0.1 < Kn < 1) Knudsen numbers.

A. Adiabatic channel

Figures 1 and 2 present time variations of the velocity, temperature, and pressure perturbations,
obtained in the adiabatic and isothermal cases, for Kn = 10 (Fig. 1) and Kn = 0.01 (Fig. 2),
at a fixed location x = −0.4 across the gap. Each figure shows comparison between analytical
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FIG. 1. Effect of adiabatic boundary conditions on the response of a gas at Kn = 10 to bump actuation: (a)-(c) Time-variations
of velocity (Fig. 1(a)), temperature (Fig. 1(b)), and pressure (Fig. 1(c)) perturbations at x = −0.4. Solid and dashed lines
mark analytical results for collisionless gas confined between adiabatic (Eq. (29) with Q0 = 0) and isothermal19 boundaries,
respectively. Crosses and circles show counterpart DSMC data for hard-sphere gas at Kn = 10. Insets in Figs. 1(b) and 1(c)
show zoom into the time interval of initial wavefront passage. (d) Time-variation of adiabatic walls temperature, Tw+ (solid
line) and Tw− (dashed line), obtained from the analytical collisionless solution. Short dashed-dotted line marks steady-state
equilibrium value, achieved at long times (see (31)).
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FIG. 2. Effect of adiabatic boundary conditions on the response of a gas at Kn = 0.01 to bump actuation: (a)-(c) Time-
variations of velocity (Fig. 1(a)), temperature (Fig. 1(b)), and pressure (Fig. 1(c)) perturbations at x = −0.4. Solid and
dashed lines mark analytical results for hard-sphere gas confined between adiabatic (Eq. (29) with Q0 = 0) and isothermal19

boundaries, respectively. Crosses and circles show counterpart DSMC data. (d) Time-variation of adiabatic walls temperature,
Tw+ (solid line) and Tw− (dashed line), obtained from the analytical continuum-limit solution. Short dashed-dotted line marks
steady-state equilibrium value, achieved at long times (see (31)).

(ballistic-limit solution in Fig. 1; continuum-limit solution in Fig. 2) and numerical DSMC solutions.
The analytical results in the isothermal-boundaries setup are obtained using the scheme detailed in
Ref. 19. Figs. 1(d) and 2(d) show time variations of adiabatic walls temperature perturbations at
Kn = 10 and Kn = 0.01, respectively. Given the vastly different methods of calculation, and the
inevitable statistical noise inherent in DSMC results (see Sec. II C), we find the close agreement
between all sets of results satisfactory. This supports application of the analytical schemes, presented
in Sec. II, to analyze the system response at the specified large and small Knudsen numbers.

Starting with the large-Kn case in Fig. 1, we observe several common features between the
adiabatic- and isothermal-boundary setups. Thus, at early times there exists an initial time interval,
during which all perturbations equal zero in both isothermal and adiabatic cases (see the insets in
Figs. 1(b) and 1(c) at early times). This “retarded time” interval reflects the time it takes the moving-
wall signal to reach the point in space where perturbations are measured. As the signal wavefront
passes a point in space, all hydrodynamic perturbations exhibit sharp variations in their values. With
increasing time, the mutual effects of both walls are reflected at each point in the gas domain. At late
times, the gas approaches its new equilibrium state through a series of decaying waves propagating
across the gap.

While the above general features are common to both isothermal and adiabatic setups, other
properties are distinct. To start with, the first sharp maximum observed in each of the thermodynamic
perturbations (temperature and pressure) is larger in the adiabatic setup than in the isothermal case
(see the insets in Figs. 1(b) and 1(c)). Physically, maintaining the boundary at a constant temperature,
while moving it into the gas layer, requires heat to be removed from the system. This is achieved
through active “cooling,” or outgoing heat-flux, occurring at the boundary. System internal energy
is consequently reduced, resulting in lowering the amplitudes of signal wavefronts. In the adiabatic
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case, no heat flux is allowed at the walls, and thus the gas is comparably “heated” in the vicinity of
the moving boundary. This, in turn, results in relative enforcement of the generated pressure wave.
The heating effect is also reflected by an initial rise in the temperature of the moving boundary Tw+
(which is maintained fixed in the isothermal setup), as depicted by the solid line in Fig. 1(d).

The different thermal conditions also result in a difference in the final equilibrium state achieved
by the system. For the case of an isothermal wall displaced a tb-distance into the gas domain (in εL∗

units) after the bump, the new equilibrium state (with vanishing velocity field) is given by

ρiso(t → ∞) = tb , Tiso(t → ∞) = 0 , piso(t → ∞) = tb. (30)

In difference from Eq. (30), when the system is adiabatic, a non-zero change occurs in the walls
temperature owing to their displacement (see Fig. 1(d)), which determines the gas temperature in
equilibrium. Using thermodynamic considerations for an ideal gas undergoing adiabatic compres-
sion, this change can be determined. Adding it to the steady-state density perturbation common to
both adiabatic and isothermal setups, the adiabatic equilibrium state is given by

ρad(t → ∞) = tb , Tad(t → ∞) = 2tb/3 , pad(t → ∞) = 5tb/3. (31)

These steady-state values are clearly recovered in the late-time behavior in Fig. 1. It is this very
effect of heat-flux removal at the boundaries, resulting in reduced temperature and pressure levels
in the isothermal case, that will be applied later on to reduce the acoustic pressure in the system and
achieve “cloaking” in a non-adiabatic setup (see Sec. III B). The new equilibrium state is achieved
after t ≈ 2, which corresponds to approximately one-fifth of the mean free time for the present choice
of Kn = 10. Given the relatively short relaxation process, it is indeed expected that the collisionless
analysis should predict the exact numerical solution well.

Traversing to the low-Kn case presented in Fig. 2, several qualitative differences are observed
between the system behavior at collisionless and continuum-limit conditions. These are common
to both adiabatic and isothermal setups. The most visible difference is in the oscillatory behavior
of the system at small Kn, being much weaker at high-Kn flow conditions. This is accompanied by
extension in equilibration time with decreasing Kn, being t � 15 (outside the time interval presented
in the figure) for Kn = 0.01. As observed and rationalized in Ref. 19, we find that the Knudsen
number, governing the amount of collisions experienced by a molecule while passing through the
channel, can be viewed as a “damping coefficient” of the acoustic response, in both types of thermal
boundary conditions.

Comparing between the isothermal- and adiabatic-setup responses in Fig. 2, the differences
obtained are similar to those found in the high-Kn case of Fig. 1: that is, owing to the lack of a
“cooling mechanism” in the adiabatic system, the acoustic wave is characterized by higher wavefront
amplitudes, accompanied by higher steady-state pressure levels. The steady-state values, not visible
in Fig. 2 owing to the short time interval presented (see the equilibrium temperature value marked
by the dashed-dotted line in Fig. 2(d)), are identical to those predicted by Eqs. (30) and (31).

B. Non-adiabatic channel

The results in Figs. 1 and 2 indicate that the propagation of acoustic pressure within the channel
is affected by the thermal boundary condition applied, with the pressure perturbation being larger
in the adiabatic compared to the isothermal case. While the total effect may appear small in the
results of Figs. 1(c) and 2(c) (being a difference of only few percents between the setups in the
peak pressure), it appears worthwhile to examine the impact of varying the heat flux at the actuated
wall on sound propagation. We therefore reapply excitation (29) to the system, now with Q0 �= 0 as
a “control” parameter, governing the amount of heat added (Q0 > 0) or removed (Q0 < 0) at the
actuated boundary. The boundary at x = 0.5 is kept stationary and adiabatic in all cases, as noted in
the beginning of Sec. III.

Figure 3 studies the effect of heat-flux parameter Q0 on the system pressure perturbation in both
collisionless (Fig. 3(a)) and continuum-limit (Kn = 0.01, Fig. 3(b)) conditions. The solid lines and
crosses mark adiabatic-channel (Q0 = 0) results (analytic and DSMC, respectively), identical with
the solid lines and crosses in Figs. 1(c) and 2(c). The dashed and dashed-dotted lines, together with
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FIG. 3. Effect of boundary heat-flux condition on the acoustic pressure obtained at x = −0.4 at Kn = 10 (Fig. 3(a)) and
Kn = 0.01 (Fig. 3(b)) conditions. Solid, dashed, and dashed-dotted lines mark analytical results for adiabatic (Q0 = 0),
“boundary heating” (Q0 = 1), and “boundary cooling” (Q0 = −1.5) conditions. Crosses, circles, and triangles present
respective DSMC predictions. Thin blue lines mark lines of zero acoustic pressure, for reference.

circles and triangles, show counterpart analytic and DSMC results for Q0 = 1 (“boundary heating”)
and Q0 = −1.5 (“boundary cooling”) conditions. Again we note the close agreement between two
sets of data, in support of accurateness of both schemes of solution.

Observing the results in Fig. 3, and in agreement with the discussion of Figs. 1 and 2, we find that
boundary heating (Q0 > 0) yields an increase in the system pressure level: the added heat superposes
with the pressure signal generated by boundary motion, and strengthens the outcome pressure
wave. However, applying outgoing heat-flux at the boundaries (Q0 < 0) has the counter effect on
sound wave propagation, acting to cancel out the pressure wave generated by the moving boundary.
The extent to which the latter reduces the adiabatic signal is remarkable, in both collisionless
and continuum-limit conditions, resulting in a vanishingly small pressure signal, common to the
entire channel (see Fig. 5). Physically, the mechanism through which boundary heat-flux affects
the acoustic field can now be rationalized: boundary heating, similar to wall animation, results in
generation of a thermoacoustic pressure wave, propagating in a velocity equal to the velocity of the
actuated-boundary acoustic disturbance. When opposite in phase (as in the case of boundary cooling
applied to a boundary moving into the gas; see the dashed-dotted lines and triangles in Fig. 3), the
thermoacoustic disturbance tends to reduce the acoustic wave. The effectiveness of this “cloaking”
mechanism may be optimized using the heat-flux parameter Q0, as demonstrated below.

Making use of Eq. (31) for the steady state in an adiabatic channel, and superposing the effect
of heat flux addition at an animated boundary through an energy balance, the values of steady-state
perturbations at non-adiabatic conditions corresponding to excitation (29) may be obtained,

ρQ0 (t → ∞) = tb , TQ0 (t → ∞) = 2tb
3

(1 + 2Q0) , pQ0 (t → ∞) = tb
3

(5 + 4Q0). (32)

It has been verified that these values are recovered at long times by our calculations. Notably,
Eq. (32) indicates that thermal heating effectively cancels out the long-time acoustic pressure when
Q0 = −5/4. At this value of Q0, the final temperature perturbation is negative (TQ0 ≈ −0.1),
indicating that steady-state cloaking is accompanied by overall cooling of the gas (see Fig. 6).

To gain further insight into the effect of heat-flux parameter on the system acoustic response,
we consider the impact of Q0 on the entire equilibration process of the system, beginning at the
initial time of excitation. Towards this end, we define the total integrated pressure and temperature
perturbations,

�(t f ) =
∫ t f

0

∫ 0.5

−0.5
|p(x, t)| dxdt and �(t f ) =

∫ t f

0

∫ 0.5

−0.5
|T (x, t)| dxdt, (33)

respectively, measuring the total pressure and temperature disturbances occurring across the gap at
times 0 ≤ t ≤ tf. The upper time limit tf is chosen arbitrarily, yet our calculations indicate that the
results presented below remain qualitatively similar for different choices of tf. While the optimal
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FIG. 4. Variation of total integrated pressure (Fig. 4(a)) and temperature (Fig. 4(b)) perturbations (see (33)) with heat-
flux parameter Q0 at the indicated values of Kn = 0.01 (with tf = 5) and Kn → ∞ (with tf = 3). Results are based on
collisionless and continuum-limit analytical solutions. Vertical lines mark values of Q0 for which steady-state acoustic pressure
(Q0 = −5/4, Fig. 4(a)) and temperature perturbation (Q0 = −1/2, Fig. 4(b)) vanish (see (32)).

value of Q0 = −5/4 for achieving long-time cloaking of the system is obvious from (32), the purpose
of the remaining discussion is to study the effect of heat-flux parameter on the transient behavior
of the system. We therefore choose values of tf for which the system has not yet, or just reached,
equilibrium.

Following the definitions in Eq. (33), Figure 4 presents the variations of integrated pressure
and temperature with heat-flux parameter Q0 at continuum-limit (Kn = 0.01) and collisionless
(Kn → ∞) flow conditions. Having confirmed in Figs. 1–3 that our limit-case solutions agree well
with DSMC predictions, the results presented hereafter are based on analytic solutions only. For
the calculation of �(tf) and �(tf), values of tf = 5 and tf = 3 were taken for Kn = 0.01 and Kn →
∞, respectively. Focusing on Fig. 4(a), we find that the conditions for “transient cloaking” coincide
with “steady-state cloaking”: that is, the choice Q0 = −5/4 results in the smallest value for �, for
both large and small values of Kn. The cloaking effect is most remarkable at the small-Kn case,
where pressure fluctuations practically vanish in both time and space (see Fig. 5). As visible in
Fig. 4(b), optimized acoustic cloaking is accompanied by an increase in the integrated temperature
perturbation compared to the adiabatic case (cf. the values of � at Q0 = −5/4 and Q0 = 0 for
both Knudsen numbers). It is therefore the transfer between acoustic and thermal energies which
enables the reduction of acoustic pressure with varying Q0. Interestingly, Fig. 4(b) indicates that
the optimized reduction in gas temperature perturbation is obtained, for both Kn, at Q0 = −1/2.
This result coincides with the value of Q0 required for long-time vanishing of TQ0 , according to
Eq. (32).

To complement the discussion in Fig. 4, Figs. 5 and 6 present time-space maps of gas acous-
tic pressure (Fig. 5) and temperature perturbation (Fig. 6) at both large (Kn → ∞) and small
(Kn = 0.01) Knudsen numbers. Fig. 5 shows comparison between the acoustic pressure at adiabatic
(Q0 = 0, Figs. 5(a) and 5(c)) and “optimized cloaking” (Q0 = −5/4, Figs. 5(b) and 5(d)) conditions.
Fig. 6 shows respective time-space temperature maps at Q0 = −5/4. To facilitate comparison be-
tween adiabatic and non-adiabatic cases, all parts in Fig. 5 are presented using the same color-bar
scale.

Starting with the adiabatic-system response in Figs. 5(a) and 5(c), one can easily trace the
acoustic wave propagation across the channel, initiated at t = 0 at x = −0.5, and undergoing a series
of wall reflections with gradually decaying amplitude at later times. The decay rate is markedly
faster in the collisionless case, as also noted in the discussion of Figs. 1 and 2. Comparing between
the adiabatic-setup results and their non-adiabatic Q0 = −5/4 counterparts in Figs. 5(b) and 5(d),
the overall cloaking effect is evident. The effect is most remarkable in the Kn = 0.01 case shown in
Fig. 5(d): as supported by the minimum value of � in the solid line in Fig. 4(a), the thermoacoustic
wave in this setup essentially cancels out the acoustic disturbance, resulting in a vanishingly small
pressure perturbation even at the initial time of boundary animation. The thermodynamic charac-
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FIG. 5. Time-space maps of system acoustic pressure excited by boundary bump actuation: (a) and (b) collisionless gas
with adiabatic (Q0 = 0, Fig. 5(a)) and “cooled” (Q0 = −5/4, Fig. 5(b)) boundary; (c) and (d) Kn = 0.01 gas with adiabatic
(Q0 = 0, Fig. 5(c)) and “cooled” (Q0 = −5/4, Fig. 5(d)) boundary. Results are based on collisionless and continuum-limit
analytical solutions.

terization of the non-adiabatic setup is completed in Fig. 6, indicating the accompanying transfer
between acoustic and thermal energies within the gas. As noted in Fig. 5(b), the cloaking of sound
is accompanied by overall cooling of the gas. Interestingly, the wave-structure of the propagation
of temperature disturbance, visible in the adiabatic case (that is, in the temperature counterparts of
Figs. 5(a) and 5(c), not presented here for brevity), is much less observed in the non-adiabatic map,
indicating that the thermoacoustic disturbance at these conditions acts to smoothen temperature
gradients within the medium.

FIG. 6. Time-space maps of gas temperature perturbation excited by actuated non-adiabatic boundary with Q0 = −5/4:
(a) collisionless gas; (b) Kn = 0.01 gas. Results are based on collisionless and continuum-limit analytical solutions.
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IV. CONCLUSION

We have studied the acoustic effect of replacing the isothermal conditions on a boundary,
commonly used in acoustic-wave analyses of rarefied and continuum gas flows, with heat-flux
conditions. The problem was formulated and solved for an ideal hard-sphere gas undergoing purely
diffuse reflections with the channel walls, and the effect of heat-flux insulation was demonstrated
through comparison with results obtained for a channel with isothermal walls. Considering non-
adiabatic setup, it was demonstrated that significant reduction in the motion-generated acoustic
disturbance can be achieved through optimized prescription of heat flux at the wall. The result was
supported by steady-state thermodynamic considerations, indicating that the “cloaking” effect is
inevitably accompanied by an appropriate change in the gas temperature, through transfer between
acoustic and thermal energies.

The problem was solved analytically, in limit cases of large (collisionless) and small (continuum-
limit) Knudsen-number conditions, and results were found in close agreement with numerical DSMC
predictions. While the conventional DSMC method may not be the most efficient numerical tool to be
used in the present linearized setup (compared to, say, more sophisticated low-variance Monte Carlo
schemes30, 31), we have applied it here due to its relative simplicity, and to demonstrate its ability to
produce results that are of sufficient quality, in support of our analytical findings. In doing so, the
present contribution primarily aims at demonstrating the mechanism of thermal cloaking through our
closed-form solutions, in which results could be easily obtained. A detailed study of the breakdown
of the limit-case solutions with varying Kn was not presented, as a similar investigation (leading
to qualitatively similar conclusions) can be found in the isothermal-boundary problem studied in
Ref. 19. In essence, our numerical results for intermediate values of the Knudsen number show
similar trends, in terms of the effect of boundary heating, to those presented in the two limit
cases.

Our findings are presented for a single test-case of bump-like boundary animation, specified
by Uw+(t) in Eq. (29). Yet, our scheme can be readily applied to consider the gas response to
any small-amplitude boundary excitation, for both wall motion and thermal heating profiles. As
mentioned in the beginning of Sec. III, the present choice facilitates production of DSMC results,
as the system equilibration time is short enough to require only short simulation times. Apart from
studying other excitation profiles, it would be of practical interest to study the system response
in a semi-infinite setup, where only the actuating boundary is present. In such a case, continuum
conditions should prevail soon after the initiation of boundary excitation (once sufficient time has
elapsed since initial perturbation), and the efficiency of the thermal cloaking mechanism may be
tested. Such an investigation is part of a study currently in progress.

While application of thermal heating to achieve acoustic cloaking appears new in the present
context, recent studies on the thermal properties of metamaterials have suggested thermal monitoring
as means for obtaining wave cloaking in various other disciplines. These include, among others,
studies on optical cloaking (making objects “invisible” through heating32, 33) and electromagnetic
wave formation.34 In this respect, the present contribution may be considered as a demonstration of
the impact of heating on the acoustic properties of a mechanically actuated boundary immersed in
a gas. Future studies are required to investigate the practical feasibility (in terms of heat-exchange
requirements) of the proposed mechanism for controlling the sound in finite domains, and to consider
the heat-flux effect on sound propagation in fluids other than ideal gases.
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